From 435840cef00c596d9e608f9eb2d96f522ea8505a Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 5 May 2015 14:21:39 +0530 Subject: add books --- Engineering_Physics/Chapter5.ipynb | 469 +++++++++++++++++++++++++++++++++++++ 1 file changed, 469 insertions(+) create mode 100755 Engineering_Physics/Chapter5.ipynb (limited to 'Engineering_Physics/Chapter5.ipynb') diff --git a/Engineering_Physics/Chapter5.ipynb b/Engineering_Physics/Chapter5.ipynb new file mode 100755 index 00000000..d125b365 --- /dev/null +++ b/Engineering_Physics/Chapter5.ipynb @@ -0,0 +1,469 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:f4c05fd79d4d56cbd4b08f847aeb0bba767b388c9bbe1bea8066d97e3ac78212" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "5: Diffraction" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.1, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1;\n", + "lamda=600*10**-9; #wavelength(m)\n", + "theta=35; #angle at which first minimum falls(degrees)\n", + "\n", + "#Calculation \n", + "theta=theta*math.pi/180; #angle at which first minimum falls(radian)\n", + "d=((n*lamda)/math.sin(theta))*10**6; #width of the slit(micro m)\n", + "\n", + "#Result\n", + "print \"The width of the slit is\",round(d,2),\"micro m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The width of the slit is 1.05 micro m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.2, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D=0.95; #distance of the screen from the slit(m)\n", + "lamda=589*10**-9; #wavelength(m)\n", + "d=0.5*10**-3; #width of the slit(m)\n", + "\n", + "#Calculation \n", + "y=((2*D*lamda)/d)*10**3; #width of a central band(mm)\n", + "\n", + "#Result\n", + "print \"The width of the central band is\",round(y,2),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The width of the central band is 2.24 mm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.3, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D=1.1; #distance of the screen from the slit(m)\n", + "lamda=589*10**-9; #wavelength(m)\n", + "y=4.5*10**-3; #distance of first minimum on either side of central maximum(m)\n", + "\n", + "#Calculation \n", + "d=((D*lamda)/y)*10**3 #slit width(mm)\n", + "\n", + "#Result\n", + "print \"The slit width is\",round(d,3),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The slit width is 0.144 mm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.4, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=4;\n", + "lamda=589.6*10**-9; #wavelength(m)\n", + "D=0.95; #distance of the screen from the slit(m)\n", + "w=0.28*10**-3; #width of the slit(m)\n", + "\n", + "#Calculation \n", + "d=((n*lamda*D)/w)*10**3; #distance between centres(mm)\n", + "\n", + "#Result\n", + "print \"The distance between centres of central maximum and the fourth dark fringe is\",int(d),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The distance between centres of central maximum and the fourth dark fringe is 8 mm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.5, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "s=5*math.pi/2; #secondary maximum\n", + "\n", + "#Calculation \n", + "I=(math.sin(s)/s)**2; #I2/I0\n", + "\n", + "#Result\n", + "print \"Ratio of intensities of central & second secondary maximum is\",round(I,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ratio of intensities of central & second secondary maximum is 0.016\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.6, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=450*10**-9; #wavelength(m)\n", + "n=2;\n", + "dlambda=1*10**-9; #difference in wavelength(m)\n", + "\n", + "#Calculation \n", + "N=lamda/(n*dlambda); #minimum number of lines per cm \n", + "\n", + "#Result\n", + "print \"The minimum number of lines per cm is\",N/2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum number of lines per cm is 112.5\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.7, Page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1;\n", + "lamda=650*10**-9; #wavelength(m)\n", + "d=2*10**-6; #width of the slit(m)\n", + "\n", + "#Calculation \n", + "theta=math.asin((n*lamda)/d); #angle at which first minimum will be observed(radian)\n", + "theta=theta*180/math.pi; #angle at which first minimum will be observed(degrees)\n", + "\n", + "#Result\n", + "print \"The angle at which first minimum will be observed is\",round(theta,3),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The angle at which first minimum will be observed is 18.966 degrees\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.8, Page number 87" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=600*10**-9; #wavelength(m)\n", + "y=2*10**-3; #width of the central band(m)\n", + "D=1; #distance of the screen from the slit(m)\n", + "\n", + "#Calculation \n", + "d=((2*D*lamda)/y)*10**3; #slit width(mm)\n", + "\n", + "#Result\n", + "print \"The slit width is\",d,\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The slit width is 0.6 mm\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.9, Page number 87" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "y=6*10**-3; #first minimum is observed(m)\n", + "d=90*10**-6; #slit width(m)\n", + "D=0.98; #distance of the screen from the slit(m)\n", + "\n", + "#Calculation \n", + "lamda=((y*d)/D)*10**9; #wavelength(nm)\n", + "\n", + "#Result\n", + "print \"The wavelength of light used is\",int(lamda),\"nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of light used is 551 nm\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.10, Page number 87" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1;\n", + "lambda1=450*10**-9; #wavelength of first spectral line(m)\n", + "d=1/5000; #number of lines\n", + "\n", + "#Calculation \n", + "theta1=math.asin((n*lambda1)/d); \n", + "theta1=round(theta1*10**2*180/math.pi);\n", + "theta2=theta1+2.97;\n", + "theta2=theta2*math.pi/180;\n", + "lambda2=d*math.sin(theta2)/n; #wavelength of second spectral line(nm)\n", + "\n", + "#Result\n", + "print \"The wavelength of second spectral line is\",int(lambda2*10**7),\"nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of second spectral line is 550 nm\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 5.11, Page number 87" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=3;\n", + "lamda=700*10**-9; #wavelength(m)\n", + "theta=90; #angle(degrees)\n", + "\n", + "#Calculation \n", + "theta=theta*math.pi/180; #angle(radian)\n", + "d=n*lamda/math.sin(theta); #grating element(m)\n", + "\n", + "#Result\n", + "print \"The minimum grating element required to observe the entire third order spectrum is\",d*10**6,\"*10**-6 m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum grating element required to observe the entire third order spectrum is 2.1 *10**-6 m\n" + ] + } + ], + "prompt_number": 45 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit