From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- .../chapter18.ipynb | 620 --------------------- 1 file changed, 620 deletions(-) delete mode 100755 Engineering_Mechanics_by_Tayal_A.K./chapter18.ipynb (limited to 'Engineering_Mechanics_by_Tayal_A.K./chapter18.ipynb') diff --git a/Engineering_Mechanics_by_Tayal_A.K./chapter18.ipynb b/Engineering_Mechanics_by_Tayal_A.K./chapter18.ipynb deleted file mode 100755 index 696a0479..00000000 --- a/Engineering_Mechanics_by_Tayal_A.K./chapter18.ipynb +++ /dev/null @@ -1,620 +0,0 @@ -{ - "metadata": { - "name": "chapter18.ipynb" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 18: Impact:Collision Of Elastic Bodies" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-1,Page No:474" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import numpy as np\n", - "\n", - "# Initilization of variables\n", - "m_a=1 # kg # mass of the ball A\n", - "v_a=2 # m/s # velocity of ball A\n", - "m_b=2 # kg # mass of ball B\n", - "v_b=0 # m/s # ball B at rest\n", - "e=1/2 # coefficient of restitution\n", - "\n", - "# Calculations\n", - "# Solving eqn's 1 & 2 using matrix for v'_a & v'_b,\n", - "A=np.array([[1 ,2],[-1 ,1]])\n", - "B=np.array([2,1])\n", - "C=np.linalg.solve(A,B)\n", - "\n", - "# Results\n", - "\n", - "print\"The velocity of ball A after impact is \",round(C[0]),\"m/s\"\n", - "print\"The velocity of ball B after impact is \",round(C[1]),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of ball A after impact is 0.0 m/s\n", - "The velocity of ball B after impact is 1.0 m/s\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-2,Page No:480" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import numpy as np\n", - "\n", - "# Initilization of variables\n", - "m_a=2 # kg # mass of ball A\n", - "m_b=6 # kg # mass of ball B\n", - "m_c=12 # kg # mass of ball C\n", - "v_a=12 # m/s # velocity of ball A\n", - "v_b=4 # m/s # velocity of ball B\n", - "v_c=2 # m/s # velocity of ball C\n", - "e=1 # coefficient of restitution for perfectly elastic body\n", - "\n", - "# Calculations\n", - "\n", - "# (A)\n", - "# Solving eq'n 1 & 2 using matrix for v'_a & v'_b,\n", - "A=np.array([[2 ,6],[-1, 1]])\n", - "B=np.array([48,8])\n", - "C=np.linalg.solve(A,B)\n", - "\n", - "# Calculations\n", - "\n", - "# (B)\n", - "# Solving eq'ns 3 & 4 simultaneously using matrix for v'_b & v'_c\n", - "P=np.array([[1 ,2],[-1, 1]])\n", - "Q=np.array([12,6])\n", - "R=np.linalg.solve(P,Q)\n", - "\n", - "# Results (A&B)\n", - "\n", - "print\"The velocity of ball A after impact on ball B is \",round(C[0]),\"m/s\" # here the ball of mass 2 kg is bought to rest\n", - "print\"The velocity of ball B after getting impacted by ball A is \",round(C[1]),\"m/s\"\n", - "print\"The final velocity of ball B is \",round(R[0]),\"m/s\" # here the ball of mass 6 kg is bought to rest\n", - "print\"The velocity of ball C after getting impacted by ball B is \",round(R[1]),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of ball A after impact on ball B is 0.0 m/s\n", - "The velocity of ball B after getting impacted by ball A is 8.0 m/s\n", - "The final velocity of ball B is 0.0 m/s\n", - "The velocity of ball C after getting impacted by ball B is 6.0 m/s\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-3,Page No:481" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "h_1=9 # m # height of first bounce\n", - "h_2=6 # m # height of second bounce\n", - "\n", - "# Calculations\n", - "\n", - "# From eq'n (5) we have, Coefficient of restitution between the glass and the floor is,\n", - "e=(h_2*h_1**-1)**0.5\n", - "# From eq'n 3 we get height of drop as,\n", - "h=h_1/e**2 # m\n", - "\n", - "# Results\n", - "\n", - "print\"The ball was dropped from a height of \",round(h,1),\"m\"\n", - "print\"The coefficient of restitution between the glass and the floor is \",round(e,1)\n", - "# Here we use h`=h_1 & h``=h_2 because h` & h`` could not be defined in Scilab.\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ball was dropped from a height of 13.5 m\n", - "The coefficient of restitution between the glass and the floor is 0.8\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-4,Page No:484" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "\n", - "e=0.90 # coefficient o restitution\n", - "v_a=10 # m/s # velocity of ball A\n", - "v_b=15 # m/s # velocity of ball B\n", - "alpha_1=30 # degree # angle made by v_a with horizontal\n", - "alpha_2=60 # degree # angle made by v_b with horizontal\n", - "\n", - "# Calculations\n", - "\n", - "# The components of initial velocity of ball A:\n", - "v_a_x=v_a*cos(alpha_1*(pi/180)) # m/s\n", - "v_a_y=v_a*sin(alpha_1*(pi/180)) # m/s\n", - "\n", - "# The components of initial velocity of ball B:\n", - "v_b_x=-v_b*cos(alpha_2*(pi/180)) # m/s\n", - "v_b_y=v_b*sin(alpha_2*(pi/180)) # m/s\n", - "\n", - "# From eq'n 1 & 2 we get,\n", - "v_ay=v_a_y # m/s # Here, v_ay=(v'_a)_y\n", - "v_by=v_b_y # m/s # Here, v_by=(v'_b)_y\n", - "\n", - "# On adding eq'n 3 & 4 we get,\n", - "v_bx=((v_a_x+v_b_x)+(-e*(v_b_x-v_a_x)))*0.5 # m/s # Here. v_bx=(v'_b)_x\n", - "\n", - "# On substuting the value of v'_b_x in eq'n 3 we get,\n", - "v_ax=(v_a_x+v_b_x)-(v_bx) # m/s # here, v_ax=(v'_a)_x\n", - "\n", - "# Now the eq'n for resultant velocities of balls A & B after impact are,\n", - "v_A=(v_ax**2+v_ay**2)**0.5 # m/s\n", - "v_B=(v_bx**2+v_by**2)**0.5 # m/s\n", - "\n", - "# The direction of the ball after Impact is,\n", - "theta_1=arctan(-(v_ay/v_ax))*(180/pi) # degree\n", - "theta_2=arctan(v_by/v_bx)*(180/pi) # degree\n", - "\n", - "# Results\n", - "\n", - "print\"The velocity of ball A after impact is \",round(v_A,2),\"m/s\"\n", - "print\"The velocity of ball B after impact is \",round(v_B,2),\"m/s\"\n", - "print\"The direction of ball A after impact is \",round(theta_1,2),\"degree\"\n", - "print\"The direction of ball B after impact is \",round(theta_2,2),\"degree\"\n", - "# Her we use, (1) v'_a & v'_b as v_A & v_B.\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of ball A after impact is 8.35 m/s\n", - "The velocity of ball B after impact is 15.18 m/s\n", - "The direction of ball A after impact is 36.77 degree\n", - "The direction of ball B after impact is 58.85 degree\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-5,Page No:485" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initiization of variables\n", - "theta=30 # degrees # ange made by the ball against the wall\n", - "e=0.50\n", - "# Calculations\n", - "# The notations have been changed\n", - "# Resolving the velocity v as,\n", - "v_x=cos(theta*(pi/180))\n", - "v_y=sin(theta*(pi/180))\n", - "V_y=v_y\n", - "# from coefficient of restitution reation\n", - "V_x=-e*v_x\n", - "# Resultant velocity\n", - "V=sqrt(V_x**2+V_y**2)\n", - "theta=arctan(V_y*(-V_x)**-1)*(180/pi) # taking +ve value for V_x\n", - "# NOTE: Here all the terms are multiplied with velocity i.e (v).\n", - "# Results\n", - "\n", - "print\"The velocity of the ball is \",round(V,3),\"v\"\n", - "print\"The direction of the ball is \",round(theta,1),\"degree\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of the ball is 0.661 v\n", - "The direction of the ball is 49.1 degree\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-6,Page No:488" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import numpy as np\n", - "\n", - "# Initilization of variables\n", - "e=0.8 # coefficient of restitution\n", - "g=9.81 # m/s^2 # acc due to gravity\n", - "\n", - "# Calcuations\n", - "\n", - "# Squaring eqn's 1 &2 and Solving eqn's 1 & 2 using matrix for the value of h\n", - "A=np.array([[-1 ,(2*g)],[-1 ,-(1.28*g)]])\n", - "B=np.array([0.945**2,(-0.4*9.81)])\n", - "C=np.linalg.solve(A,B) # m\n", - "\n", - "# Results\n", - "\n", - "print\"The height from which the ball A should be released is \",round(C[1],3),\"m\"\n", - "# The answer given in the book i.e 0.104 is wrong.\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The height from which the ball A should be released is 0.15 m\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-7,Page No:490" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "theta_a=60 # degree # angle made by sphere A with the verticle\n", - "e=1 # coefficient of restitution for elastic impact\n", - "\n", - "# Calculations\n", - "\n", - "# theta_b is given by the eq'n cosd*theta_b=0.875, hence theta_b is,\n", - "theta_b=arccos(0.875)*(180/pi) # degree\n", - "\n", - "# Results\n", - "\n", - "print\"The angle through which the sphere B will swing after the impact is \",round(theta_b,2),\"degree\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The angle through which the sphere B will swing after the impact is 28.96 degree\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-8,Page No:491" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "m_a=0.01 # kg # mass of bullet A\n", - "v_a=100 # m/s # velocity of bullet A\n", - "m_b=1 # kg # mass of the bob\n", - "v_b=0 # m/s # velocity of the bob\n", - "l=1 # m # length of the pendulum\n", - "v_r=-20 # m/s # velocity at which the bullet rebounds the surface of the bob # here the notation for v'_a is shown by v_r\n", - "v_e=20 # m/s # velocity at which the bullet escapes through the surface of the bob # here the notation for v_a is shown by v_e\n", - "g=9.81 # m/s^2 # acc due to gravity\n", - "\n", - "# Calculations\n", - "\n", - "# Momentum of the bullet & the bob before impact is,\n", - "M=(m_a*v_a)+(m_b*v_b) # kg.m/s......(eq'n 1)\n", - "\n", - "# The common velocity v_c ( we use v_c insted of v' for notation of common velocity) is given by equating eq'n 1 & eq'n 2 as,\n", - "\n", - "# (a) When the bullet gets embedded into the bob\n", - "v_c=M/(m_a+m_b) # m/s\n", - "# The height h to which the bob rises is given by eq'n 3 as,\n", - "h_1=(0.5)*(v_c**2/g) # m\n", - "# The angle (theta_1) by which the bob swings corresponding to the value of height h_1 is,\n", - "theta_1=arccos((l-h_1)/l)*(180/pi) # degree\n", - "\n", - "# (b) When the bullet rebounds from the surface of the bob\n", - "# The velocity of the bob after the rebound of the bullet from its surface is given by equating eq'n 1 & eq'n 4 as,\n", - "v_bob_rebound=M-(m_a*v_r) # m/s # here v_bob_rebound=v'_b\n", - "# The equation for the height which the bob attains after impact is,\n", - "h_2=(v_bob_rebound**2)/(2*g) # m\n", - "# The corresponding angle of swing \n", - "theta_2=arccos((l-h_2)/l)*(180/pi) # degree\n", - "\n", - "# (c) When the bullet pierces and escapes through the bob\n", - "# From eq'n 1 & 5 the velocity attained by the bob after impact is given as,\n", - "v_b_escape=M-(m_a*v_e) # m/s # here we use, v_b_escape insted of v'_b\n", - "# The equation for the height which the bob attains after impact is,\n", - "h_3=(v_b_escape**2)/(2*g) # m\n", - "# The corresponding angle of swing \n", - "theta_3=arccos((l-h_3)/(l))*(180/pi) # degree\n", - "\n", - "# Results\n", - "\n", - "print\"(a) The maximum angle through which the pendulum swings when the bullet gets embeded into the bob is \",round(theta_1,1),\"degree\"\n", - "print\"(b) The maximum angle through which the pendulum swings when the bullet rebounds from the surface of the bob is \",round(theta_2,2),\"degree\"\n", - "print\"(c) The maximum angle through which the pendulum swings when the bullet escapes from other end of the bob the bob is \",round(theta_3,1),\"degree\"\n", - "# IN THIS SUM WE HAVE USED DIFFERENT NOTATIONS CONSIDERING DIFFERENT CASES BECAUSE IN THE TEXT BOOK WE HAD 3 VARIABLES WITH SAME NOTATION BUT WITH A DIFFERENT VALUE WHICH COULD NOT BE EXECUTED INTO SCILAB.\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) The maximum angle through which the pendulum swings when the bullet gets embeded into the bob is 18.2 degree\n", - "(b) The maximum angle through which the pendulum swings when the bullet rebounds from the surface of the bob is 22.09 degree\n", - "(c) The maximum angle through which the pendulum swings when the bullet escapes from other end of the bob the bob is 14.7 degree\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-9,Page No:493" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "\n", - "W_a=50 # N # falling weight\n", - "W_b=50 # N # weight on which W_a falls\n", - "g=9.81 # m/s^2 # acc due to gravity\n", - "m_a=W_a/g # kg # mass of W_a\n", - "m_b=W_b/g # kg # mass of W_b\n", - "k=2*10**3 # N/m # stiffness of spring\n", - "h=0.075 # m # height through which W_a falls\n", - "\n", - "#Calculations\n", - "\n", - "# The velocity of weight W_a just before the impact and after falling from a height of h is given from the eq'n, ( Principle of conservation of energy)\n", - "v_a=(2*g*h)**0.5 # m/s\n", - "\n", - "# Let the mutual velocity after the impact be v_m (i.e v_m=v'), (by principle of conservation of momentum)\n", - "v_m=(m_a*v_a)/(m_a+m_b) # m/s\n", - "\n", - "# Initial compression of the spring due to weight W_b is given by,\n", - "delta_st=(W_b/k)*(10**2) # cm\n", - "\n", - "# Let the total compression of the spring be delta_t, Then delta_t is found by finding the roots from the eq'n........ delta_t^2-0.1*delta_t-0.000003=0. In this eq'n let,\n", - "a=1\n", - "b=-0.1\n", - "c=-0.000003\n", - "delta_t=((-b+((b**2-(4*a*c))**0.5))/2*a)*(10**2) # cm # we consider the -ve value\n", - "delta=delta_t-delta_st # cm\n", - "\n", - "# Results\n", - "\n", - "print\"The compression of the spring over and above caused by the static action of weight W_a is \",round(delta),\"cm\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The compression of the spring over and above caused by the static action of weight W_a is 10.0 cm\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-10,Page No:494" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "v_a=600 # m/s # velocity of the bullet before impact\n", - "v_b=0 # m/s # velocity of the block before impact\n", - "w_b=0.25 # N # weight of the bullet\n", - "w_wb=50 # N # weight of wodden block\n", - "mu=0.5 # coefficient of friction between the floor and the block\n", - "g=9.81 # m/s^2 # acc due to gravity\n", - "\n", - "# Calculations\n", - "\n", - "m_a=w_b/g # kg # mass of the bullet\n", - "m_b=w_wb/g # kg # mass of the block\n", - "\n", - "# Let the common velocity be v_c which is given by eq'n (Principle of conservation of momentum)\n", - "v_c=(w_b*v_a)/(w_wb+w_b) # m/s\n", - "\n", - "# Let the distance through which the block is displaced be s, Then s is given by eq'n\n", - "s=v_c**2/(2*g*mu) # m\n", - "\n", - "# Results\n", - "\n", - "print\"The distance through which the block is displaced from its initial position is \",round(s,2),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The distance through which the block is displaced from its initial position is 0.91 m\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 18.18-11,Page No:495" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "# Initilization of variables\n", - "\n", - "M=750 # kg # mass of hammer\n", - "m=200 # kg # mass of the pile\n", - "h=1.2 # m # height of fall of the hammer\n", - "delta=0.1 # m # distance upto which the pile is driven into the ground\n", - "g=9.81 # m/s^2 # acc due to gravity\n", - "\n", - "# Caculations\n", - "\n", - "# The resistance to penetration to the pile is given by eq'n,\n", - "R=(((M+m)*g)+((M**2*g*h)/((M+m)*delta)))*(10**-3) # kN \n", - "\n", - "# Results\n", - "\n", - "print\"The resistance to penetration to the pile is \",round(R),\"KN\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The resistance to penetration to the pile is 79.0 KN\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit