From 9d260e6fae7328d816a514130b691fbd0e9ef81d Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Fri, 3 Jul 2015 12:23:43 +0530 Subject: add/remove books --- Engineering_Physics/Chapter5.ipynb | 469 ------------------------------------- 1 file changed, 469 deletions(-) delete mode 100755 Engineering_Physics/Chapter5.ipynb (limited to 'Engineering_Physics/Chapter5.ipynb') diff --git a/Engineering_Physics/Chapter5.ipynb b/Engineering_Physics/Chapter5.ipynb deleted file mode 100755 index d125b365..00000000 --- a/Engineering_Physics/Chapter5.ipynb +++ /dev/null @@ -1,469 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:f4c05fd79d4d56cbd4b08f847aeb0bba767b388c9bbe1bea8066d97e3ac78212" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "5: Diffraction" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.1, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "lamda=600*10**-9; #wavelength(m)\n", - "theta=35; #angle at which first minimum falls(degrees)\n", - "\n", - "#Calculation \n", - "theta=theta*math.pi/180; #angle at which first minimum falls(radian)\n", - "d=((n*lamda)/math.sin(theta))*10**6; #width of the slit(micro m)\n", - "\n", - "#Result\n", - "print \"The width of the slit is\",round(d,2),\"micro m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The width of the slit is 1.05 micro m\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.2, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=0.95; #distance of the screen from the slit(m)\n", - "lamda=589*10**-9; #wavelength(m)\n", - "d=0.5*10**-3; #width of the slit(m)\n", - "\n", - "#Calculation \n", - "y=((2*D*lamda)/d)*10**3; #width of a central band(mm)\n", - "\n", - "#Result\n", - "print \"The width of the central band is\",round(y,2),\"mm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The width of the central band is 2.24 mm\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.3, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=1.1; #distance of the screen from the slit(m)\n", - "lamda=589*10**-9; #wavelength(m)\n", - "y=4.5*10**-3; #distance of first minimum on either side of central maximum(m)\n", - "\n", - "#Calculation \n", - "d=((D*lamda)/y)*10**3 #slit width(mm)\n", - "\n", - "#Result\n", - "print \"The slit width is\",round(d,3),\"mm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The slit width is 0.144 mm\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.4, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=4;\n", - "lamda=589.6*10**-9; #wavelength(m)\n", - "D=0.95; #distance of the screen from the slit(m)\n", - "w=0.28*10**-3; #width of the slit(m)\n", - "\n", - "#Calculation \n", - "d=((n*lamda*D)/w)*10**3; #distance between centres(mm)\n", - "\n", - "#Result\n", - "print \"The distance between centres of central maximum and the fourth dark fringe is\",int(d),\"mm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The distance between centres of central maximum and the fourth dark fringe is 8 mm\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.5, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "s=5*math.pi/2; #secondary maximum\n", - "\n", - "#Calculation \n", - "I=(math.sin(s)/s)**2; #I2/I0\n", - "\n", - "#Result\n", - "print \"Ratio of intensities of central & second secondary maximum is\",round(I,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ratio of intensities of central & second secondary maximum is 0.016\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.6, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda=450*10**-9; #wavelength(m)\n", - "n=2;\n", - "dlambda=1*10**-9; #difference in wavelength(m)\n", - "\n", - "#Calculation \n", - "N=lamda/(n*dlambda); #minimum number of lines per cm \n", - "\n", - "#Result\n", - "print \"The minimum number of lines per cm is\",N/2" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The minimum number of lines per cm is 112.5\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.7, Page number 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "lamda=650*10**-9; #wavelength(m)\n", - "d=2*10**-6; #width of the slit(m)\n", - "\n", - "#Calculation \n", - "theta=math.asin((n*lamda)/d); #angle at which first minimum will be observed(radian)\n", - "theta=theta*180/math.pi; #angle at which first minimum will be observed(degrees)\n", - "\n", - "#Result\n", - "print \"The angle at which first minimum will be observed is\",round(theta,3),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The angle at which first minimum will be observed is 18.966 degrees\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.8, Page number 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda=600*10**-9; #wavelength(m)\n", - "y=2*10**-3; #width of the central band(m)\n", - "D=1; #distance of the screen from the slit(m)\n", - "\n", - "#Calculation \n", - "d=((2*D*lamda)/y)*10**3; #slit width(mm)\n", - "\n", - "#Result\n", - "print \"The slit width is\",d,\"mm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The slit width is 0.6 mm\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.9, Page number 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "y=6*10**-3; #first minimum is observed(m)\n", - "d=90*10**-6; #slit width(m)\n", - "D=0.98; #distance of the screen from the slit(m)\n", - "\n", - "#Calculation \n", - "lamda=((y*d)/D)*10**9; #wavelength(nm)\n", - "\n", - "#Result\n", - "print \"The wavelength of light used is\",int(lamda),\"nm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The wavelength of light used is 551 nm\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.10, Page number 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "lambda1=450*10**-9; #wavelength of first spectral line(m)\n", - "d=1/5000; #number of lines\n", - "\n", - "#Calculation \n", - "theta1=math.asin((n*lambda1)/d); \n", - "theta1=round(theta1*10**2*180/math.pi);\n", - "theta2=theta1+2.97;\n", - "theta2=theta2*math.pi/180;\n", - "lambda2=d*math.sin(theta2)/n; #wavelength of second spectral line(nm)\n", - "\n", - "#Result\n", - "print \"The wavelength of second spectral line is\",int(lambda2*10**7),\"nm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The wavelength of second spectral line is 550 nm\n" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.11, Page number 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n=3;\n", - "lamda=700*10**-9; #wavelength(m)\n", - "theta=90; #angle(degrees)\n", - "\n", - "#Calculation \n", - "theta=theta*math.pi/180; #angle(radian)\n", - "d=n*lamda/math.sin(theta); #grating element(m)\n", - "\n", - "#Result\n", - "print \"The minimum grating element required to observe the entire third order spectrum is\",d*10**6,\"*10**-6 m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The minimum grating element required to observe the entire third order spectrum is 2.1 *10**-6 m\n" - ] - } - ], - "prompt_number": 45 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit