From f270f72badd9c61d48f290c3396004802841b9df Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- .../CHAPTER1.ipynb | 441 ++++++++++++++ .../CHAPTER10.ipynb | 220 +++++++ .../CHAPTER11.ipynb | 299 ++++++++++ .../CHAPTER12.ipynb | 303 ++++++++++ .../CHAPTER2.ipynb | 650 +++++++++++++++++++++ .../CHAPTER4.ipynb | 547 +++++++++++++++++ .../CHAPTER5.ipynb | 115 ++++ .../CHAPTER6.ipynb | 486 +++++++++++++++ .../CHAPTER7.ipynb | 646 ++++++++++++++++++++ .../CHAPTER8.ipynb | 481 +++++++++++++++ .../CHAPTER9.ipynb | 482 +++++++++++++++ .../CHAPTER_3.ipynb | 301 ++++++++++ Engineering_Heat_Transfer_by_W_S_Janna/README.txt | 10 + .../screenshots/heat_transferred.png | Bin 0 -> 9126 bytes .../screenshots/length_required.png | Bin 0 -> 13684 bytes .../screenshots/wall_tempratures.png | Bin 0 -> 10804 bytes 16 files changed, 4981 insertions(+) create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER1.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER10.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER11.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER12.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER2.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER4.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER5.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER6.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER7.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER8.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER9.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER_3.ipynb create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/README.txt create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/screenshots/heat_transferred.png create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/screenshots/length_required.png create mode 100755 Engineering_Heat_Transfer_by_W_S_Janna/screenshots/wall_tempratures.png (limited to 'Engineering_Heat_Transfer_by_W_S_Janna') diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER1.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER1.ipynb new file mode 100755 index 00000000..e3bdd6dc --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER1.ipynb @@ -0,0 +1,441 @@ +{ + "metadata": { + "name": "CHAPTER1" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter1:Fundamental Concepts" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.1 Page No.7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=9.4 # thermal conductivity in [BTU/hr.ft. \u02daRankine]\n", + "q=6.3 # heat flux in [BTU/s. sq.ft]\n", + "T1=350 # the outside surface temperature of one aide of the wall [\u02daF]\n", + "\n", + "Q=6.3*3600 # [BTU/hr.sq.ft]\n", + "dx=0.5 # thickness in [inch]\n", + "Dx=0.5/12.0 # thickness in [ft]\n", + "T2=T1-(Q*Dx/k) # [\u02daF]\n", + "\n", + "print\"The required temperature on the other side of the firewall is \",round(T2,1),\"F\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required temperature on the other side of the firewall is 249.5 F\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.2 Page No.9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k_ss=14.4 # thermal conductivity of stainless steel in [W/m.K]\n", + "dt_ss=40 # [K]\n", + "dt_al=8.65 # [K]\n", + "dz_ss=1 # [cm]\n", + "dz_al=3 # [cm]\n", + "\n", + "k_al=k_ss*dt_ss*dz_al/(dt_al*dz_ss);# thermal conductivity of Al in [W/m.K]\n", + "\n", + "print\"The thermal conductivity of aluminium is\",round(k_al,0),\"W/m.K\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The thermal conductivity of aluminium is 200.0 W/m.K\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.3 Page No.13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "h_c=3 # convective coefficient in [BTU/hr.ft**2\n", + "A=30*18 # Cross sectional area in ft**2\n", + "T_w=140 # Roof surface temperature in degree Fahrenheit\n", + "T_inf=85 # Ambient temperature in degree Fahrenheit\n", + "\n", + "dT= (T_w-T_inf)\n", + "Q_c=h_c*A*dT # Convective heat transfer in BTU/hr\n", + "\n", + "print\"The heat transferred by convection is\",round(Q_c,2),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transferred by convection is 89100.0 BTU/hr\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.4 Page No.14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "D=0.0243 # diameter in meter\n", + "L=0.2 # length in meter\n", + "A=3.14*D*L # cross-sectional area in sq.m\n", + "cp=4200.0 # specific heat of water in J/kg.K\n", + "T_b2=21.4 # temperature of bulk fluid in degree celsius\n", + "T_in=20.0 # temperature of inlet water in degree celsius\n", + "T_w=75.0 # temperature of wall in degree celsius\n", + "Q=500.0 # volumetric flow rate in cc/s\n", + "density=1000 # density of water in kg/cu.m\n", + "\n", + "m=Q*density/10**6 # mass flowa rate in kg/s\n", + "hc=m*cp*(T_b2-T_in)/(A*(T_w-T_in))\n", + "\n", + "print\"The average film conductance is \",round(hc,0),\"W/sq.m. K\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The average film conductance is 3503.0 W/sq.m. K\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.5 Page No.18" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "W=14 # width in ft\n", + "L=30.0 # length in ft\n", + "A=W*L # area in ft**2\n", + "F_12=1 # view factor assumed to be 1\n", + "T1=120+460 # driveway surface temperature in degree Rankine\n", + "T2=0 # space temperature assumed to be 0 degree Rankine\n", + "\n", + "sigma=0.1714*10**(-8) # value of Stefan-Boltzmann's constant in BTU/(hr.ft**2.(degree Rankine)**4)\n", + "e=0.9 # surface emissivity\n", + "q=sigma*A*e*F_12*((T1)**4-(T2)**4);\n", + "\n", + "print\"The heat loss rate by radiation is \",round(q,0),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat loss rate by radiation is 73319.0 BTU/hr\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.6 Page No.19" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "A=420.0 # area in sq.ft\n", + "T1=580.0 # driveway surface temperature in degree Rankine\n", + "T2=0 # surface temperature assumed to be 0 degree Rankine\n", + "Qr=73320 # heat loss rate in BTU/hr\n", + "\n", + "hr=Qr/(A*(T1-T2)) # radiation thermal conductance in BTU/(hr.ft**2.(degree Rankine)\n", + "\n", + "print\"the radiation thermal conductance is \",round(hr,2),\"BTU/(hr. sq.ft R)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the radiation thermal conductance is 0.3 BTU/(hr. sq.ft R)\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.7 Page No. 21" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "A=1.0 # assuming A=1 m**2 for convenience\n", + "hc1_avg=15.0 # taking average of extreme values for hc [W/m**2.K]\n", + "k=(0.38+0.52)/2.0 # thermal conductivity of common brick in W/M.k\n", + "L=0.1 #10 cm converted into m\n", + "Rk=(L/(k*A)) # resistance of construction material, assume common brick\n", + "\n", + "T_inf1=1000.0 # temperature of exhaust gases in K\n", + "T_inf2=283.0 # temperature of ambient air in K\n", + "Rcl=1/(hc1_avg*A) # resistance on left side of wall [K/W]\n", + "Rc2=Rcl \n", + "q=(T_inf1-T_inf2)/(Rcl+Rk+Rc2) # heat transferred per unit area\n", + "T_in=T_inf1-Rcl*q #inlet temprature \n", + "T_out=T_inf2+Rc2*q\n", + "\n", + "print\"(b)\"\n", + "print\"The resistance on left side of wall is \",round(Rcl,2),\"K/W\"\n", + "print\"The resistance of construction material of wall is\",round(Rk,2),\"K/W\"\n", + "print\"The resistance on right side of wall is \",round(Rc2,2),\"K/W\"\n", + "print\"(c)The Heat transferred per unit area is \",round(q/1000,2),\"kw\"\n", + "print \"(d)\"\n", + "print\"The inside wall temperature is \",round(T_in,0),\"K\"\n", + "print\"The outside wall temperature is\",round(T_out,1),\"K\"\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "x1=[5,5]\n", + "T1=[0,1000]\n", + "\n", + "x2=[8,8]\n", + "T2=[0,1000]\n", + "\n", + "x3=[1,4]\n", + "T3=[1000,1000]\n", + "\n", + "x4=[4,5]\n", + "T4=[1000,866]\n", + "\n", + "x5=[5,8]\n", + "T5=[866,417]\n", + "\n", + "x6=[8,9]\n", + "T6=[417,290]\n", + "\n", + "x7=[9,10]\n", + "T7=[290,283]\n", + "\n", + "xlabel(\"x\") \n", + "ylabel(\"T (K)\") \n", + "plt.xlim((0,11))\n", + "plt.ylim((0,1200))\n", + "\n", + "ax.plot([1], [1000], 'o')\n", + "ax.annotate('(1000K)', xy=(1,1020))\n", + "\n", + "ax.plot([5], [866], 'o')\n", + "ax.annotate('(T1)', xy=(5.5,866))\n", + "\n", + "ax.plot([8], [417], 'o')\n", + "ax.annotate('(T2)', xy=(7.5,417))\n", + "ax.plot([10], [283], 'o')\n", + "ax.annotate('(283K)', xy=(10.5,283))\n", + "\n", + "\n", + "\n", + "a1=plot(x1,T1)\n", + "a2=plot(x2,T2)\n", + "a3=plot(x3,T3)\n", + "a4=plot(x4,T4)\n", + "a5=plot(x5,T5)\n", + "a6=plot(x6,T6)\n", + "a7=plot(x7,T7)\n", + "show(a1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(b)\n", + "The resistance on left side of wall is 0.07 K/W\n", + "The resistance of construction material of wall is 0.22 K/W\n", + "The resistance on right side of wall is 0.07 K/W\n", + "(c)The Heat transferred per unit area is 2.02 kw\n", + "(d)\n", + "The inside wall temperature is 866.0 K\n", + "The outside wall temperature is 417.4 K\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEICAYAAABiXeIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXXixvHPRTDLpUgEFExMILwuSO4lijqAoaKZkaCC\nYlONbVbT4kyNOjMpTvOrXHJmalxIHdFqwjUiM9QWt3CmFEsymAFEUgkVNxTO7w/qjqaYC+celuf9\nevkKzj33nOeY3IfvWW2GYRiIiIhUMxerA4iISN2kghEREVOoYERExBQqGBERMYUKRkRETKGCERER\nU5hWMImJiXh5edGpUyfHtKeffpr27dsTHBzMiBEjOHLkiOO1GTNmEBAQQFBQEOnp6Y7pn3/+OZ06\ndSIgIIDHH3/crLgiIlLNTCuY8ePHk5aWdt60iIgIdu/ezb///W8CAwOZMWMGAFlZWSxfvpysrCzS\n0tKYOHEiP16e86tf/Yr58+eTnZ1Ndnb2BcsUEZGaybSCCQ0Nxd3d/bxp4eHhuLhUrrJnz57k5+cD\nsHLlSmJjY3Fzc8PPzw9/f3+2bt1KYWEhx44do0ePHgDEx8eTmppqVmQREalGlh2DWbBgAVFRUQDs\n378fX19fx2u+vr4UFBRcMN3Hx4eCggKnZxURkSvnasVKX3zxRRo2bEhcXFy1LdNms1XbskRE6hOz\n7hjm9BHMokWLWLduHUuXLnVM8/HxIS8vz/F9fn4+vr6++Pj4OHaj/Tjdx8enymUbhlGv/kyZMsXy\nDNpmba+2uXZvs5mcWjBpaWm89NJLrFy5kkaNGjmmR0dHk5KSQllZGTk5OWRnZ9OjRw+8vb1p1qwZ\nW7duxTAMFi9ezPDhw50ZWURErpJpu8hiY2PZuHEjhw4donXr1kybNo0ZM2ZQVlZGeHg4AL1792be\nvHnY7XZiYmKw2+24uroyb948xy6vefPmMW7cOE6ePElUVBSDBg0yK7KIiFQjm2H2GMlJbDab6cO9\nmiYjI4OwsDCrYzhVfdvm+ra9oG12NjM/O1UwIiL1mJmfnbpVjIiImEIFIyIiplDBiIiIKVQwIiJi\nChWMiIiYQgUjIiKmUMGIiIgpVDAiImIKFYyIiJhCBSMiIqZQwYiIiClUMCIiYgoVjIiImEIFIyIi\nplDBiIiIKVQwIiJiChWMiIiYQgUjIiKmUMGIiIgpVDAiImIKFUw1OH36NP369aOiooJBgwbh7u7O\n0KFDz5snJyeHnj17EhAQwKhRozhz5ozjtccee4yAgACCg4PZuXOnY3paWhpBQUEEBAQwc+ZMx/Rx\n48bxzjvvAFBcXExISAjJycl89913REVFmby1IiKXRwVTDZYuXcqQIUNwcXHhmWeeYfHixRfM8+yz\nz/LUU0+RnZ2Nu7s78+fPB2DdunV88803ZGdn8/rrr/OrX/0KgPLych555BHS0tLIyspi2bJl7Nmz\nBwCbzYbNZuPIkSNERkby0EMPkZCQgKenJ+7u7mRmZjpv40VEqqCCqQbLli1j2LBhAAwYMIAmTZqc\n97phGHz00UeMHDkSgISEBFJTUwFYuXIlCQkJAPTs2ZOSkhIOHDjAtm3b8Pf3x8/PDzc3N0aNGsXK\nlSsdyzx27BhRUVGMGTOGBx980DE9OjqaZcuWmbq9IiKXQwVzjcrLy9m1axeBgYFVznP48GFuuukm\nXFwq/7p9fHwoKCgAYP/+/bRu3doxr6+vLwUFBVVOh8rCevLJJwkNDeXxxx8/b109evRg06ZN1bZ9\nIiJXSwVzjQ4dOkTTpk2vaRmGYVzR/DabjQEDBpCamsrBgwfPe61ly5bk5uZeUx4RkeqggqkGPy0I\nm8123vfNmzenpKSEiooKAPLz8/Hx8QEqRzN5eXmOefPz8/H19b1gel5eHr6+vo7vR40axUMPPURU\nVBSlpaXnZfnp+kVErKCCuUYeHh7nfcDDxQunf//+vPXWWwAkJyczfPhwoPKYyZtvvgnAli1buOmm\nm/Dy8qJbt25kZ2eTm5tLWVkZy5cvJzo6+rzlTpo0iYEDBzJixAjHWWmFhYW0adPGlG0VEbkSphVM\nYmIiXl5edOrUyTGtuLiY8PBwAgMDiYiIoKSkxPHajBkzCAgIICgoiPT0dMf0zz//nE6dOhEQEHDB\n8YaaoEGDBnTs2JGvv/4agNDQUGJiYvjwww9p3bo1H3zwAQAzZ87k5ZdfJiAggO+//54JEyYAEBUV\nxa233oq/vz8PPvgg8+bNA8DV1ZW5c+cSGRmJ3W7nvvvuo3379o71/jhKSUpKwtfXl/j4eAzDYNu2\nbfTt29eZfwUiIhdnmGTTpk1GZmam0bFjR8e0p59+2pg5c6ZhGIaRlJRkPPvss4ZhGMbu3buN4OBg\no6yszMjJyTHatWtnVFRUGIZhGN27dze2bt1qGIZh3HXXXcZ777130fWZuCkXtWbNRiMi4rdGv35T\njA4dhhjjxj3o1PVXJS4uzsjMzLQ6hojUEmZ+dpo2ggkNDcXd3f28aatWrXKckvvTU3VjY2Nxc3PD\nz88Pf39/tm7dSmFhIceOHaNHjx4AxMfHO95jpbVrN/H44++Tnv5HNm6cyu7d75CSso41azZamuu7\n776jpKSEkJAQS3OIiICTj8EUFRXh5eUFgJeXF0VFRUDlqbrnHsA+91Tdc6efe3qvlWbPTmffvhfP\nmdKQU6f+y9y56y3LBODp6cnatWstzWCWM2cgLg5+2BMpIrWAq1Ur/vFq9Oo0depUx9dhYWGEhYVV\n6/J/dPr0uX9t/9uG998Hm+2PpqxTAO5n2bIXSUvzJDLSuWvOsGUQZoQ5d6X1VEaGjbCwKzt1Xy5f\nRkYGGRkZTlmXUwvGy8uLAwcO4O3tTWFhIZ6ensClT9XNz88/b/qPp/dezLkFY6brrjt7znf/+0GI\njHyBtLQ/OCVDffXxxxATA7/+NTzxBOiMbJEr89NfvqdNm2baupy6iyw6Oprk5GTgwlN1U1JSKCsr\nIycnh+zsbHr06IG3tzfNmjVj69atGIbB4sWLHe+x0mOPRdCu3W/Pm9au3W949NFwixLVH336wJYt\nsHgxjBsHp05ZnUhEqmLaCCY2NpaNGzdy6NAhWrduze9//3uee+45YmJimD9/Pn5+fqxYsQIAu91O\nTEwMdrsdV1dX5s2b59h9Nm/ePMaNG8fJkyeJiopi0KBBZkW+bIMHV54GPGfOC5w61YBGjcp59NFB\njulirltuqRzJjB8PYWHw7rvQsqXVqUTkp2w/nKZW69lstiu+5YrUboYBL74If/sb/POf0L27eevS\nMRjn0TEY5zLzs1NX8kutZbPB88/DnDkQFQVLl1qdSETOZdlZZCLVZfhwaNcOhg2DL76A6dOhQQOr\nU4mIRjBSJ3TqBNu2wfbtEB0NR45YnUhEVDBSZ3h4VF6L1LYt9OoFe/danUikflPBSJ3i5gZz51Ze\nIxMaCufcN1VEnEwFI3XSAw/AW29BQgK88krlGWci4lwqGKmz+vatvCgzORkSE+H0aasTidQvKhip\n09q0gU8+gWPHKi/KLCy0OpFI/aGCkTqvcWNYsQLuugt69oQdO6xOJFI/qGCkXnBxgd/9DmbNqiya\nf/zD6kQidZ8utJR65e67wd+/8qLML7+EP/5RF2WKmEUjGKl3frwo87PPKovm6FGrE4nUTSoYqZc8\nPOCDDypPAujVC7KzzV3f6dOncXd3p3PnzoSEhNC8eXNuvfVWQkJCiIiIAGDQoEG4u7szdOjQ894b\nExNDTk6OuQFFTKCCkXrLzQ1eew0ee6zyOTMffGDeupYuXcpvfvMbvvjiC3bu3El0dDR//vOf2blz\nJ+k/XA36zDPPsHjx4gve+8tf/pJXXnnFvHAiJlHBSL330EOVZ5nFx1eeBGDGRZnLli1j2LBh5037\n6S3SBwwYQJMmTS54b1hYGOvWrav+UCImU8GIAP36VR6TWbAAJkyo3osyy8vL2bVrF4GBgVf1fjc3\nN3x8fNizZ0/1hRJxAhWMyA/8/CovyjxyBPr3hwMHqme5hw4domnTpte0jFatWpGbm1s9gUScRAUj\nco4mTSrvYRYZCT16wKzXNhM5PhKAyPGRrP1g7VUt93KfGPjjo8Iv9n4XF/24Su2i62BEfsLFBaZM\ngdPln/Pkk3Yqot2ZDKT7pbPvtX0ADA4ffNnL8/DwoLS09LLmraqICgsLadOmzWWvU6Qm0K9EIlX4\nPO83VCQOgKKOTA57G4B9IfuYkzLnipbToEEDOnbsyNdff33e9J+OVkJDQ4mJieHDDz+kdevWfPDD\naW1nzpwhPz+foKCga9gaEefTCEakCqeN0+D9BTTNp+hIC8f0U+WnrnhZo0ePJjU1lWeffRaAhQsX\nXjDP5s2bL/rejz76iCFDhlzxOkWsphGMSBWus11X+UXjYuYk/59jesMGDa94WXFxcaxdu/ayj8Wc\n6+9//ztPPPHEFb9PxGoqGJEqPBb3GO12tgOg8enGlf/9vjHfdfqOY6ePXdGyGjZsyKZNm6o8iH8p\nK1aswM/P74rfJ2I1FYxIFQaHD2bWw7OI/O8PZ5H9N5J/RP2DXv696J/cn4PHD1qcUKRmsxlXM2av\ngWw221XtfhC5HBm2DMKMMKDyTK8pGVNYvns56WPSaXOTzu6qThkZNsLC9LPsLGZ+dmoEI3KFbDYb\nv+//ex7p/gh9FvZh93e7rY4kUiPpLDKRq/Roz0fxuMGDgW8O5J/3/ZM7Wt9hdSSRGkUjGJFrENsp\nluThyQxPGc66bN2QUuRcKhiRaxTpH8nq2NUkrkxk8b8vvN2+SH1lScHMmDGDDh060KlTJ+Li4jh9\n+jTFxcWEh4cTGBhIREQEJSUl580fEBBAUFCQ49kZIjVJT9+efJTwEb/d8Fte+UzPbhEBCwomNzeX\nN954g8zMTL788kvKy8tJSUkhKSmJ8PBw9u7dy8CBA0lKSgIgKyuL5cuXk5WVRVpaGhMnTqSiosLZ\nsUV+VvsW7fk48WNez3ydyR9O1lmNUu85vWCaNWuGm5sbJ06c4OzZs5w4cYJWrVqxatUqEhISAEhI\nSCA1NRWAlStXEhsbi5ubG35+fvj7+7Nt2zZnxxa5LLfceAubx29mQ84G7l99P2crzlodScQyTj+L\n7Oabb+app57illtu4frrrycyMpLw8HCKiorw8vICwMvLi6KiIgD2799Pr169HO/39fWloKDgosue\nOnWq4+uwsDDCwsJM2w6Rqnjc4MGH8R9yz4p7GLliJMvuWcb1btdbHUsEgIyMDDIyMpyyLqcXzL59\n+3j11VfJzc3lxhtv5N5772XJkiXnzWOz2S55S42qXju3YESs1KRhE1bHriYhNYFBSwexatQqbmx0\no9WxRC745XvatGmmrcvpu8h27NjBHXfcQfPmzXF1dWXEiBF89tlneHt7c+CHRwgWFhbi6ekJgI+P\nD3l5eY735+fn4+Pj4+zYIlesYYOGLB2xlM5enem3qB8HSqvpEZkitYTTCyYoKIgtW7Zw8uRJDMNg\n/fr12O12hg4dSnJyMgDJyckMHz4cgOjoaFJSUigrKyMnJ4fs7Gx69Ojh7NgiV8XF5sLsQbMZaR9J\nnwV92Fe8z+pIIk7j9F1kwcHBxMfH061bN1xcXLj99tt54IEHOHbsGDExMcyfPx8/Pz9WrFgBgN1u\nJyYmBrvdjqurK/PmzbuqO9KKWMVms/F83+fxuMGDvov6sjZuLV28u1gdS8R0utmlyGU492aX1+Lt\nrLeZuHYib937Fv38+l17sDpIN7t0Lt3sUqSOGGmvPKvs3rfuZeVXK62OI2IqFYyIkw28dSDvjX6P\nh9Y+xIKdC6yOI2Ia3U1ZxAJdW3Vl47iNRC6J5ODxgzxz5zM6tih1jkYwIhYJbB7IJ4mfsOTLJfz6\ng19TYegWSFK3qGBELNSqaSs2jdvE1vytjEsdx5nyM1ZHEqk2KhgRi7lf70762HSKTxYzfPlwTpw5\nYXUkkWqhghGpAW5wu4F373sXjxs8CF8cTvHJYqsjiVwzFYxIDeHWwI2FwxbS27c3/Rb1o+DoxW/q\nKlJbqGBEahAXmwsvhb/E2M5j6bOwD3sP77U6kshV02nKIjWMzWbjmTufweMGD/ot6sfq2NV0a9XN\n6lgiV0wjGJEaKjEkkb8O/itRS6P48NsPrY4jcsVUMCI12LCgYbwd8zax78Ty1u63rI4jckW0i0yk\nhuvbpi8fjP2AqH9EcejEIX7V/VdWRxK5LCoYkVog2DuYzeM3E7E4goMnDvJC3xd0axmp8bSLTKSW\nuNX9Vj5O/Jh3v3qXR997VLeWkRpPBSNSi3g38SYjIYNd3+0i7p04ysrLrI4kUiUVjEgtc2OjG0kb\nk8bp8tMMXTaU0rJSqyOJXJQKRqQWauTaiLfufYvWzVoz8M2BHDpxyOpIIhdQwYjUUq4urrwx9A0G\nth1I6MJQ/nvkv1ZHEjmPCkakFrPZbEwfOJ0Hbn+APgv6kHUwy+pIIg6XPE35zJkzpKens2nTJnJz\nc7HZbLRp04a+ffsSGRmJq6vOchapCZ7o/QQtGrdgQPIAUkel0su3l9WRRKoewfzhD3+ge/furFmz\nhqCgIBITE0lISOC2225j9erVdOvWjT/+8Y/OzCoilzCm8xgWDFtA9LJo0r5JszqOSNUjmODgYJ5/\n/vmLXsyVmJhIRUUFa9asMTWciFyZqIAoVo5ayfDlw3kl8hXiOsVZHUnqsSpHMLfcckuVVwr/5S9/\nwcXFhejoaNOCicjV6d26NxviN/Ds+meZvXW21XGkHquyYEaMGMGOHTsumD5lyhRef/11U0OJyLXp\n4NmBj8d/zGvbX+P5Dc9jGIbVkaQeqrJg3nrrLWJiYvj0008BqKio4KGHHmLjxo1s3LjRaQFF5Oq0\nuakNH4//mPf3vc9Dax+ivKLc6khSz1RZMF27diU1NZWxY8eSlpbGvffey8GDB3n//fdp1qyZMzOK\nyFVq0bgFG+I3sK94HzFvx3Dq7CmrI0k9UmXBFBcX4+vry6JFixg9ejRubm787W9/4/jx4xQXFzsz\no4hcg6bXNWVt3Foa2BoQtTSKo6ePWh1J6okqC+b222+na9euxMfH07RpU7Zu3Ur37t3p2rUr3bpd\n2+NbS0pKGDlyJO3bt8dut7N161aKi4sJDw8nMDCQiIgISkpKHPPPmDGDgIAAgoKCSE9Pv6Z1i9RH\n17lex7J7lhHkEUTYojCKSousjiT1gM2w4OhfQkIC/fr1IzExkbNnz3L8+HFefPFFPDw8eOaZZ5g5\ncybff/89SUlJZGVlERcXx/bt2ykoKOAXv/gFe/fuxcXl/G602Ww6kCmmybBlEGaEWR3jmhmGwbSN\n01j65VLSx6TT1r2t1ZEukJFhIyxMP8vOYuZnZ5UjmG+//fZn37xv374rXuGRI0fYvHkziYmJALi6\nunLjjTeyatUqEhISgMoCSk1NBWDlypXExsbi5uaGn58f/v7+bNu27YrXKyKVHyZTw6YyqeckQheG\n8kXRF1ZHkjqsygstJ0+ezPHjx4mOjqZbt260bNkSwzAoLCxkx44drFq1iqZNm5KSknJFK8zJyaFF\nixaMHz+ef//733Tt2pVXX32VoqIivLy8APDy8qKoqHIIv3//fnr1+t9tL3x9fSkoKLjosqdOner4\nOiwsjLCwsCvKJlJfPNzjYTxu8CB8cThv3/s2oW1CrY4kTpKRkUFGRoZT1lVlwSxfvpxvvvmGlJQU\nfvvb3/Kf//wHgDZt2tCnTx/mzJnDrbfeesUrPHv2LJmZmcydO5fu3bszadIkkpKSzpvHZrNd8nGw\nVb12bsGIyKXd1/E+br7+Zu5ZcQ/zo+cz9LahVkcSJ/jpL9/Tpk0zbV2XvFulv78/zz//fLWu0NfX\nF19fX7p37w7AyJEjmTFjBt7e3hw4cABvb28KCwvx9PQEwMfHh7y8PMf78/Pz8fHxqdZMIvVVeLtw\n1satZeiyoSSdTGJcl3FWR5I6xOm36/f29qZ169bs3bsXgPXr19OhQweGDh1KcnIyAMnJyQwfPhyA\n6OhoUlJSKCsrIycnh+zsbHr06OHs2CJ1Vnef7mSMy2BKxhRe+uQlq+NIHWLJ/fbnzJnD6NGjKSsr\no127dixcuJDy8nJiYmKYP38+fn5+rFixAgC73U5MTAx2ux1XV1fmzZt3yd1nInLlgjyC+CTxEyIW\nR/Ddie/40y/+pJ8zuWaWnKZsBp2mLGaqK6cp/5zDJw4zZNkQgjyCeGPoG7i6OP93UJ2m7FyWnKYs\nIvVP8xuas37seg6UHmDE8hGcPHPS6khSi1VZMGfOnHFmDhGpIRo3bMyqUatodl0zIpZEUHKq5Off\nJHIRVRZMz549nZlDRGoQtwZuvHn3m3Rt2ZW+C/tSeKzQ6khSC1VZMDqeIVK/udhceCXyFWI7xnLn\ngjvJPpxtdSSpZao8gnfw4EFefvnlixaNzWbjySefNDWYiFjPZrMxOXQyLRq3oN+ifqyJW8PtLW+3\nOpbUElUWTHl5OceOHXNmFhGpoe6//X5uvv5mBi0ZxPKRy+nftr/VkaQWqLJgvL29mTJlijOziEgN\nNqL9CNwbuXPf2/fx1yF/ZUT7EVZHkhpOpymLyGXr37Y/7495n0fWPcLrn79udRyp4aocwaxfv96Z\nOUSklghpGcKm8ZuIWBzBweMH+U3ob3TVv1xUlSOY5s2bOzOHiNQi/jf780niJ6zIWsET7z9BhVFh\ndSSpgbSLTESuSsumLdk4biOZhZmMfXcsZeVlVkeSGkYFIyJX7aZGN/H+mPc5dvoYw1KGcbzsuNWR\npAZRwYjINbne7Xr+ed8/8W7izcA3B3L4xGGrI0kNoYIRkWvm6uLKgugF9PPrR+jCUPKO5P38m6TO\nU8GISLWw2WzM/MVMEkMS6bOwD18d+srqSGIxSx44JiJ116/v+DUeN3gQtiiMVbGr6OGjJ9DWVxrB\niEi1G9dlHG8MfYPB/xhM+r50q+OIRVQwImKKobcN5d373mXMP8eQsivF6jhiAe0iExHT9LmlD+vj\n1xO1NIrDJw7zcI+HrY4kTqQRjIiYqrNXZzaP38yrW19lSsYUPWuqHlHBiIjp2rq35ZPET1izdw0P\nr3uY8opyqyOJE6hgRMQUp0+fxt3dnc6dOxMSEkL7W9pTPKOYxRMX4xPiw/bPt9O7d286duxIcHAw\nK1ascLw3JiaGnJwcC9NLdbAZdWS8arPZNPQW02TYMggzwqyOUassWLCAw4cP8/TTTwMwfvx4hg4d\nSlR0FKP/OZrC3EL+MvQvBLcPprCwkK5du/LVV1+RmXkjZ86ks3r1ambPnm3xVtR9Zn52agQjIqZY\ntmwZw4YNO2+aYRg0cm3EipEr6GTvxITNEzh4/CAtW7bE09OTgwcPAhAWFsa6deusiC3VSAUjItWu\nvLycXbt2ERgYeNHXG7g04K+D/8pdAXfRZ2EfUj9M5cyZM7Rr1w4ANzc3fHx82LNnjzNjSzVTwYhI\ntTt06BBNmza95Dw2m40/9P8DY9qO4d64e7lnzGCej4wE4PnISNyA3Nxc88OKaVQwImKKy9mvf/To\nUVJ/l8rw+6L4vyMvc9eeyqv+/5iezv7MTHbv2GF2TDGRCkZEqp2HhwelpaWXnKesrIy7776b+Ph4\nbvv6FO+8U849MfCfLZWvtygtZd/77zshrZjFsoIpLy8nJCSEoUOHAlBcXEx4eDiBgYFERERQUlLi\nmHfGjBkEBAQQFBREerruayRS0zVo0ICOHTvy9ddfnzfdZrM5vl6xYgWbN29m0aJFzP/0UyZ/A7MW\nwpAZUAbkA16uutlIbWZZwcyaNQu73e74B5eUlER4eDh79+5l4MCBJCUlAZCVlcXy5cvJysoiLS2N\niRMnUlGh53+L1HSjR48mNTXV8f3ChQsZMWKE4/sxY8ZQVlbGzp07mXDHHewE7iuGr/8OGcAQwK1B\nA2fHlmpkScHk5+ezbt067r//fsd+2lWrVpGQkABAQkKC4x/mypUriY2Nxc3NDT8/P/z9/dm2bZsV\nsUXkCsTFxbF27drLOhYT8dhj/PaHM8jKWsDfgb5Nm/Lknj3wr3+ZnFTMYsn484knnuCll17i6NGj\njmlFRUV4eXkB4OXlRVFREQD79++nV69ejvl8fX0pKCi46HKnTp3q+DosLIywsLDqDy8il6Vhw4Zs\n2rTpsubtO3gwAC/MmcNA3ue2yEhaPPoo1x89CuHh8Oc/ww+/gMq1ycjIICMjwynrcnrBrFmzBk9P\nT0JCQqrcSJvNdt6+2ou9fjHnFoyI1C59Bw+m7+DBZGTY+ENa2v9e6NwZRoyATz+FWbOgUSPrQtYB\nP/3le9q0aaaty+m7yD799FNWrVpF27ZtiY2NZcOGDYwdOxYvLy8OHDgAQGFhIZ6engD4+PiQl/e/\n53vn5+fj4+Pj7NgiYpUOHWD7djh0CEJD4T//sTqRXCanF8z06dPJy8sjJyeHlJQUBgwYwOLFi4mO\njiY5ORmA5ORkhg8fDkB0dDQpKSmUlZWRk5NDdnY2PXroEawi9UqzZvD22zBqFPToATp9uVaw/BzA\nH3d3Pffcc8TExDB//nz8/Pwcd1a12+3ExMRgt9txdXVl3rx5l9x9JiJ1lM0GTz0F3bpBXBw8+CA8\n/zy46HK+mkp3Uxa5DLqbsvNkZNgIC/uZn+X9++G++6BpU1iyBG6+2Tnh6iDdTVlE5FytWsGGDRAU\nVDmiycy0OpFchApGRGonNzd4+WWYORMiI2H+fKsTyU+oYESkdrv3Xti0Cf7v/2DCBDh50upE8gMV\njIjUfu3bw7ZtUFoKd94JetxyjaCCEZG6oUkTSEmB+Hjo1Qv0REzLqWBEpO6w2WDSJHjnHXjgAfjd\n76C83OpU9ZYKRkTqnj59YMeOymMzUVGVdwEQp1PBiEjd5O0N69dDcHDlqczbt1udqN5RwYhI3eXq\nCn/6U+XpzIMHw9/+Brog22lUMCJS940YAR9/DHPnwvjxcOKE1Ymq1enTp+nXrx+ZmZn07t2bjh07\nEhwc7LjlFsC6devo0qULISEhhIaGsm/fPsdrwcHBhISE0LVrVzZs2OCY3qRJk/Pef9ttt/Hf//6X\n2bNns3i++i8PAAAM3UlEQVTx4p8PZtQRdWhTpAb6iI+sjlBvfPSRiT/LpaWGERdnGMHBhvHNN+at\nx8nmz59v/OlPfzL27t1rfPPDdu3fv99o2bKlceTIEcMwDKNNmzbGV199ZRiGYcybN88YN26cYRjn\nf3Z+8cUXRrt27RzfN2nSxDAMw1i/fr3h7+9vfPvtt4ZhGMbRo0eN7t27/2wujWBEpP5o3Ljy3mW/\n/CX07g2rV1udqFosW7aMYcOGERAQQLsfngzasmVLPD09OXjwoOP7I0eOAFBSUnLRx56Ulpbi4eFx\n3rRNmzbxwAMPsHbtWtq2bQtA06ZNad68Obt3775kLsvvpiwi4lQ2Gzz8MNx+e+UNM7dsgd//Hho0\nsDrZVSkvL2fXrl0EBgaeN33btm2cOXPGUThz584lIiKCG264gWbNmrFlyxbHvKmpqUyePJnCwkLe\nP+dRCKdOneLuu+9m48aNFyy/R48ebNq0iQ4dOlSZTSMYEamfeveuPJV5y5bKe5n98Ju+M63dsIHI\nxx4jbNIkIh97jLXnHP+4XIcOHaJp06bnTSssLCQ+Pp6FCxcCUFFRwdixY0lLSyMvL4/x48fz5JNP\nOuYfPnw4e/bsYfXq1cTHxzumN2zYkDvvvJO///3vF6y3VatW5ObmXjKbRjAiUn95ekJ6OrzwAi9O\nncq3Y8fSuHlzGjdoUPnHxeV/X//M9w2u8DlVazds4PFly9g3erRj2r6lSwEYPGDAFS3LOOfMuKNH\njzJkyBCmT5/ueDjjwYMHKSsro3v37gDExMRw1113XbCc0NBQzp49y+HDh2nevDkuLi6sWLGCAQMG\nMGPGDCZPnnzeOn/u2VwqGBGp3xo0gOnT6Z6ejqenJ8cbNuR4eTnHy8s5WFbG8YoKjpeXc6K83PG1\n4885r7m5uDgK54bLKKdlu3efVy4A+0aPZk5q6hUVjIeHB6WlpQCUlZVx9913Ex8fz4gRIxzztGjR\nghMnTpCdnU1AQAAffPABdrvd8fqPZZH5w2MPmjdv7nitUaNGrF27ltDQULy8vEhMTAQqR0l+fn6X\nzKaCEREBIiIirvq9hmFwqqKiygL68c+Jc74/0ajRRZd16grX3aBBAzp27MjXX3/N9u3b2bx5M8XF\nxSxatAiofAR9586dWbBgATExMRiGwc0338yCBQscy+jUqRNubm40adKElJQUx/QfRyju7u6kpaXR\nt29fPD09GTJkCNu2bePPf/7zJbOpYERErpHNZuP6Bg24vkEDPNzcLus9W778kvyAgAumX7x2Lm30\n6NGkpqby7LPPMmbMmIvOM2jQIAYNGnTR13bt2nXR6UePHnV87evry7fffuuYfujQoUse4Acd5BcR\nscRjw4fT7odjLj9qt2QJj0ZHX/Gy4uLiWLt2rdMeG79o0SIef/zxn53PZjgrkcnMfK60SIYtgzAj\nzOoY9UJGho2wsPrxs7x2wwbmrFrFKSpHLo9GR1/xAf5rZeZnp3aRiYhYZPCAAU4vFGfSLjIRETGF\nCkZEREyhghEREVOoYERExBQqGBERMYUKRkRETKGCERERUzi9YPLy8ujfvz8dOnSgY8eOzJ49G4Di\n4mLCw8MJDAwkIiKCkpISx3tmzJhBQEAAQUFBpKenOzuyiIhcBacXjJubG6+88gq7d+9my5YtvPba\na+zZs4ekpCTCw8PZu3cvAwcOJCkpCYCsrCyWL19OVlYWaWlpTJw4kYqKCmfHFhGRK+T0gvH29qZL\nly4ANGnShPbt21NQUMCqVatISEgAICEhgdTUVABWrlxJbGwsbm5u+Pn54e/vz7Zt25wdW0RErpCl\nx2Byc3PZuXMnPXv2pKioCC8vLwC8vLwoKioCYP/+/fj6+jre4+vrS0FBgSV5RUTk8ll2L7LS0lLu\nueceZs2adcHjPm022yWflFbVa1OnTnV8HRYWRlhYWHVEFRGpMzIyMsjIyHDKuiwpmDNnznDPPfcw\nduxYhg8fDlSOWg4cOIC3tzeFhYV4enoC4OPjQ15enuO9+fn5+Pj4XHS55xaMiIhc6Ke/fE+bNs20\ndTl9F5lhGEyYMAG73c6kSZMc06Ojo0lOTgYqn8D2Y/FER0eTkpJCWVkZOTk5ZGdnO54zLSIiNZfT\nRzCffPIJS5YsoXPnzoSEhACVpyE/99xzxMTEMH/+fPz8/FixYgUAdrudmJgY7HY7rq6uzJs375K7\nz0REpGbQA8dELoMeOOY89emBYzWBmZ+dupJfRERMoYIRERFTqGBERMQUKhgRETGFCkZEREyhghER\nEVOoYERExBQqGBERMYUKRkRETKGCERERU6hgRETEFCoYERExhQpGRERMoYIRERFTqGBERMQUKhgR\nETGFCkZEREyhghEREVOoYERExBQqGBERMYUKRkRETKGCERERU6hgRETEFCoYERExhQpGRERMoYIR\nERFTqGBERMQUKhgRETFFrSmYtLQ0goKCCAgIYObMmVbHqREyMjKsjuB09W2b69v2AvzrX1YncL66\n+v+5VhRMeXk5jzzyCGlpaWRlZbFs2TL27NljdSzL1dV/lJdS37a5vm0vqGDqklpRMNu2bcPf3x8/\nPz/c3NwYNWoUK1eutDqWiIhcQq0omIKCAlq3bu343tfXl4KCAgsTiYjIz7EZhmFYHeLnvPPOO6Sl\npfHGG28AsGTJErZu3cqcOXMc89hsNqviiYjUambVgKspS61mPj4+5OXlOb7Py8vD19f3vHlqQU+K\niNQrtWIXWbdu3cjOziY3N5eysjKWL19OdHS01bFEROQSasUIxtXVlblz5xIZGUl5eTkTJkygffv2\nVscSEZFLqBUjGIC77rqLr7/+mm+++YbJkyc7pte362Py8vLo378/HTp0oGPHjsyePdvqSE5TXl5O\nSEgIQ4cOtTqKU5SUlDBy5Ejat2+P3W5ny5YtVkcy3YwZM+jQoQOdOnUiLi6O06dPWx2p2iUmJuLl\n5UWnTp0c04qLiwkPDycwMJCIiAhKSkosTFh9ak3BXEx9vD7Gzc2NV155hd27d7NlyxZee+21Or/N\nP5o1axZ2u73enNDx+OOPExUVxZ49e/jiiy/q/Kg9NzeXN954g8zMTL788kvKy8tJSUmxOla1Gz9+\nPGlpaedNS0pKIjw8nL179zJw4ECSkpIsSle9anXB1MfrY7y9venSpQsATZo0oX379uzfv9/iVObL\nz89n3bp13H///fXihI4jR46wefNmEhMTgcrdxDfeeKPFqczVrFkz3NzcOHHiBGfPnuXEiRP4+PhY\nHavahYaG4u7uft60VatWkZCQAEBCQgKpqalWRKt2tbpg6vv1Mbm5uezcuZOePXtaHcV0TzzxBC+9\n9BIuLrX6n+xly8nJoUWLFowfP57bb7+dX/7yl5w4ccLqWKa6+eabeeqpp7jlllto1aoVN910E7/4\nxS+sjuUURUVFeHl5AeDl5UVRUZHFiapHrf5prS+7Si6mtLSUkSNHMmvWLJo0aWJ1HFOtWbMGT09P\nQkJC6sXoBeDs2bNkZmYyceJEMjMzady4cZ3ZbVKVffv28eqrr5Kbm8v+/fspLS1l6dKlVsdyOpvN\nVmc+22p1wVzO9TF10ZkzZ7jnnnsYM2YMw4cPtzqO6T799FNWrVpF27ZtiY2NZcOGDcTHx1sdy1S+\nvr74+vrSvXt3AEaOHElmZqbFqcy1Y8cO7rjjDpo3b46rqysjRozg008/tTqWU3h5eXHgwAEACgsL\n8fT0tDhR9ajVBVMfr48xDIMJEyZgt9uZNGmS1XGcYvr06eTl5ZGTk0NKSgoDBgzgzTfftDqWqby9\nvWndujV79+4FYP369XTo0MHiVOYKCgpiy5YtnDx5EsMwWL9+PXa73epYThEdHU1ycjIAycnJdecX\nR6OWW7dunREYGGi0a9fOmD59utVxTLd582bDZrMZwcHBRpcuXYwuXboY7733ntWxnCYjI8MYOnSo\n1TGc4l//+pfRrVs3o3Pnzsbdd99tlJSUWB3JdDNnzjTsdrvRsWNHIz4+3igrK7M6UrUbNWqU0bJl\nS8PNzc3w9fU1FixYYBw+fNgYOHCgERAQYISHhxvff/+91TGrRa24F5mIiNQ+tXoXmYiI1FwqGBER\nMYUKRkRETKGCERERU6hgREyyfft2goODOX36NMePH6djx45kZWVZHUvEaXQWmYiJXnjhBU6dOsXJ\nkydp3bo1zz77rNWRRJxGBSNiojNnztCtWzeuv/56PvvsszpzCxCRy6FdZCImOnToEMePH6e0tJST\nJ09aHUfEqTSCETFRdHQ0cXFxfPvttxQWFjJnzhyrI4k4Ta14ZLJIbfTmm29y3XXXMWrUKCoqKrjj\njjvIyMggLCzM6mgiTqERjIiImELHYERExBQqGBERMYUKRkRETKGCERERU6hgRETEFCoYERExxf8D\nkIhbnvzxNPAAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.8 Page No.24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=0.604 # [BTU/(hr.ft.degree Rankine)]\n", + "hc=3.0 # average value for natural convection in BTU/(hr.ft**2.degree Rankine)\n", + "ew=0.93 \n", + "f_wr=1.0 # shape factor\n", + "sigma= 0.1714*10**(-8) # BTU/(hr.ft**2.degree Rankine).\n", + "L=4/12.0 # length in ft\n", + "T1=80+460 # temperature of side-walk in degree Rankine\n", + "T_inf=20+460 # temperature of ambient air in degree Rankine\n", + "T_r=0 # assuming space temperature to be 0 degree Rankine\n", + "\n", + "a=((k/L)+hc) #Coefficient of Tw in the equation\n", + "b=(sigma*ew*f_wr) #Coefficient of Tw**4 in the equation\n", + "c=(k*T1/L)+(hc*T_inf)+(sigma*f_wr*ew*T_r**4) #right hans side of the equation\n", + "Tw1=470 #assumed first value of temprature\n", + "LHS1=a*Tw1+b*Tw1**4\n", + "Tw2=480 #assumed 2nd value of temprature\n", + "LHS2=a*Tw2+b*Tw2**4\n", + "Tw3=490 #assumed 3rd value of temprature\n", + "LHS3=a*Tw3+b*Tw3**4\n", + "Tw4=485 #assumed 4th value of temprature\n", + "LHS4=a*Tw4+b*Tw4**4\n", + "Tw5=484.5 #assumed fifth value of temprature\n", + "LHS5=a*Tw5+b*Tw5**4\n", + "\n", + "print\"RHS\",round(c,1)\n", + "print\"LHS at surface Temprature 1=\",round(LHS1,1)\n", + "print\"LHS at surface Temprature 2=\",round(LHS2,1)\n", + "print\"LHS at surface Temprature 3=\",round(LHS3,0)\n", + "print\"LHS at surface Temprature 4=\",round(LHS4,1)\n", + "print\"LHS at surface Temprature 5=\",round(LHS5,1)\n", + "print\"\\nLHS is close enough to RHS at Temprature 484.5. So Surface Temprature is\",Tw5,\"R\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "RHS 2418.5\n", + "LHS at surface Temprature 1= 2339.4\n", + "LHS at surface Temprature 2= 2394.4\n", + "LHS at surface Temprature 3= 2450.0\n", + "LHS at surface Temprature 4= 2422.0\n", + "LHS at surface Temprature 5= 2419.2\n", + "\n", + "LHS is close enough to RHS at Temprature 484.5. So Surface Temprature is 484.5 R\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER10.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER10.ipynb new file mode 100755 index 00000000..d47a2ad1 --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER10.ipynb @@ -0,0 +1,220 @@ +{ + "metadata": { + "name": "CHAPTER10" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10: Condensation and Vaporization Heat Transfer" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.1 Page NO.527" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou_f=0.909*62.4 # density in lbm/ft**3 \n", + "cp=1.037 # specific heat BTU/(lbm-degree Rankine) \n", + "v_f=0.204e-5 # viscosity in ft**2/s \n", + "kf=0.393 # thermal conductivity in BTU/(lbm.ft.degree Rankine) \n", + "a=6.70e-3 # diffusivity in ft**2/hr \n", + "Pr=1.099 # Prandtl Number \n", + "V_v=4.937 # specific volume in ft**3/lbm from superheated steam tables\n", + "rou_v=1/V_v # vapour density\n", + "g=32.2\n", + "hfg=888.8 # from saturated steam tables\n", + "Tg=327.81\n", + "Tw=325\n", + "L=2.0 # length in ft\n", + "W=3.0 # width in ft\n", + "z=0.204*10**-5 # distance from entry of plate in ft\n", + "\n", + "y=((4*kf*v_f*(Tg-Tw)/3600.0)/(rou_f*g*hfg*(1-(rou_v/rou_f))))**(1/4.0) #let y=delta/z**(1/4)\n", + "hz=1665 #From Table 10.1\n", + "hL=(4/3.0)*hz # at plate end\n", + "mf=(hL*L*W*(Tg-Tw))/hfg\n", + "q=mf*hfg\n", + "Re=(4*mf/3600)/(W*rou_f*v_f)\n", + "\n", + "print\"The amount of steam condensed is \",round(mf,1),\"lbm/h\"\n", + "print\"The heat transfer rate is \",round(q,0),\"BTU/hr\"\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "x1=[0.0017,0.0018,0.0023,0.0030,0.0035]\n", + "z1=[2,1.6,0.6,0.3,0.1]\n", + "\n", + "x2=[0.0023,0.0022,0.0017,0.0011,0.0006,0]\n", + "z2=[2,1.6,0.6,0.3,0.1,0]\n", + "\n", + "xlabel(\"d (m)\") \n", + "ylabel(\"z (m)\") \n", + "plt.xlim((0,0.004))\n", + "plt.ylim((2,0))\n", + "\n", + "ax.annotate('(infinity)', xy=(0.0035,0.1))\n", + "ax.annotate('(hl=2220)', xy=(0.0005,1.7))\n", + "a1=plot(x1,z1)\n", + "a1=plot(x2,z2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The amount of steam condensed is 42.1 lbm/h\n", + "The heat transfer rate is 37429.0 BTU/hr\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEMCAYAAAA8vjqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVPX+B/D3gICh5JI/UcFEAUEEBshEc8PUa27c3H6u\nN7HNaDFbbLv+DL1JWlo3skxbJNPHLOu6S91SLG8iLmiapqggizqh5hW8xfr9/UHMBZmBmWHOnO39\neh6eR2bOmflwonnzPd/zOV+DEEKAiIjIDm5yF0BEROrD8CAiIrsxPIiIyG4MDyIishvDg4iI7Mbw\nICIiu0kaHmlpaQgNDUVwcDCWLFlicZvZs2cjODgYRqMRWVlZUpZDREROIll4VFZW4vHHH0daWhpO\nnDiB9evX4+TJk3W22bFjB86cOYPs7GysWrUKiYmJUpVDREROJFl4ZGZmIigoCAEBAfDw8MDkyZOx\nefPmOtts2bIFM2bMAADExsbi2rVrMJlMUpVEREROIll4FBYWonPnzubv/f39UVhY2Og2BQUFUpVE\nRERO0kyqFzYYDDZtd/PdUSztZ+trERFRXVLdgUqykYefnx/y8/PN3+fn58Pf37/BbQoKCuDn52fx\n9YQQEEKgqqoKPxf9jNVZq/Hw1ocR8W4EWixqgX4f9sOzXz+LL058gQvXL5i3d+XXyy+/LMv7arFO\nNdTIOlmn0r+kJNnIo1evXsjOzkZubi46deqEDRs2YP369XW2iY+Px/LlyzF58mRkZGSgdevW8PX1\nbfB1DQYDQtqFIKRdCBKiEgAA10uvI7MwExkFGfgw60M8tPUh+Hj6oG/nvujr3xd9/PsgqkMUPN09\npfpxiYh0RbKRR7NmzbB8+XIMHz4cYWFhmDRpEnr06IGVK1di5cqVAICRI0eiW7duCAoKwqxZs/Du\nu+869F63et2Kod2GYt7Aedg+dTsuz72Mr6Z/heGBw/FT0U94cMuDaLukLfp/1B9z/zkXX578EheL\nLzrzxyUinSktLcWgQYNw4cIFTJw4sdHtP//8c4SFhWHIkCE4dOgQnnzyyUb36devHwDg/Pnz9f74\ntmTLli3429/+1njxTmAQUo9tnMBgMDR5CFZ7dLKvYB8yCjKcPjpJT09HXFxck+p0BTXUqYYaAdbp\nbGqq89y5c7hy5Qrmzp1r0z733HMP5s+fj7vuusuh91u2bBm2bt3a4HZCCERHR+PAgQPw8PBwymen\nNboJj5sJIXD6ymnsK9hX/ZW/D+d+PYeoDlHmQOnr3xcdfTo69X2JSBuGDRuGd955B56enhgzZgyO\nHTuG1NRUbNmyBb/99hvOnj2LsWPHYsmSJVi4cCFef/11+Pn5IT4+HqNGjcLSpUuxdetWJCUlIS8v\nDzk5OcjLy8OcOXPwxBNPAABatmyJkpIS9OnTBz///DO6du2KGTNm4B//+AdSUlJgNBoBAP3798eK\nFSsQERGBxMREjB49GqNGjZI0PCSb81A6R+ZO+vr3hbGDkXMnRDpXWVmJ48ePo3v37sjNza3z3NGj\nR3HkyBF4enoiJCQEs2fPxvz587F7924sW7YMMTExSE9Pr7PP6dOnsXv3bly/fh0hISF49NFH4e7u\nbr7SdMmSJeawAYC2bdsiNTUVb775Jk6fPo3S0lJEREQAAHr37o3vvvsOo0aNkvQY6DY8LKmZOxna\nbSiA+qOTDw5/wNEJEeHy5cvw8fGx+NyQIUPMz4WFheH8+fNWryIFqv+QHTVqFDw8PHDbbbehffv2\nMJlM6NSpk3mbm0cPEyZMwN/+9je8/vrr+OijjzBz5kzzc506dUJaWlpTfjybMDwawNEJEVlj7XSQ\nl5eX+d/u7u6oqKho9LU8Pf/7eWHLPt7e3hg2bBg2bdqEzz//HIcPHzY/V1VV5ZLeOIaHnTg6IaJ2\n7dqhpKTEKa9ly5yEj48PiouL6zz24IMPYvTo0Rg0aBBatWplfvzixYvo0qWLU2prCG/J3kQ1o5OE\nqASsHL0SPyb+iAvPXEBSXBJaebXCh1kfInxFOAL+HoCnvnoKv9z4Re6SichBp08D//u/wOHD7ggP\nD8epU6cA/PcuGAaDwaa/+mtv19A+NY8bjUa4u7sjKioKb731FgAgJiYGrVq1qnPKCqi+r+DAgQMd\n+wHtoNurrVxJCIFTV07h3QPvYt2xdXii9xN4pu8z8PGyfM6UiJSlsBBYuBD44gvgmWeA2bOBzz9P\nhclkwvPPPy9LTRcuXMDgwYPNAQZUn7KKiYnBwYMH0axZM0k/OznycAGDwYDQdqFIGZGCgw8dxNlf\nzyL47WC8lfEWSitK5S6PiKz49VfghReAyEigVavqkceLLwItWgBTp07F9u3bZfnDds2aNejTpw+S\nk5PrPL5t2zZMmDABzZpJPyPBkYdMfjT9iJe+fQnHfzmOhYMXYlrENLi7uctdFhEB+M9/gLffBpYu\nBe69F3j5ZeCmW/OpApsENRgeNb4//z1e+PYFXC+9jleHvIpRwaN4F2EimZSXA6tXV5+i6tMHeOUV\nIDRU7qocx/DQcHgA1XMiW09vxUvfvoTWzVtj8dDF6H97f7nLItINIYCNG4F58wA/P2DxYqB3b7mr\najqGh8bDo0ZlVSXW/rgW89PnI9I3Esl3JyPCN0Lusog07Ztvquc1qqqqQ2PYMEArg3+Gh07Co0Zp\nRSlWHFyBV/e+iuGBw7Fw8EIEtA6QuywiTTl4sHryOze3+vTUxImAm8YuIeLVVjrj1cwLc/rMQfYT\n2ejapivuWHUH5qTNQdGNIrlLI1K9ml6N+Hhg/HjgxAlg0iTtBYfUeLgU7FavW7EgbgFOPnYSVaIK\nPd7pgQXpC1BcWtz4zkRUR2EhMGsWcNddQHQ0kJ0NPPII4OEhd2XqxPBQgfYt2iNlRAoOPHQAZ349\ng+C3g5GyP4U9IkQ2aKhXgxzH8FCRrm264pOxn+Drv3yNr89+jdB3QvHJ0U9QWVUpd2lEivOf/wBL\nlgDduwNXrgBHjwKvvQa0bSt3ZdrACXMVq+kRKS4tRvKQZPaIEEF7vRpNwautGB5W1e4RaXNLGywe\nshj9bu8nd1lELqfVXo2mYHgwPBpVu0fE6GvEorsXsUeEdEPLvRpNwfBgeNisdo/IPUH3YEHcAvaI\nkGbpoVejKdjnQTar0yPSuit6rerFHhHSHPZqyI+HWqNu9boVSXFJOPHYCQgI9oiQJrBXQzkYHhrX\nvkV7vHXPWzjw0AHzOiLsESG1qenViIio7tU4dYq9GnJjeOhE1zZdsWbsGvaIkKrU7tW4fBn48cfq\nXo3bbpO7MuKEuU6xR4SUrHavRmwssGiRfns1moJXWzE8JCGEwLbT2/Dity+yR4QUgb0azsXwYHhI\nqrKqEuuOrcP83dXriLw+7HWEtAuRuyzSmd27gblz2avhTAwPhodLlFaU4p0D7+DVva/ihX4vYE6f\nOVxXnSR35kx1aBw5Arz6avUluLzk1jkYHgwPlzr36zncv/l+lFWWYfWfV3MUQpL497+rG/tWrwae\nfRaYMwdo3lzuqrSFTYLkUt3adMOuGbswLWIa+q/uj2U/LONVWeQ0lZXAqlVASAhw9Spw7Fj1ZbgM\nDnXhyIMaxFEIOdOuXcBTT1X3avz970BMjNwVaRtHHiQbjkLIGc6cAcaOBR54APi//wP27GFwqB1H\nHmQzjkLIXpzXkBdHHqQIHIWQrTivoX0ceZBDOAohazivoRwceZDicBRCN+O8hr5w5EFNxlGIvnFe\nQ7k48iBF4yhEnzivoW8ceZBTcRSiD5zXUAeOPEg1OArRNs5rUA2OPEgyHIVoB+c11IkjD1IljkLU\nj/MaZA1HHuQSHIWoD+c11I8jD1I9jkLUg/MaZAuOPMjlOApRJs5raA9HHqQpHIUoC+c1yBGShkda\nWhpCQ0MRHByMJUuW1Hs+PT0drVq1QnR0NKKjo/HKK69IWQ4piJvBDY/1fgz7H9yPrae3YsDqATh1\n+ZTcZenOrl3Vp6TWrgV27AA+/BDo2FHuqkgVhEQqKipEYGCgyMnJEWVlZcJoNIoTJ07U2Wb37t1i\nzJgxjb6WhGWSAlRWVYrl+5eLdq+1E0v/tVRUVFbIXZLmZWcLce+9QgQECPH550JUVcldEUlBys9O\nyUYemZmZCAoKQkBAADw8PDB58mRs3rzZUnhJVQKpBEchrvPvfwNz5wJ9+gCxscDJk8CECYDBIHdl\npDbNpHrhwsJCdO7c2fy9v78/9u/fX2cbg8GAH374AUajEX5+fli6dCnCwsIsvl5SUpL533FxcYiL\ni5OibJJRzVzIigMr0H91f7zQ7wXM6TMH7m7ucpemepWV1aek5s8HRo2qntfg6SntSU9PR3p6ukve\nS7Krrb744gukpaXh/fffBwCsXbsW+/fvx9tvv23epri4GO7u7vD29sbOnTvx5JNP4vTp0/WL5NVW\nusMrspyH/Rr6pcqrrfz8/JCfn2/+Pj8/H/7+/nW28fHxgbe3NwBgxIgRKC8vx9WrV6UqiVSEV2Q1\nHfs1SEqShUevXr2QnZ2N3NxclJWVYcOGDYiPj6+zjclkMqdiZmYmhBBo27atVCWRynAuxDGc1yBX\nkCw8mjVrhuXLl2P48OEICwvDpEmT0KNHD6xcuRIrV64EAGzcuBERERGIiorCnDlz8Omnn0pVDqkY\nRyG2Yb8GuRI7zElVOBdiGec1yBJVznkQSYGjkLo4r0Fy4ciDVEvPoxDeh4pswZEHkQV6HIVwXoOU\ngiMP0gQ9jEI4r0H24siDqBFaHoVwXoOUiCMP0pxzv57DzM0zEfY/YVgxaoXc5TTJTz8BAwdW921w\nXoPsJeVnJ8ODNMlUYkLI8hAUPF2Alp4t5S7HYU8/DXh7V0+OE9mLp62I7OTb0hcDuwzExhMb5S7F\nYeXlwLp1wIwZcldCVB/DgzQrISoBqUdS5S7DYTt3AsHB1V9ESsPwIM0a3X00fir6Ced+PSd3KQ5J\nTQUSEuSugsgyhgdplqe7J6aET8Gao2vkLsVuRUXVl+ZOnCh3JUSWMTxI0xKiEvDx0Y9RJarkLsUu\n69cDo0dX93QQKRHDgzQtukM0fDx98N357+QuxS48ZUVKx/AgTTMYDKqbOD96FLh8GRg8WO5KiKxj\neJDmTYuYhk0/b0JJWYncpdjk44+B++4D3Ll0OykYw4M0T009H+ztILVgeJAuqOXUFXs7SC0YHqQL\naun54EQ5qQXDg3RBDT0f7O0gNWF4kG4oveeDvR2kJgwP0g2l93zwlBWpCcODdEPJPR/s7SC1YXiQ\nrii154O9HaQ2DA/SFSX2fLC3g9SI4UG6o7RTV+ztIDVieJDuKK3ngxPlpEYMD9IdJfV8sLeD1Irh\nQbqklJ4P9naQWjE8SJeU0vPBU1akVgwP0iUl9Hywt4PUjOFBuiV3zwd7O0jNGB6kW3L2fLC3g9SO\n4UG6JtepK/Z2kNoxPEjX5Or54EQ5qR3Dg3RNjp4P9naQFjA8SPdc3fPB3g7SAoYH6Z6rez54yoq0\ngOFBuufKng/2dpBWNBgehw8fxty5cxEbGwtfX1906NABsbGxmDt3LrKyslxVI5HkXNXzwd4O0gqD\nEEJYemLkyJFo06YN4uPj0bt3b3Ts2BFCCFy8eBGZmZnYunUrrl27hu3bt0tfpMEAK2USOU38+niM\n6zEOCVEJkrx+eTng7w/s3ctLdMk1pPzstBoeJpMJvr6+De78yy+/oH379pIUVhvDg1zhy5NfImV/\nCtIT0iV5/S1bgNdeqw4PIleQ8rPT6mmrm4Pj+vXruHr1qvkLgEuCg8hVpO754EQ5aYnVkUeNlStX\n4uWXX4aXlxfc3KqzxmAw4Nw51zVVceRBrjJ752y0vaUtkuKSnPq6RUXVp6rOn+cluuQ6spy2qhEU\nFISMjAy0a9dOkgJswfAgVzl88TDGfzYeZ2efhZvBeRcjpqQAmZnA2rVOe0miRsly2qpGt27dcMst\nt0jy5kRKI1XPB09ZkdY0a2yDxYsXo2/fvujbty88PT0BVKdZSkqK5MURuVrtno+4gDinvCZ7O0iL\nGg2Phx9+GEOHDkVERATc3NwghIDBYHBFbUSymBYxDQv3LERJWQlaerZs8uuxt4O0qNE5j+joaIcb\nAu+//35s374d7du3x7FjxyxuM3v2bOzcuRPe3t5ITU1FdHR0/SI550Eu5qyeD/Z2kJxknfMYMWIE\nVq5ciYsXL9a7VLcxM2fORFpamtXnd+zYgTNnziA7OxurVq1CYmKi7ZUTSchZtyvhuh2kVY2OPAIC\nAuqdprLnUt3c3FyMGTPG4sjjkUceweDBgzFp0iQAQGhoKPbs2VOvx4QjD3K1ssoy+L3hh/0P7ke3\nNt0cfp1x44CRI4EHH3RicUQ2kvKzs9E5j9zcXEneGAAKCwvRuXNn8/f+/v4oKCiw2NmelJRk/ndc\nXBzi4uIkq4uo9jofjvZ81KzbsXq1c2sjsiY9PR3p6ekueS+r4ZGent7oB/Tu3bsxuImXkNycitYm\n42uHB5ErJEQlYPxn4zF/0HyHej64bge52s1/WC9YsECy97IaHtu2bcNzzz2HoUOHolevXujYsSOq\nqqpw6dIlHDx4EN988w0GDx7cpPDw8/NDfn6++fuCggL4+fk5/HpEzlS758ORy3ZTU6vvZUWkRVbD\nY+nSpSguLsbmzZvxz3/+E+fPnwcAdOnSBf3798df//pXtGzZtMsY4+PjsXz5ckyePBkZGRlo3bp1\nozdjJHKVpvR8sLeDtK7RCfOmmDJlCvbs2YPLly/D19cXCxYsQHl5OQBg1qxZAIDHH38caWlpaNGi\nBVavXo2YmJj6RXLCnGRiKjEhZHkICp4usKvn4+mnAW9v4JVXJCyOqBGy3ttKCRgeJCd7ez7Y20FK\nIWufB5He2dvzwd4O0gOGB1Ej7F3ngzdBJD1geBA1onbPR2NqejsmTnRBYUQyYngQ2SAhKgEfH/0Y\nVaKqwe3Y20F6wfAgsoGt63zwlBXpRaPhcffdd2P79u11Hnv44YclK4hIiWr3fFjD3g7Sk0bDIycn\nB0uWLKnT5n7gwAFJiyJSomkR07Dp500oKSux+DzX7SA9aTQ8WrdujV27dsFkMmHMmDG4du2aK+oi\nUhzflr4Y2GUgNp7YWO+58nJg3TpgxgwZCiOSgU1zHs2aNcO7776L8ePHY8CAASgqKpK6LiJFsnbq\nir0dpDeNhscjjzxi/ndCQgJSU1Pxpz/9SdKiiJTKWs8HJ8pJb3h7EiI7zd45G21vaWte56OoqHrE\ncf48L9ElZeHtSYgU5OaeD/Z2kB4xPIjsdHPPB09ZkR4xPIjsVLvng70dpFec8yByQM06H9N/KUBr\n75Zct4MUiXMeRArj29IXA24fiDUHN7K3g3SJ4UHkoPCKBBiiU9nbQbrE8CBy0MnNo1HVzvZ1Poi0\nhOFB5ICiIiD9W09Mi7RtnQ8irWF4EDmgprfj4d62rfNBpDUMDyIH1PR22LrOB5HWMDyI7FS7t8OW\ndT6ItIjhQWSnm9ftaGydDyItYngQ2cHSuh0NrfNBpFUMDyI7WFu3g6euSG8YHkR2sHYTRGvrfBBp\nFcODyEZFRcCuXcDEifWf83T3xJRw9nyQfjA8iGzU2LodN6/zQaRlDA8iGzW2bgd7PkhPGB5ENrBl\n3Q72fJCeMDyIbHBzb4c17PkgvWB4EDXCUm+HNez5IL1geBA1wlpvhzU8dUV6wPAgakRjE+U3Y88H\n6QHDg6gBDfV2WMOeD9IDhgdRAxrr7bCGPR+kdQwPogbYe8qqBns+SOsYHkRW2NLbYQ17PkjrGB5E\nVtja22ENez5IyxgeRBbY09thDXs+SMsYHkQW2NvbYQ1PXZFWMTyILHB0ovxm7PkgrWJ4EN3Ekd4O\na9jzQVrF8CC6iaO9Hdaw54O0iOFBdBNnnbKqwZ4P0iKGB1EtTentsIY9H6RFDA+iWpra22ENez5I\nayQNj/vvvx++vr6IiIiw+Hx6ejpatWqF6OhoREdH45VXXpGyHKIGOaO3wxr2fJDWSBoeM2fORFpa\nWoPbDBo0CFlZWcjKysK8efOkLIeoQc7q7bCGp65ISyQNjwEDBqBNmzYNbiOEkLIEIps5e6L8Zuz5\nIC1pJuebGwwG/PDDDzAajfDz88PSpUsRFhZmcdukpCTzv+Pi4hAXF+eaIkkXano7Vq+W7j1q93wk\nxSVJ90akW+np6UhPT3fJexmExH/65+bmYsyYMTh27Fi954qLi+Hu7g5vb2/s3LkTTz75JE6fPl2/\nSIOBIxSSVEoKkJkJrF0r7fscvngY4z8bj7Ozz8LNwOtVSFpSfnbK+tvr4+MDb29vAMCIESNQXl6O\nq1evylkS6ZTUp6xqsOeDtELW8DCZTOZUzMzMhBACbdu2lbMk0iEpejusYc8HaYWkcx5TpkzBnj17\ncPnyZXTu3BkLFixAeXk5AGDWrFnYuHEjVqxYgWbNmsHb2xuffvqplOUQWSRVb4c10yKmYeGehSgp\nK0FLz5aueVMiJ5N8zsMZOOdBUikvB/z9gb17pbtE15L49fEY12McEqISXPempDuanfMgkpvUvR3W\n8NQVqR3Dg3TNVRPlN2PPB6kdw4N0y5nrdtiL63yQ2jE8SLecvW6HvbjOB6kZw4N0S65TVjVqej72\n5O6RrwgiBzE8SJdMJiA31zW9HdYYDAZMCJuAnWd2ylcEkYMYHqRLR44AUVGu6+2wJqZjDI6ajspb\nBJEDGB6kSzXhIbeoDlHIupjFPiZSHYYH6ZJSwsPPxw9VogqXSi7JXQqRXRgeTlZaWopBgwZh165d\nGDNmjMVt4uLicOjQIZte74033kDPnj1hNBoxdOhQ5OXlAQCOHDmCu+66C+Hh4TAajfjss8/M+0yb\nNg2hoaGIiIjAAw88gIqKCvNzs2fPRnBwMIxGI7Kyssw1Dxw4EFVV+rnqRynhYTAYENUhCkcuHZG7\nFCK7MDycbN26dRg9ejTcGziZbjAYYDAYbHq9mJgYHDp0CEePHsWECRPw3HPPAQBatGiBTz75BMeP\nH0daWhrmzJmD69evAwCmT5+On3/+GceOHcNvv/2GDz74AACwY8cOnDlzBtnZ2Vi1ahUSExMBAF5e\nXhgwYAA2bdrUlB9dNW7cAM6fB0JD5a6kGsOD1Ijh4WTr16/Hn//8ZwBASUkJJk6ciB49emD69OkO\nvV5cXByaN28OAIiNjUVBQQEAIDg4GIGBgQCAjh07on379igqKgJQfXv7GnfeeScKCwsBAJs3b8aM\nPxbojo2NxbVr12AymQAA8fHxWL9+vUM1qs3x49XB4ekpdyXVojpE4YiJ4UHqwvBwosrKShw/fhzd\nu3eHEAJZWVl46623cOLECZw7dw4//PBDvX0mT56M6Ojoel9rLaxK9OGHH2LkyJH1Hs/MzER5ebk5\nTGqUl5dj7dq1uOeeewAAFy5cQOfOnc3P+/v7m8MoKirKYn1apJRTVjU48iA1knUZWq25fPkyfHx8\nzN/37t0bnTp1AlD94Zybm4u77rqrzj623oZ+7dq1OHz4MN588806j1+8eBH33Xcf1qypf5uLRx99\nFIMGDUK/fv3Mj918VU/N6TMvLy9UVVXh999/N490tEpp4RFyWwjy/53PW7STqjA8nKz2h7OXl5f5\n3+7u7nUmrmtMmjTJ4tK7Tz/9NP7yl78AAL755hskJyfju+++g4eHh3mb69evY/To0UhOTkbv3r3r\n7L9gwQJcuXIF77//vvkxPz8/5Ofnm78vKCiAn59fndptnYtRsyNHgClT5K7ivzzcPRD2P2E4ZjqG\nvp37yl0OkU0YHk7Url07lJSU2LXPhg0bGnw+KysLjzzyCL766iu0a9fO/HhZWRnGjh2L++67D+PG\njauzzwcffICvv/4a3377bZ3H4+PjsXz5ckyePBkZGRlo3bo1fH19AVRfceXu7l4n8LSoshI4dgww\nGuWupK6aU1cMD1ILhocTubu7Izw8HKdOnbLriqqGPPfcc7hx4wYmTJgAAOjSpQs2bdqEzz77DN9/\n/z2uXr2K1NRUAMDHH3+MyMhIJCYmIiAgAH37Vn8QjR8/HvPmzcPIkSOxY8cOBAUFoUWLFli9erX5\nfbKysszba9mZM0D79vLdDNEaTpqT2nAlQSdLTU2FyWTC888/L3cpdnnppZdw5513YuzYsXKXIqkN\nG6q/vvxS7krq2pu3F898/Qz2P7hf7lJIQ7iSoIpMnToV27dvV03YAdWnrPbu3Yt7771X7lIkp7TJ\n8hqRvpE4/stxVFTVnxcjUiKGh5N5enriu+++U9XEs5eXl+pqdpRSw+NWr1vRsWVHZF/JlrsUIpsw\nPEhXlBoeAPs9SF0YHqQbly4BpaVArT5JReGkOakJw4N04+jR6lGHUs/OceRBasLwIN1Q8ikrgGt7\nkLowPEg3lB4eXNuD1IThQbqh9PDg2h6kJgwP0gWlreFhDcOD1ILhQbqgtDU8rOEVV6QWDA/SBaWf\nsqrBkQepBcODdEEt4VF7bQ8iJWN4kC6oJTxqr+1BpGQMD9I8pa7hYQ1PXZEaMDxI85S6hoc1nDQn\nNWB4kOap5ZRVDY48SA0YHqR5agsPru1BasDwIM1TW3hwbQ9SA4YHaZ7awgPgqStSPoYHaZrS1/Cw\nhpPmpHQMD9I0pa/hYQ1HHqR0DA/SNDWesgK4tgcpH8ODNE2t4cG1PUjpGB6kaWoND67tQUrH8CDN\nUssaHtYwPEjJGB6kWWpZw8MaXnFFSsbwIM1S6ymrGhx5kJIxPEiz1B4eXNuDlEyy8MjPz8fgwYPR\ns2dPhIeHIyUlxeJ2s2fPRnBwMIxGI7KysqQqxyXS09PlLsEmaqjTGTW6IjykPJbOXNtDDf/NAdap\nJpKFh4eHB95880389NNPyMjIwDvvvIOTJ0/W2WbHjh04c+YMsrOzsWrVKiQmJkpVjkuo5RdKDXU2\ntUZXreEh9bF01qkrNfw3B1inmkgWHh06dEDUH3/2tWzZEj169MCFCxfqbLNlyxbMmDEDABAbG4tr\n167BZDJJVRLpiNrW8LCGk+akVC6Z88jNzUVWVhZiY2PrPF5YWIjOtW465O/vj4KCAleURBqn9vmO\nGjWd5kRoZ0S8AAAIIUlEQVSKIyRWXFws7rjjDvGPf/yj3nOjR48We/fuNX8/ZMgQcejQoXrbAeAX\nv/jFL3458CWVZpBQeXk5xo8fj+nTp+Pee++t97yfnx/y8/PN3xcUFMDPz6/edoL39yEiUhTJTlsJ\nIfDAAw8gLCwMc+bMsbhNfHw81qxZAwDIyMhA69at4evrK1VJRETkJAYh0Z/1e/fuxcCBAxEZGQnD\nH/fDTk5ORl5eHgBg1qxZAIDHH38caWlpaNGiBVavXo2YmBgpyiEiImeS7IRYLTt37hQhISEiKChI\nLF682OI2TzzxhAgKChKRkZHi8OHDje575coVMXToUBEcHCyGDRsmfv31V/NzycnJIigoSISEhIiv\nvvpKkXXm5OSI5s2bi6ioKBEVFSUSExNlrfOzzz4TYWFhws3Nrd68k5KOp7U6HT2eUtT47LPPitDQ\nUBEZGSnGjh0rrl27Zn5OScfSWp1K+92cN2+eiIyMFEajUdx9990iLy/P/JySjqe1OpV2PGssXbpU\nGAwGceXKFfNj9hxPycOjoqJCBAYGipycHFFWViaMRqM4ceJEnW22b98uRowYIYQQIiMjQ8TGxja6\n79y5c8WSJUuEEEIsXrxYPP/880IIIX766SdhNBpFWVmZyMnJEYGBgaKyslJxdebk5Ijw8HA7j6Z0\ndZ48eVKcOnVKxMXF1flQVtrxtFanI8dTqhq//vpr8zF6/vnnFfu7aa1Opf1uXr9+3bx/SkqKeOCB\nB4QQyjue1upU2vEUQoi8vDwxfPhwERAQYA4Pe4+n5JfqZmZmIigoCAEBAfDw8MDkyZOxefPmOttY\n6ve4dOlSg/vW3mfGjBnYtGkTAGDz5s2YMmUKPDw8EBAQgKCgIGRmZiquTkdJVWdoaCi6d+9e7/2U\ndjyt1ekIqWocNmwY3NzczPvUXH6utGNprU5HSVWnj4+Pef+SkhK0a9cOgPKOp7U6HSVVnQDw9NNP\n47XXXqvzWvYeT8nDw1IvR2FhoU3bXLhwweq+JpPJPLnu6+trbi68cOEC/P39G3w/JdQJADk5OYiO\njkZcXBz27t3baI1S1mmN0o5nQ+w9nq6o8aOPPsLIkSMBKPtY1q4TUN7v5l//+lfcfvvtSE1NxYsv\nvghAmcezps6PP/4YL7zwgvlxJR3PzZs3w9/fH5GRkXVey97jKXl41EyWN0bYMG8vhLD4egaDocH3\nsaUGV9fZqVMn5OfnIysrC2+88QamTp2K4uJil9bpKFcfT1s4cjylrnHRokXw9PTE1KlTm1SDq+tU\n4u/mokWLkJeXh5kzZ1q9etPWGlxRZ0JCAp566ikAyjqev/32G5KTk7FgwQKb9m+oBkn7PID6vRz5\n+fl10s3SNgUFBfD390d5ebnVPhBfX19cunQJHTp0wMWLF9G+fXurr2Wpd0TuOj09PeH5x0ITMTEx\nCAwMRHZ2dqNXmzmzTkv7NvZ+chxPW+p05HhKWWNqaip27NiBb7/9tsHXkvtYWqpTyb+bU6dONY+Q\nlHg8LdWppON59uxZ5ObmwvjHTd8KCgpwxx13YP/+/fYfT7tncexUXl4uunXrJnJyckRpaWmjkz77\n9u0zT/o0tO/cuXPNVxC8+uqr9SYlS0tLxblz50S3bt1EVVWV4uosKioSFRUVQgghzp49K/z8/Opc\nMebqOmvExcWJgwcPmr9X2vG0Vqcjx1OqGnfu3CnCwsJEUVFRnddS2rG0VqfSfjdPnz5t3j8lJUVM\nnz5dkcfTWp1KO561WZowt/V4uuRS3R07doju3buLwMBAkZycLIQQ4r333hPvvfeeeZvHHntMBAYG\nisjIyDpX0VjaV4jqS2CHDBli8VLdRYsWicDAQBESEiLS0tIUWecXX3whevbsKaKiokRMTIzYtm2b\nrHV++eWXwt/fXzRv3lz4+vqKe+65x/ycko6ntTo3btzo0PGUosagoCBx++23W7w0U0nH0lqdjh5L\nqeocP368CA8PF0ajUYwbN06YTCbzc0o6ntbqVNr/67V17dq1zqW69hxPyZoEiYhIu7iSIBER2Y3h\nQUREdmN4EBGR3RgeRERkN4YHkQVJSUlYtmxZo9tt27YNSUlJdr32kCFDbGoSI1IyhgeRBbZ29y5b\ntgyJiYl2vfbkyZPx/vvvO1IWkWIwPIj+sGjRIoSEhGDAgAE4depUo9vn5+ejrKzMfO+yhIQEPPro\no+jbty8CAwORnp6OGTNmICwsDDNnzjTvFx8fj08//VSyn4PIFSS/PQmRGhw6dAgbNmzA0aNHUV5e\njpiYGPTq1avBff71r3/VucWEwWDAtWvXsG/fPmzZsgXx8fHYt28fwsLCcOedd+Lo0aMwGo3w9fXF\n5cuXcePGDbRo0ULqH41IEhx5EAH4/vvvMW7cODRv3hw+Pj6Ij49v9IZzeXl56NixY53HxowZAwAI\nDw9Hhw4d0LNnTxgMBvTs2RO5ubnm7Xx9fevcR4hIbRgeRKgeNdQOC1tvvHDzdjU3wHNzc4OXl5f5\ncTc3N1RUVNTZz9Z5FSIlYngQARg4cCA2bdqE33//HcXFxdi2bVujH+5dunTBpUuXHHo/k8nU6J2C\niZSM4UEEIDo6GpMmTYLRaMTIkSPRu3fvRvfp168fDh8+XOex2oFzc/jUfH/p0iXcdtttnO8gVeON\nEYma4O6778a6devqzX00ZNWqVbhx44Z5sSAiNeLIg6gJnn32Wbz33nt27bNhwwY89NBDElVE5Boc\neRARkd048iAiIrsxPIiIyG4MDyIishvDg4iI7MbwICIiuzE8iIjIbv8PNfE+DP2EsOkAAAAASUVO\nRK5CYII=\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.2 Page NO.532" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou_f=974.0 # density in kg/m**3 \n", + "cp_1=4196.0 # specific heat in J/(kg*K) \n", + "v_1=0.364e-6 # viscosity in m**2/s \n", + "Pr_1=2.22 # Prandtl Number \n", + "kf=0.668 # thermal conductivity in W/(m.K)\n", + "a_1=1.636e-7 # diffusivity in m**2/s \n", + "Vv=1.9364 # specific volume in m**3/kg\n", + "rou_v=1/Vv # vapor density\n", + "g=9.81\n", + "hfg=2257.06*1000 \n", + "Tg=100\n", + "Tw=60\n", + "L=1\n", + "\n", + "OD=0.03340\n", + "hD=0.782*((g*rou_f*(1-(rou_v/rou_f))*(kf**3)*hfg)/(v_1*OD*(Tg-Tw)))**(1/4.0)\n", + "hD=10720 #According to the book\n", + "import math\n", + "q=hD*math.pi*OD*L*(Tg-Tw)\n", + "mf=q/hfg\n", + "\n", + "print\"The heat flow rate is \",round(q,0),\"W\"\n", + "print\"The rate at which steam condenses is \",round(mf*3600,0),\"kg/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat flow rate is 44994.0 W\n", + "The rate at which steam condenses is 72.0 kg/hr\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.3 Page NO. 538" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou_f=958 # density in kg/m**3\n", + "cp_f= 4217 # specific heat in J/(kg*K) \n", + "v_f= 2.91e-7 # viscosity in m**2/s \n", + "Pr_f =1.76 # Prandtl Number \n", + "rou_g=0.596 \n", + "sigma=0.0589 # surface tension in N/m\n", + "hfg=2257000 \n", + "Tw=120.0\n", + "Tg=100.0\n", + "D=.141 # diameter of pan in m\n", + "g=9.81\n", + "gc=1\n", + "\n", + "Cw=0.0132 # formechanically polished stainless steel from table 10.2\n", + "q_A=(rou_f*v_f*hfg)*((g*rou_f*(1-(rou_g/rou_f)))/(sigma*gc))**(0.5)*((cp_f*(Tw-Tg))/(Cw*hfg*Pr_f**1.7))**3\n", + "A=math.pi*D**2/4.0\n", + "p=q_A*A # power delivered to the water in W\n", + "mf=q/hfg # water evaporation rate\n", + "q_cr=0.18*hfg*(sigma*g*gc*rou_f*rou_g**2)**(0.25)\n", + "\n", + "print\"(a)The power delivered to the water is kW\",round(q/1000,2),\"KW\"\n", + "print\"(b)The water evaporation rate is \",round(mf*3600,2),\"kg/h\"\n", + "print\"(c)The critical heat flux is \",round(q_cr,0),\"W/sq.m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The power delivered to the water is kW 4.98 KW\n", + "(b)The water evaporation rate is 7.94 kg/h\n", + "(c)The critical heat flux is 1521299.0 W/sq.m\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER11.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER11.ipynb new file mode 100755 index 00000000..30fa585c --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER11.ipynb @@ -0,0 +1,299 @@ +{ + "metadata": { + "name": "CHAPTER11" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11: Introduction to Radiation Heat Transfer" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.1 Page NO.554" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math\n", + "dA2=(1*1)/144.0\n", + "Beta1=40*math.pi/180.0\n", + "r=4\n", + "dw2_1=dA2*math.cos(Beta1)/r**2\n", + "dA3=dA2\n", + "Beta2=0\n", + "dw3_1=dA3*cos(Beta2)/r**2\n", + "\n", + "theta2=math.pi*50/180.0\n", + "theta3=math.pi*60/180.0\n", + "I_theta2=2000*(1-0.4*(sin(theta2))**2)\n", + "I_theta3=2000*(1-0.4*(sin(theta3))**2)\n", + "\n", + "dA1=1/144.0\n", + "dq1_2=I_theta2*dA1*math.cos(theta2)*dw2_1 #In book calculation mistake\n", + "dq1_3=I_theta3*dA1*math.cos(theta2)*dw3_1\n", + "\n", + "print\"(a)The solid angle subtended by area dA2 with respect to dA1 is \",round(dw2_1,4),\"sr\"\n", + "print\" The solid angle subtended by area dA3 with respect to dA1 is \",round(dw3_1,4),\"sr\"\n", + "print\"(b) The intensity of radiation emitted from dA1 in the direction of dA2 is \",round(I_theta2,0),\"BTU/(hr.sq.ft.sr)\"\n", + "print\" The intensity of radiation emitted from dA1 in the direction of dA3 is\",round(I_theta3,0),\"BTU/(hr.sq.ft.sr)\"\n", + "print\"(c)The rate at which radiation emitted by dA1 is intercepted by dA2 is \",round(dq1_2,4),\"BTU/hr\"\n", + "print\" The rate at which radiation emitted by dA1 is intercepted by dA3 is \",round(dq1_3,4),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The solid angle subtended by area dA2 with respect to dA1 is 0.0003 sr\n", + " The solid angle subtended by area dA3 with respect to dA1 is 0.0004 sr\n", + "(b) The intensity of radiation emitted from dA1 in the direction of dA2 is 1531.0 BTU/(hr.sq.ft.sr)\n", + " The intensity of radiation emitted from dA1 in the direction of dA3 is 1400.0 BTU/(hr.sq.ft.sr)\n", + "(c)The rate at which radiation emitted by dA1 is intercepted by dA2 is 0.0023 BTU/hr\n", + " The rate at which radiation emitted by dA1 is intercepted by dA3 is 0.0027 BTU/hr\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.2 Page NO.557" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "dA2=0.02*0.02\n", + "Beta=0\n", + "r=1\n", + "\n", + "import math\n", + "dw2_1=dA2*math.cos(Beta)/r**2\n", + "dA1=dA2\n", + "theta=math.pi*30/180.0\n", + "I_theta=1000# The intensity of radiation leaving dA1 in any direction is 1 000 W/(m**2.sr\n", + "dq1_2=I_theta*dA1*cos(theta)*dw2_1\n", + "dQ1_2=dq1_2/dA2\n", + "\n", + "print\"(a)The solid angle subtended by area dA2 with respect to dA1 is \",round(dw2_1,4),\"sr\"\n", + "print\"(b)The rate at which radiation emitted by dA1 is intercepted by dA2 is\",round(dq1_2,5),\"W\"\n", + "print\"(c)The irradiation associated with dA2 is \",round(dQ1_2,3),\"W/sq.m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The solid angle subtended by area dA2 with respect to dA1 is 0.0004 sr\n", + "(b)The rate at which radiation emitted by dA1 is intercepted by dA2 is 0.00014 W\n", + "(c)The irradiation associated with dA2 is 0.346 W/sq.m\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.3 Page NO. 563" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "D=2.5/12.0 # diameter in ft\n", + "L=4.5/12.0 # length in ft\n", + "\n", + "import math\n", + "A=(2*math.pi*D**2/4)+(math.pi*D*L)\n", + "A_hole=math.pi*(1/(8.0*12.0))**2/4.0\n", + "f=A_hole/A # fraction of area removed\n", + "emissivity=0.039\n", + "emissivity_hole=emissivity/(emissivity+(1-emissivity)*f)\n", + "\n", + "sigma=0.1714e-8 # stefan Boltzmann constant in BTU/(hr~ft**2 degree R)\n", + "T=150+460 # temperature in degree R\n", + "qe=emissivity_hole*sigma*T**4\n", + "Qe=A_hole*qe\n", + "\n", + "print\"(a)The emissivity of the hole is %.4f\",round(emissivity_hole,4)\n", + "print\"(b)The heat lost by the hole is \",round(Qe,4),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The emissivity of the hole is %.4f 0.9933\n", + "(b)The heat lost by the hole is 0.0201 BTU/hr\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.4 Page NO.568" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "T=2800 #Temprature\n", + "lambda1=4e-7 #Wavelength\n", + "lambda2=7e-7\n", + "hT=lambda1*T\n", + "\n", + "lambdaT=lambda2*T\n", + "I1=0.0051 #Fraction of Total Radiation Emitted for lower Wavelength-Temperature Product from Table 11.1\n", + "I2=0.065 #Fraction of Total Radiation Emitted for upper Wavelength-Temperature Product from Table 11.1\n", + "dI=I2-I1\n", + "\n", + "print\"The percentage of total emitted energy that lies in the visible range is\",round(dI*100,0),\"percant\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The percentage of total emitted energy that lies in the visible range is 6.0 percant\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.5 Page NO. 570" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "lambda_max=0.5e-6 # maximum wavelength in m\n", + "T=2.898e-3/lambda_max\n", + "sigma=5.675e-8 # value of Stefan-Boltzmann constant in W/(m**2.K**4)\n", + "q=sigma*T**4\n", + "\n", + "print\"The Surface Temperature of the Sun is \",round(T,2),\"K\"\n", + "print\"The heat flux emitted is \",round(q,0),\"W/sq.m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Surface Temperature of the Sun is 5796.0 K\n", + "The heat flux emitted is 64044136.0 W/sq.m\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.6 Page NO.575" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "lambda1=300e-9 # lower limit of wavelength\n", + "lambda2=380e-9 # upper limit of wavelength\n", + "T=5800\n", + "lambda1_T=lambda1*T\n", + "lambda2_T=lambda2*T\n", + "I1=0.101 #Fraction of Total Radiation Emitted for lower Wavelength-Temperature Product from Table 11.1\n", + "I2=0.0334 #Fraction of Total Radiation Emitted for upper Wavelength-Temperature Product from Table 11.1\n", + "dI=abs(I2-I1)\n", + "t=dI*0.68 # transmissivity\n", + "q=1100 # radiation received by car in W/sq.m\n", + "q_in=t*q # energy transmitted from the sun through the glass\n", + "\n", + "\n", + "Tb=311 # temperature of black body source in K\n", + "lambda1_Tb=lambda1*Tb\n", + "lambda2_Tb=lambda2*Tb\n", + "dI_b=0 # Table 11.1 gives negligibly small values of the corresponding integrals.\n", + "t_b=dI_b*0.68 # transmissivity\n", + "q_out=t_b*q\n", + "\n", + "print\"(a)The energy transmitted from the sun through the glass is \",round(q_in,1),\"W/sq.m\"\n", + "print\"(b)the rate at which radiant energy from the car interior is transmitted through the glass windshield is\",q_out,\"W/sq.m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The energy transmitted from the sun through the glass is 50.6 W/sq.m\n", + "(b)the rate at which radiant energy from the car interior is transmitted through the glass windshield is 0.0 W/sq.m\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER12.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER12.ipynb new file mode 100755 index 00000000..dacb5289 --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER12.ipynb @@ -0,0 +1,303 @@ +{ + "metadata": { + "name": "CHAPTER12" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12: Radient Heat Transfer between Surfaces" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 12.3 Page No 598" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "a_13=100.0\n", + "b_13=250.0\n", + "c_13=100.0\n", + "X_13=a_13/c_13\n", + "Y_13=b_13/c_13\n", + "Fd1_3=0.17 # value for Fd1_3 corresponding to above calculated values of a/c and b/c\n", + "a_14=300\n", + "b_14=50\n", + "c_14=100\n", + "\n", + "X_14=a_14/c_14\n", + "Y_14=b_14/c_14\n", + "Fd1_4=0.11 #value for Fd1_4 corresponding to above calculated values of a/c and b/c\n", + "a_15=100\n", + "b_15=50\n", + "c_15=100\n", + "X_15=a_15/c_15\n", + "Y_15=b_15/c_15\n", + "Fd1_5=0.09 #value for Fd1_3 corresponding to above calculated values of a/c and b/c\n", + "Fd1_2=Fd1_3+Fd1_4-Fd1_5\n", + "sigma=0.1714e-8 # Stefan-Boltzmann constant\n", + "T1=660\n", + "T2=560\n", + "q12_A1=sigma*Fd1_2*(T1**4-T2**4)\n", + "\n", + "print\"The net heat transferred is \",round(q12_A1,1),\"BTU/(hr.sq.ft)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The net heat transferred is 29.8 BTU/(hr.sq.ft)\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 12.4 Page No 601" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "L1=1\n", + "angle=math.pi*45/180.0\n", + "L2=L1*math.sin(angle)\n", + "L3=L2\n", + "T1=303\n", + "T2=473\n", + "\n", + "sigma=5.67e-8 # Stefan-Boltzmann constant\n", + "q21_A2=sigma*(T2**4-T1**4)*((L1/L2)+1-(L3/L2))/2.0\n", + "q31_A3=sigma*(T2**4-T1**4)*((L1/L2)-1+(L3/L2))/2.0\n", + "\n", + "print\"The heat transferred from A3 to A1 is \",round(q31_A3,0),\" W/sq.m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transferred from A3 to A1 is 1669.0 W/sq.m\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 12.5 Page No 605" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "ac=1\n", + "bd=1\n", + "ad=(9+1)**0.5\n", + "bc=ad\n", + "\n", + "crossed_strings=ad+bc\n", + "uncrossed_strings=ac+bd\n", + "L1_F12=(1/2.0)*(crossed_strings-uncrossed_strings)\n", + "L1=3\n", + "F12=L1_F12/L1\n", + "sigma=5.67e-8 # Stefan-Boltzmann constant\n", + "T1=560\n", + "T2=460\n", + "q12_A1=sigma*(T1**4-T2**4)*F12\n", + "\n", + "print\"The heat transfer rate is \",round(q12_A1,0),\"W/sq m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transfer rate is 2189.0 W/sq m\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 12.6 Page No 608" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "T1=1000.0\n", + "T3=500.0\n", + "q2=0\n", + "F12=1/2.0\n", + "F13=1/2.0\n", + "F21=1/2.0\n", + "F23=1/2.0\n", + "F31=1/2.0\n", + "F32=1/2.0\n", + "\n", + "T2=((T1**4+T3**4)/2.0)**(1/4.0) # using equation (2)\n", + "sigma=0.1714e-8 # Stefan-Boltzmann constant\n", + "q1_A1=sigma*((T1**4-T2**4)*F12+(T1**4-T3**4)*F13) # using equation (1)\n", + "q3_A3=sigma*((T3**4-T1**4)*F31+(T3**4-T2**4)*F32) # using equation (3)\n", + "\n", + "print\"The temperature is \",round(T2,1),\"R\"\n", + "print\"The heat flux through area A1 is\",round(q1_A1,0),\"BTU/(hr.sq.ft)\"\n", + "print\"The heat flux through area A3 is\",round(q3_A3,0),\"BTU/(hr.sq.ft)\"\n", + "print\"In the book there is calculation mistake\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The temperature is 853.7 R\n", + "The heat flux through area A1 is 1205.0 BTU/(hr.sq.ft)\n", + "The heat flux through area A3 is -1205.0 BTU/(hr.sq.ft)\n", + "In the book there is calculation mistake\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 12.7 Page No 613" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "F12=1\n", + "F21=1\n", + "F11=0 # the surfaces are flat\n", + "F22=0\n", + "emissivity1=0.94 # for oxidized steel from appendix table E1\n", + "emissivity2=0.94\n", + "T1=533\n", + "T2=323\n", + "sigma=5.67e-8 # Stefan-Boltzmann constant\n", + "\n", + "q1=(sigma*(T1**4-T2**4))/((1/emissivity1)+(1/emissivity2)-1)\n", + "q2=-q1\n", + "\n", + "print\"The heat lost through bottom surface is \",round(q1,1),\"W/sq m\"\n", + "print\"The heat lost through top surface is \",round(q2,1),\"W/sq m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat lost through bottom surface is 3510.7 W/sq m\n", + "The heat lost through top surface is -3510.7 W/sq m\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 12.8 Page No 616" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "D=1.0 # diameter in ft\n", + "L=6/12.0 # length in ft\n", + "\n", + "A=2*math.pi*D**2/4+math.pi*D*L\n", + "F12=1 # the view factor between the dish and the surroundings is unity\n", + "T1=810\n", + "T2=530\n", + "sigma=0.1714e-8 # Stefan-Boltzmann constant\n", + "q1=sigma*A*(T1**4-T2**4)*F12\n", + "\n", + "F11=0\n", + "e1=0.82\n", + "e2=0.93\n", + "q1_=A*e1*(sigma*T1**4-F12*sigma*T2**4)\n", + "\n", + "print\"(a)The heat exchanged between the dish and the surroundings is\",round(q1,0),\"BTU/hr\"\n", + "print\"(b)The heat exchanged between the dish and the surroundings for the second case is \",round(q1_,0),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The heat exchanged between the dish and the surroundings is 1893.0 BTU/hr\n", + "(b)The heat exchanged between the dish and the surroundings for the second case is 1552.0 BTU/hr\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER2.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER2.ipynb new file mode 100755 index 00000000..43341b6f --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER2.ipynb @@ -0,0 +1,650 @@ +{ + "metadata": { + "name": "CHAPTER2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "chapter 2 :Steady state Conduction in one dimension" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.1 Page No.42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "T3=-10.00\t\t# temperature of inside wall in degree Fahrenheit\n", + "T0=70.0 \t \t# temperature of outside wall in degree Fahrenheit\n", + "dT=T0-T3 # overall temperature difference\n", + "k1=0.38 # brick masonry\n", + "k2=0.02 # glass fibre\n", + "k3=0.063 # plywood\n", + "dx1=4/12.0 # thickness of brick layer in ft\n", + "dx2=3.5/12.0 # thickness of glass fibre layer in ft\n", + "dx3=0.5/12.0 # thickness of plywood layer in ft\n", + "A=1.0 # cross sectional area taken as 1 ft**2\n", + "\n", + "R1=dx1/(k1*A) # resistance of brick layer in (hr.degree Rankine)/BTU\n", + "R2=dx2/(k2*A) # resistance of glass fibre layer in (hr.degree Rankine)/BTU\n", + "R3=dx3/(k3*A) # resistance of plywood layer in (hr.degree Rankine)/BTU\n", + "qx=(T0-T3)/(R1+R2+R3) \n", + "\n", + "print\"Resistance of brick layer is \",round(R1,3),\"(hr.degree Rankine)/BTU\"\n", + "print\"Resistance of glass fibre layer is \",round(R2,1),\"(hr.degree Rankine)/BTU\"\n", + "print\"Resistance of plywood layer is \",round(R3,3),\"(hr.degree Rankine)/BTU\"\n", + "print\"Heat transfer through the composite wall is \",round(qx,2),\"(hr.degree Rankine)/BTU\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance of brick layer is 0.877 (hr.degree Rankine)/BTU\n", + "Resistance of glass fibre layer is 14.6 (hr.degree Rankine)/BTU\n", + "Resistance of plywood layer is 0.661 (hr.degree Rankine)/BTU\n", + "Heat transfer through the composite wall is 4.96 (hr.degree Rankine)/BTU\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.2 Page No.45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k1=0.45 # thermal conductivity of brick\n", + "k2a=0.15 # thermal conductivity of pine\n", + "k3=0.814 # thermal conductivity of plaster board\n", + "k2b=0.025 # thermal conductivity of air from appendix table D1\n", + "A1=0.41*3 # cross sectional area of brick layer \n", + "A2a=0.038*3 # cross sectional area of wall stud\n", + "A2b=(41-3.8)*0.01*3 # cross sectional area of air layer\n", + "A3=0.41*3 # cross sectional area of plastic layer \n", + "dx1=0.1 # thickness of brick layer in m\n", + "dx2=0.089 # thickness of wall stud and air layer in m\n", + "dx3=0.013 # thickness of plastic layer in m\n", + "\n", + "R1=dx1/(k1*A1) # Resistance of brick layer in K/W\n", + "R2=dx2/(k2a*A2a+k2b*A2b) # Resistance of wall stud and air layer in K/W\n", + "R3=dx3/(k3*A3) # Resistance of plastic layer in K/W\n", + "T1=25 # temperature of inside wall in degree celsius\n", + "T0=0 # temperature of outside wall in degree celsius\n", + "qx=(T1-T0)/(R1+R2+R3) # heat transfer through the composite wall in W\n", + "\n", + "print\"Resistance of brick layer is \",round(R1,3),\"k/W\"\n", + "print\"Resistance of wall stud and air layer is \",round(R2,2),\"k/W\"\n", + "print\"Resistance of plastic layer is \",round(R3,3),\"k/W\"\n", + "print\"Heat transfer through the composite wall is\",round(qx,1),\"W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance of brick layer is 0.181 k/W\n", + "Resistance of wall stud and air layer is 1.98 k/W\n", + "Resistance of plastic layer is 0.013 k/W\n", + "Heat transfer through the composite wall is 11.5 W\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.3 Page No. 50" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k1=24.8 # thermal conductivity of 1C steel in BTU/(hr.ft.degree Rankine)from appendix table B2 \n", + "k2=0.02 # thermal conductivity of styrofoam steel in BTU/(hr.ft.degree Rankine)\n", + "k3=0.09 # thermal conductivity of fibreglass in BTU/(hr.ft.degree Rankine)\n", + "hc1=0.79 # convection coefficient between the air and the vertical steel wall in BTU/(hr.ft**2.degree Rankine)\n", + "hc2=150.0 # the convection coefficient between the ice water and the fiberglass\n", + "A=1.0 # calculation based on per square foot\n", + "dx1=0.04/12.0 # thickness of steel in ft\n", + "dx2=0.75/12.0 # thickness of styrofoam in ft\n", + "dx3=0.25/12.0 # thickness of fiberglass in ft\n", + "\n", + "\n", + "Rc1=1/(hc1*A) # Resistance from air to sheet metal\n", + "Rk1=dx1/(k1*A) # Resistance of steel layer\n", + "Rk2=dx2/(k2*A) # Resistance of styrofoam layer\n", + "Rk3=dx3/(k3*A) # Resistance of fiberglass layer\n", + "Rc2=1/(hc2*A) # Resistance from ice water to fiberglass\n", + "U=1/(Rc1+Rk1+Rk2+Rk3+Rc2) # overall heat transfer coefficient \n", + "T_inf1=90 # temperature of air in degree F\n", + "T_inf2=32 # temperature of mixture of ice and water in degree F\n", + "q=U*A*(T_inf1-T_inf2)\n", + "\n", + "print\"Resistance from air to sheet metal: \",round(Rc1,3),\"degree F.hr/BTU\"\n", + "print\"Resistance of steel layer is \",round(Rk1,4),\"degree F.hr/BTU\"\n", + "print\"Resistance of styrofoam layer is \",round(Rk2,3),\"degree F.hr/BTU\"\n", + "print\"Resistance of fiberglass layer is \",round(Rk3,3),\"degree F.hr/BTU\"\n", + "print\"Resistance from ice water to fiberglass is \",round(Rc2,4),\"degree F.hr/BTU\"\n", + "print\"The overall heat transfer coefficient is \",round(U,3),\"BTU/hr ft**2\"\n", + "print\"The heat transfer rate is %.1f BTU/hr\",round(q,2),\"BTU/hr\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance from air to sheet metal: 1.266 degree F.hr/BTU\n", + "Resistance of steel layer is 0.0001 degree F.hr/BTU\n", + "Resistance of styrofoam layer is 3.125 degree F.hr/BTU\n", + "Resistance of fiberglass layer is 0.231 degree F.hr/BTU\n", + "Resistance from ice water to fiberglass is 0.0067 degree F.hr/BTU\n", + "The overall heat transfer coefficient is 0.216 BTU/hr ft**2\n", + "The heat transfer rate is %.1f BTU/hr 12.53 BTU/hr\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.4 Page No 55." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=14.4 # thermal conductivity of 304 stainless steel in W/(m.K) from appendix table B2\n", + "D2=32.39 #Diameter (cm)\n", + "D1=29.53\n", + "T1=40 #Temprature\n", + "T2=38\n", + "\n", + "import math\n", + "Qr_per_length=(2*3.14*k)*(T1-T2)/math.log(D2/D1)#format(6)\n", + "\n", + "print\"The heat transfer through the pipe wall per unit length of pipe is \",round(Qr_per_length/1000,2),\"kw/m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transfer through the pipe wall per unit length of pipe is 1.96 kw/m\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.5 Page NO. 58" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k1=231 # thermal conductivity of copper in BTU/(hr.ft.degree Rankine)from appendix table B1 \n", + "k2=0.02 # thermal conductivity of insuLtion in BTU/(hr.ft.degree Rankine)\n", + "D2=1.125/12 # outer diameter in ft\n", + "D1=0.08792 # inner diameter in ft\n", + "R2=D2/2 # outer radius\n", + "R1=D1/2 # inner radius\n", + "t=0.5/12 # wall thickness of insulation in ft\n", + "R3=R2+t\n", + "LRk1=(log(R2/R1))/(2*3.14*k1) # product of length and copper layer resistance\n", + "LRk2=(log(R3/R2))/(2*3.14*k2) # product of length and insulation layer resistance\n", + "T1=40 # temperature of inside wall of tubing in degree fahrenheit\n", + "T3=70 # temperature of surface temperature of insulation degree fahrenheit\n", + "q_per_L=(T1-T3)/(LRk1+LRk2) # heat transferred per unit length in BTU/(hr.ft)\n", + "\n", + "print\"The heat transferred per unit length is \",round(q_per_L,2),\" BTU/(hr.ft\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transferred per unit length is -5.92 BTU/(hr.ft\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.6 Page No 63" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k12=24.8 # thermal conductivity of 1C steel in BTU/(hr.ft.degree Rankine)from appendix table B2 \n", + "k23=.023 # thermal conductivity of glass wool insulation in BTU/(hr.ft.degree Rankine)from appendix table B3 \n", + "D2=6.625/12.0 # outer diameter in ft\n", + "D1=0.5054 # inner diameter in ft\n", + "t=2/12.0 # wall thickness of insulation in ft\n", + "D3=D2+t\n", + "hc1=12 # convection coefficient between the air and the pipe wall in BTU/(hr. sq.ft.degree Rankine).\n", + "hc2=1.5 # convection coefficient between the glass wool and the ambient air in BTU/(hr. sq.ft.degree Rankine).\n", + "\n", + "U=1/((1/hc1)+(D1*log(D2/D1)/k12)+(D1*log(D3/D2)/k23)+(D1/(hc2*D3)))\n", + "\n", + "print\"Overall heat transfer coefficient is \",round(U,4),\" BTU/(hr.sq.ft. Fahrenheit)\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Overall heat transfer coefficient is 0.1596 BTU/(hr.sq.ft. Fahrenheit)\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.7 Page NO.72" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=14.4 # thermal conductivity of 304 stainless steel in W/(m.K)from appendix table B2 \n", + "T1=543.0 # temperature in K at point 1\n", + "T2=460.0 # temperature in K at point 2\n", + "dT=T1-T2 # temperature difference between point 1 and 2\n", + "dz12=0.035 # distance between thermocouple 1 and 2 in cm\n", + "\n", + "dz56=4.45 # distance between thermocouple 5 and 6 in cm\n", + "dz6i=3.81 # distance between thermocouple 6 and interface in cm\n", + "dz5i=dz56+dz6i # distance between thermocouple 5 and interface in cm\n", + "T5=374 # temperature in K at point 5\n", + "T6=366 # temperature in K at point 6\n", + "dzi7=2.45 # distance between thermocouple 7 and interface in cm\n", + "dz78=4.45 # distance between thermocouple 7 and 8 in cm\n", + "dzi8=dzi7+dz78 # distance between thermocouple 8 and interface in cm\n", + "T7=349 # temperature in K at point 7\n", + "T8=337 # temperature in K at point 8\n", + "\n", + "qz_per_A=k*dT/dz12 # heat flow calculated in W/m**2 calculated using Fourier's law\n", + "T_ial=T5-(dz5i*(T5-T6)/dz56) # temperature of aluminium interface in K\n", + "T_img=dzi8*(T7-T8)/dz78+T8 # temperature of magnesium interface in K\n", + "T_img_=355.8 #Approx value in the book\n", + "Rtc=(T_ial-T_img_)/(qz_per_A)\n", + "\n", + "\n", + "print\"The required thermal contact resistance is\",round(Rtc,7),\"K sq.m/W\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required thermal contact resistance is 9.81e-05 K sq.m/W\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.8 Page No. 85" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "k=24.8 # thermal conductivity of 1C steel in BTU/(hr.ft.degree Rankine)from appendix table B2\n", + "D=(5.0/16.0)/12.0 # diameter of the rod in ft\n", + "P=(math.pi*D) # Circumference of the rod in ft\n", + "A=(math.pi/4)*D**2 # Cross sectional area of the rod in sq.ft\n", + "hc=1.0 # assuming the convective heat transfer coefficient as 1 BTU/(hr. sq.ft. degree Rankine)\n", + "\n", + "m=math.sqrt(hc*P/(k*A))\n", + "L=(9/2.0)/12.0 # length of rod in ft\n", + "T_inf=70.0\n", + "T_w=200.0\n", + "dT=T_w-T_inf\n", + "const=dT/math.cosh(m*L)\n", + "\n", + "qz=k*A*m*dT*tanh(m*L)\n", + "\n", + "mL=m*L\n", + "efficiency=0.78 # from fig. 2.30\n", + "\n", + "effectiveness=math.sqrt(k*P/(hc*A))*tanh(mL)\n", + "\n", + "\n", + "print\"(b)The heat transferred is \",round(qz,2),\"BTU/hr\"\n", + "print\"(c)The efficiency found from the graph in figure 2.30 is\",efficiency\n", + "print\"(d)The effectiveness is found to be\",round(effectiveness,1)\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "mL1=[0,1,1.2,5]\n", + "n1=[0,0.2,0.25,0.25]\n", + "\n", + "mL2=[0,1,1.8,5]\n", + "n2=[0,0.35,0.5,0.5]\n", + "\n", + "mL3=[0,1,2,5]\n", + "n3=[0,0.75,1,1]\n", + "mL4=[0,1,2,5]\n", + "n4=[0,1.5,2,2]\n", + "\n", + "xlabel(\"mL\") \n", + "ylabel(\"n \") \n", + "plt.xlim((0,6))\n", + "plt.ylim((0,2.5))\n", + "\n", + "ax.annotate('(0.25)', xy=(5,0.25))\n", + "ax.annotate('(0.5)', xy=(5,0.5))\n", + "ax.annotate('(1)', xy=(5,1))\n", + "ax.annotate('(2)', xy=(5,2))\n", + "a1=plot(mL1,n1)\n", + "a2=plot(mL2,n2)\n", + "a3=plot(mL3,n3)\n", + "a4=plot(mL4,n4)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "z1=[0,3,4.8]\n", + "T1=[200,165,158]\n", + "z2=[0,4.8]\n", + "T2=[140,140]\n", + "z3=[0,4.8]\n", + "T3=[130,130]\n", + "z4=[4.8,4.8]\n", + "T4=[140,130]\n", + "\n", + "xlabel(\"z (m)\") \n", + "ylabel(\"T (K)\") \n", + "plt.xlim((0,5.5))\n", + "plt.ylim((120,200))\n", + "\n", + "ax.annotate('(5/16 in)', xy=(4.85,135))\n", + "a1=plot(z1,T1)\n", + "a2=plot(z2,T2)\n", + "a3=plot(z3,T3)\n", + "a4=plot(z4,T4)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(b)The heat transferred is 3.13 BTU/hr\n", + "(c)The efficiency found from the graph in figure 2.30 is 0.78\n", + "(d)The effectiveness is found to be 45.2\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlHX+N/D3IGghKFqKnBJTBhEUEZVyF8ESKxfEU24e\nVn6ewrN22ZPX9ttSy2jb2tzMw5VuiqaLtlqKinjISMMQE3rME4gPJAyIi0iKKYeZ7/MHMgsywAD3\nzD0z9/t1XVwXMDdzfybz7ZfPfO/PrRJCCBARkSLYyV0AERGZD0OfiEhBGPpERArC0CciUhCGPhGR\ngjD0iYgURLLQz8/Px4gRI+Dv74+AgACsXbu2wTEpKSno3LkzgoKCEBQUhNWrV0t1eiIiMoK9VE/k\n4OCANWvWYODAgSgvL0dwcDAiIiLg5+dX77iwsDAkJiZKdVoiImoByVb6PXr0wMCBAwEATk5O8PPz\nQ2FhYYPjeC0YEZF8TNLTz8vLQ2ZmJkJCQup9X6VS4fTp0wgMDMTo0aNx6dIlU5yeiIgaIyR29+5d\nERwcLL7++usGj925c0fcu3dPCCFEUlKS8PHxMfgcAPjBD37wgx+t+GiOpCv9qqoqTJgwAdOmTcPY\nsWMbPO7s7AxHR0cAwEsvvYSqqiqUlpYafC4hhM1+rFixQvYa+Nr4+vj6bO/DGJKFvhACs2bNQr9+\n/bB06VKDxxQXF+sLS09PhxACXbt2laoEIiJqhmS7d1JTU7Fjxw4MGDAAQUFBAIC4uDhcv34dABAb\nG4s9e/Zg48aNsLe3h6OjI3bt2iXV6YmIyAiShf7vf/976HS6Jo9ZsGABFixYINUprVZ4eLjcJZiM\nLb82gK/P2tn66zOGShjbCDIjlUpldH+KiIhqGJOdHMNARKQgDH0iIgVh6BMRKQhDn4hIQRj6REQK\nwtAnIlIQhj4RkYIw9ImIFIShT0SkIAx9IiIFYegTESkIQ5+ISEEY+kRECsLQJyJSEIY+EZGCMPSJ\niBSEoU9EpCAMfSIiBWHoExEpCEOfiEhBGPpERArC0CciUhCGPhGRgjD0iYgUhKFPRKQgDH0iIgVh\n6BMRKQhDn4hIQRj6REQKwtAnIlIQhj4RkYIw9IlIUSoqKhAWFoaMjAw8++yzCAgIQGBgIL788kv9\nMZMmTUJubq6MVZqOSggh5C7iUSqVChZYFhHZgC1btuDWrVsYO3Ys7Ozs0Lt3bxQVFSE4OBhXrlxB\np06dcOzYMRw4cABr166Vu9wWMSY7udInIkVJSEhAdHQ0fHx80Lt3bwCAm5sbunfvjv/85z8AgPDw\ncCQlJclZpskw9IlIMbRaLS5cuAC1Wl3v++np6aiqqtL/I+Dg4AAPDw9cvnxZjjJNSrLQz8/Px4gR\nI+Dv74+AgIBGfy1avHgxfHx8EBgYiMzMTKlOT0TUrJKSEjg7O9f7XlFREaZPn46tW7fW+767uzvy\n8vLMWJ152Ev1RA4ODlizZg0GDhyI8vJyBAcHIyIiAn5+fvpjkpKSkJOTg6tXr+LMmTOYN28e0tLS\npCqBiKhZdXved+7cQWRkJOLi4jB06NAGx9nZ2V4zRLLQ79GjB3r06AEAcHJygp+fHwoLC+uFfmJi\nImJiYgAAISEhKCsrQ3FxMVxdXaUqg2QkhMDpO3fwQKeTuxQig/p16oTy8nIAQGVlJcaNG4fp06dj\n/PjxDY4tKipCz549zV2iyUkW+nXl5eUhMzMTISEh9b6v0Wjg5eWl/9rT0xMFBQUGQ3/lypX6z8PD\nwxEeHm6KUkki5VotZl65gszycjzVoYPc5RAZtMLbGwEBAcjKysLZs2dx6tQplJaWIj4+HgAQHx+P\nwMBAVFVVoaCgAH379pW34GakpKQgJSWlRT8jeeiXl5dj4sSJ+OSTT+Dk5NTg8Ue3E6lUKoPPUzf0\nybJdu38f4y5cQLCzM34eMgSP2eCvxGQ7pk6din379mH58uWYNm2awWO+/fZbREZGmrmylnt0Qbxq\n1apmf0bSv51VVVWYMGECpk2bhrFjxzZ43MPDA/n5+fqvCwoK4OHhIWUJZGZHSksxLCMDse7u2OLr\ny8AnizdlyhQcOnSoyf3s//znP/Haa6+ZsSrzkeziLCEEYmJi8MQTT2DNmjUGj0lKSsK6deuQlJSE\ntLQ0LF261OAbubw4y/IJIfC3/Hx8UlCAXf36YbiLi9wlESmeMdkpWeh///33GD58OAYMGKBv2cTF\nxeH69esAgNjYWADAwoULkZycjI4dO2Lr1q0YNGhQqwon+dT27/MePMBef394PfaY3CUREcwc+lJi\n6Fuuuv37jWo12zlEFoRjGEhS7N8TWT+TbNkk21K3f/9vf3/274msGEOfmlS3f39m0CD274msHH8/\np0Zdu38fwzIy0LFdO5wMCmLgE9kAhj4ZxP49kW1ie4fqYf+eyLYx9EmP/Xsi28ff2QkA+/dESsHQ\nJ/bviRSE7R0FY/+eSHkY+grF/j2RMvH3eAVi/55IuRj6CsP+PZGysb2jEOzfExHA0FcE9u+JqBZ/\nt7dx7N8TUV0MfRvG/j0RPYrtHRvE/j0RNYahb2PYvyeipvD3fRvC/j0RNYehbyPYvyciY7C9Y+XY\nvyeilmDoWzH274mopdgDsFLs3xNRazD0rRD790TUWmzvWBH274morRj6VoL9eyKSAvsCVoD9eyKS\nCkPfwrF/T0RSYnvHQtX27//B/j0RSYihb4Fq+/e5Dx4gnf17IpIQewUWpm7//hT790QkMYa+Bant\n37/K/j0RmQjbOxaA/XsiMheGvszYvycic5K0fzBz5ky4urqif//+Bh9PSUlB586dERQUhKCgIKxe\nvVrK01sd9u+JyNwkXenPmDEDixYtwvTp0xs9JiwsDImJiVKe1iodKS3F9MuX8Za3Nxa4u0OlUsld\nEhEpgKShHxoairy8vCaPEUJIeUqrw/49EcnJrNtDVCoVTp8+jcDAQIwePRqXLl0y5+ktwsysLOz5\nz3+QPmgQA5+IzM6sb+QOGjQI+fn5cHR0xOHDhzF27FhkZ2cbPHblypX6z8PDwxEeHm6eIk3ofHk5\njpaWIickBI+3ayd3OURk5VJSUpCSktKin1EJifsteXl5iIqKws8//9zssb169cK5c+fQtWvX+kWp\nVDbZBpqbnQ339u3xtre33KUQkQ0yJjvN2t4pLi7WF5Seng4hRIPAt1W/Vldj982bmOPmJncpRKRg\nkrZ3Jk+ejO+++w4lJSXw8vLCqlWrUFVVBQCIjY3Fnj17sHHjRtjb28PR0RG7du2S8vQWbduNGxjV\npQvcOnSQuxQiUjDJ2ztSsLX2jhACfmfPYpNazTdvichkLK69o1Qnyspgr1IhtHNnuUshIoVj6JvB\neo2GF2ARkUVg6JtYQUUFUsrKMM3VVe5SiIgY+qb2WWEhpri6wtmes+2ISH4MfROq1Onwz6IizHd3\nl7sUIiIADH2T+qqkBH6OjujXsaPcpRARAWDom9R6jQbzPTzkLoOISI+hbyLny8uR++ABop94Qu5S\niIj0GPomsqGwEK+6ucGB97klIgvCLSUmUDtn59KQIXKXQkRUD5ehJsA5O0RkqRj6EhNCYENhIRbw\nDVwiskAMfYlxzg4RWTKGvsQ4Z4eILBlDX0Kcs0NElo6hLyHO2SEiS9doOj148AB79+5FXl4eqqur\nAdQM6H/77bfNVpw1qZ2z801goNylEBE1qtHQj46OhouLC4KDg/HYY4+ZsyarxDk7RGQNGg19jUaD\nI0eOmLMWq7Zeo8EST0+5yyAialKjPf1hw4bh/Pnz5qzFanHODhFZi0ZvjO7n54ecnBz06tULHR5e\nWapSqczyD4G13Rh9bnY23Nu3x9ve3nKXQkQKZkx2NtreOXz4sOQF2SLO2SEia9Jo6Htz1WoUztkh\nImvCffptwDk7RGRtGPptwDk7RGRtGPptwDk7RGRtGPqtxDk7RGSNGPqtxDk7RGSNGPqtUDtnZ767\nu9ylEBG1CEO/FThnh4isFUO/FdZrNJjPbZpEZIUY+i3EOTtEZM0Y+i20obAQr7q5wcGO/+mIrFFF\nRQXCwsKg0+nw4osvokuXLoiKiqp3zKRJk5CbmytThabF5GqB2jk7c9zc5C6FiFpp586diIyMhJ2d\nHd544w188cUXDY6ZM2cO1qxZI0N1psfQbwHO2SGyfgkJCYiOjgYAPPfcc3BycmpwTHh4OJKSksxd\nmlkw9I3EOTtE1k+r1eLChQtQq9VNHufg4AAPDw9cvnzZTJWZj6ShP3PmTLi6uqJ///6NHrN48WL4\n+PggMDAQmZmZUp7epDhnh8j6lZSUwNnZ2ahj3d3dkZeXZ9qCZCBp6M+YMQPJycmNPp6UlIScnBxc\nvXoVmzZtwrx586Q8vUlxzg6RbXj0JiON/Z0WQsDOBjdsSPqKQkND0aVLl0YfT0xMRExMDAAgJCQE\nZWVlKC4ulrIEk+CcHSLb8OSTT6K8vLze9xq701RRURF69uxpjrLMyqyDYzQaDby8vPRfe3p6oqCg\nAK4WHqacs9MMIYCUFGDTJmD/fqCqSu6KiAxqt3s3AgICkJWVBV9fX4SGhiIrKwvl5eXw8vLCli1b\nEBERgaqqKhQUFKBv375ylyw5s6eYsb9arVy5Uv95eHg4wsPDTVhV42rn7HwTGCjL+S1aSQkQH18T\n9u3bA7GxwLp1QKdOcldGZFi7dph65w727duH5cuX49SpUwYP+/bbbxEZGWnm4louJSUFKSkpLfsh\nIbHc3FwREBBg8LHY2FiRkJCg/9rX11fcuHGjwXEmKKvVEoqLxYjMTLnLsBw6nRAnTgjxyitCdO4s\nREyMEKmpNd8nsgIVFRUiNDRU6Jr4f/bll18Wubm55itKIsZkp1nfpRgzZgy2b98OAEhLS4OLi4vF\nt3Y4Z+ehkhLgo48AX19g0SJg2DAgN7dmpT9sGMA3uMlKtG/fHidPnmxyU8aXX35ps/cJl7S9M3ny\nZHz33XcoKSmBl5cXVq1ahaqH/d3Y2FiMHj0aSUlJ6NOnDzp27IitW7dKeXrJKX7OTt1e/eHDwNix\nNSH/7LMMeSIrpXr4K4FFUalUjb6jbk5zs7Ph3r493rbRf/EbZahXP20a0MTOLCKSnzHZye0ojaid\ns3NpyBC5SzEPruqJFIGh3wjFzNkxtKrfsIGreiIbxdA3QDycs7OpmfkcVoureiLFYugbYLNzdriq\nJ1I8hr4BNjVn59FVfXQ0V/VECsbQf0TtnJ1t1n75NVf1RGQAQ/8RVj1nh6t6ImqGFSab6VjtnB2u\n6onISAz9Or4qKYGfoyP6dewodynN46qeiFqBoV/Heo0GSzw95S6jaVzVE1EbMPQfsug5O1zVE5FE\nGPoPbSgsxKtubnCwpNujcVVPRBJj6MPC5uxwVU9EJsTQh4XM2eGqnojMQPGhL+ucHa7qicjMFB/6\nsszZ4aqeiGSi+NA365yd6mpg3jzg3//mqp6IZKHo0Df7nJ2lS4H8/Jp7y3JVT0QyUHTom3XOzoYN\nwIkTwA8/ALY2spmIrIZiQ9+sc3aOHwfeeQdITWXgE5GsFBv6Zpuzk50NTJ0K7N4N9O5t2nMRETXD\ngi4/Na/1Gg3me3iY9iS3bwNRUcDq1UB4uGnPRURkBEWGvlnm7FRVAZMmAaNHA3PmmO48REQtoMjQ\nN8ucnddeA+ztgQ8/NN05iIhaSHE9fbPM2am7U8ca78BFRDZLcYlk8jk73KlDRBZMUe2d2jk7C0z1\nBm7tTp1du7hTh4gskqJC36RzdrhTh4isgKJC32RzdrhTh4ishGJCv3bOzjRXV+mfnDt1iMhKKOaN\nXJPN2eFOHSKyIopIKZPN2eFOHSKyMopo75hkzg536hBZpYqKCoSFhUGn02Hbtm1Qq9VQq9XYvn27\nwePj4+PRrVs3BAUFISgoCFu2bAEAFBcXY/To0eYsXRKKWOmv12iwxNNTuifkTh0iq7Vz505ERkai\nrKwM77zzDs6dOwcACA4OxpgxY+Di4lLveJVKhcmTJ2Pt2rX1vu/q6oouXbogIyMDgwYNMlv9bWXz\nK33J5+xwpw6RVUtISEB0dDSOHDmCUaNGwcXFBS4uLoiIiEBycnKD44UQEEIYfK4xY8YgISHB1CVL\nyuZDX/I5O9ypQ2S1tFotLly4ALVaDY1GA886HQBPT09oNJoGP6NSqbB3714MGDAAL7/8MgoKCvSP\nDR06FCdPnjRL7VKRNPSTk5PRt29f+Pj44IMPPmjweEpKCjp37qzvja1evVrK0zdQO2dnjpubNE9Y\nu1Nn1y7u1CGyQiUlJXB2dgYAo6/XiYqKwi+//ILz588jIiICMTEx+sfc3NyQl5dnilJNRrLQ12q1\nWLhwIZKTk3Hp0iUkJCTg8uXLDY4LCwtDZmYmMjMz8Ze//EWq0xsk6Zyd2p06Bw5wpw6RFatt1Xh4\neCA/P1///fz8/Hor/1pdu3aFg4MDAGDWrFn69wBqn0vyiz1NTLLlanp6Ovr06QNvb28AwCuvvIL9\n+/fDz8+v3nGN9cakVjtnZ5Na3fYnU/Ddr66VXsO5onNm+3MjMqUQ9xCUl5cDAEaNGoU333wTZWVl\nEELg2LFjBjsUN27cQI8ePQAAiYmJ6Nevn/6xoqIi9OzZ0zzFS0Sy0NdoNPDy8tJ/7enpiTNnztQ7\nRqVS4fTp0wgMDISHhwc++uijev8B61q5cqX+8/DwcIS3cJeMZHN2FLZTp1pXjR/yf8CB7AM4kH0A\nt+/fxjCvYXBo5yB3aURt5u3ijYCAAGRlZcHX1xdvvfUWhjwcs75ixQr9zp0VK1Zg8ODBiIqKwtq1\na5GYmAh7e3s88cQTiI+P1z9feno6hg8fLsdLAVDTMk9JSWnRz6iEREu4vXv3Ijk5GZs3bwYA7Nix\nA2fOnMGnn36qP+bu3bto164dHB0dcfjwYSxZsgTZ2dkNi1Kp2ryyHH/hAiK6dMG8tkzUrKqq2aUT\nEACsWdOmeizZrw9+xZFrR3Ag+wAOXz0Mz06eiPKNQpQ6CoPdB8NOZfPv95OCxMfHo7i4GMuXL2/z\nc02dOhWvv/46goKCJKis7YzJTsn+NhvTH3N2doajoyMA4KWXXkJVVRVKS0ulKkFPsjk7NrxT51rp\nNfwj7R94fvvz8Fzjifif4jHMcxgyYzPx09yf8O6IdzHUYygDn2zOlClTcOjQoTYvLG/evImysjKL\nCXxjSbbSr66uhq+vL7755hu4u7tj6NChSEhIqNfTLy4uRvfu3aFSqZCeno5JkyYZfOe7rSv9t3Jz\ncbu6Gut8fFr9HNiwAVi3rmamjg28cVu3bXMw+yBK75ciUh2JSHUkRj49Ek7tneQukYjayJjslKyn\nb29vj3Xr1uGFF16AVqvFrFmz4Ofnh88++wwAEBsbiz179mDjxo2wt7eHo6Mjdu3aJdXp9SSZs2Mj\nM3Uaa9vEj41n24ZIoSRb6UupLSv9XTdvYlNhIU4MHNi6k2dnA6GhNTt1rPCN22ul1/RvwqZr0hH6\nVCii1FGIVEfCq7NX809ARFbLrCt9S9GmOTtWuFOntm1z8OpBHMg6oG/bLBq6iG0bImrApkK/TXN2\nrGimDts2RNRaNtXemZudDff27fH2wwvEWmThQuDatZorbi1wxEJt2+Zg9kGka9Lx+6d+z7YNEdWj\nqPZO7ZydSw8vtGgRC7z7VWNtm4VDF7JtQ0StZhkJJ4FWz9mxoJ06bNsQkanZRHtHCAG/s2exSa3G\n8EdugNAkC9ipw7YNEUlFMe2dVs3Zqd2p8957Zg38al010grSarZVsm1DRGZmEyv9Fs/ZkWGmjlan\nxZbMLVj53Up0c+zG2TZEJDlFrPRr5+xs69vX+B8y80ydo9eOYtnRZej6eFfsf2U/BrsPNst5iYge\nZfVLzM8KCzHF1RXOxu66MePdry7evIiXdr6EBUkL8O6Id5ESk8LAJ5JZRUUFwsLCoNPpsG3bNqjV\naqjVamzfvt3g8R9//DH8/f0RGBiIkSNH4vr16/rH2rVrp78T4NixY/XfnzRpEnJzc03+WlpFWCBj\ny6rQakWP1FRxsbzcuCc+dkwIV1chcnLaUF3zbty9IWIPxIpuf+sm/vHDP0RFdYVJz0dExvv888/F\n3/72N3Hr1i3x9NNPi9u3b4vbt2/rP3/Ut99+K+7fvy+EEGLjxo3ij3/8o/4xJycng+c4evSoWLRo\nkWleQBOMyU6rXul/VVICP0dH9OvYsfmDa+9+tWuXye5+db/qPuJOxcF/gz8cHRxxZeEVLHlmCdq3\na2+S8xFRyyUkJCA6OhpHjhzBqFGj4OLiAhcXF0RERCA5ObnB8eHh4XjssccAACEhIfVujN6Y8PBw\nJCUlSV67FKw69NdrNJhvzJu3Jt6poxM67Dy/E33X90VGUQbSZqfh4xc+RtfHu0p+LiJqPa1WiwsX\nLkCtVkOj0dS754enpyc0Gk2TP//5559j9OjR+q8fPHiA4OBgPPvss9i/f7/++w4ODvDw8DB4n3C5\nWe0buUbP2ak7U2f2bMnrOPXLKSw7ugwAsGPcDoT2DJX8HEQkjZKSEjg7OwNAi29ovmPHDmRkZGBN\nnR1/169fh5ubG3Jzc/Hcc8+hf//+ePrppwEA7u7uyMvLa3CfcLlZ7Up/Q2EhXnVzg4NdMy/BRDt1\nckpzMOHLCZj29TQsCVmCtNlpDHwiKyAebmk05m5/tY4fP464uDgkJibCweG/94t2c3MDAPTq1Qvh\n4eHIzMysdx675vJJBla50jd6zo4JZurcvn8b7558F9v/73Yse3YZdozbgccdHpfkuR+l0wFarUme\nmkiRunZ9EuXl5QCAUaNG4c0330RZWRmEEDh27Bg++OCDBj+TmZmJuXPn4siRI3jyySf13y8rK8Pj\njz+ODh06oKSkBKmpqfXuu1tUVISePXua/kW1kFWGvlFzdiSeqVOprcTGsxvx3qn3MN5vPC7OvwhX\npzbeg7cRWVnA5s3Atm1AWZlJTkGkSLt3t0NAQACysrLg6+uLt956C0MeLh5XrFgBl4djXFasWIEh\nQ4YgMjISb7zxBu7du4eJEycCAHr27Il9+/bh0qVLmDt3Luzs7KDT6fDnP/8ZfR9eL1RVVYWCggL9\n15bE6q7IFcbM2ZFwpo4QAvuu7MMbx9+AT1cffBjxIfy7+7fpOQ2pqAC++grYtAm4fBn4n/+peQui\nTx/JT0WkaPHx8SguLq63Kpfa0aNHcejQIXzyyScmO4chRk0zMN2O0dZrqqzjpaXCPz1d6HQ6wweU\nlgqhVguxeXOb6zirOSuGbx0uAjYEiCM5R9r8fIZcuSLEsmVCdOsmxMiRQnz5pRAV3NZPZDIVFRUi\nNDS08QyRwMsvvyxyc3NN9vyNMSbSrW6l3+ScHYlm6uT/mo83T7yJb/7fN1gVvgozg2ainV27Vj/f\nowyt6ufMMdnlA0SkEDY3e6fZOTtt3Klzt+IuPkj9ABt/3Ij5Q+Yja2EWnDs4t6Hi/9LpgDNngH//\nG9ixAwgMBObPB6Kjgfa8douIzMSqQr/JOTtt2KlTOwFzRcoKjHx6JH6K/UmSWfZVVcDJkzWr+q+/\nBp54Ahg3rqZEruqJSA5WE/qVOh3+WVSEbwIDGz7Yhp06dSdgJk5ObPNAtPv3gWPHaoL+4MGacB8/\nHkhJAdTqNj01EVGbWU3oNzpnp3amzu7dLVo+X7x5Ea8fex05pTn4MOJDRPtGt/gKvVp37gBJSTVB\nf/QoEBRUE/Tvvgt48eZXRGRBrCb012s0WPLo1XKtmKlTXF6MFSkr8NXlr/C/of+Lea/Ma9VAtJIS\nIDGxJuhPnqzZITp+PLB+PdCtW4ufjojILKwi9A3O2WnhTJ37VfexJm0NPv7hY0wPnI4rC6+0eCBa\nQQGwb19N0J87B7zwQs0vGTt3yn5PdSIio1hF6Bucs2PkTh2d0CHh5wS8eeJNDHEfgrTZaejT1fgr\nnq5erQn5r74CcnJqfrFYuhSIiAAeN830BSIik7H40Dc4Z8fInTqtmYApBHD+/H+DvqSkZsfNe+8B\nYWFAnVlLRERWx+JDv8GcHSN26uSU5mD58eX4sfBHxD0Xh8n9Jzd58/HaPfS1QS9ETX/+s8+AZ54B\nLHBQHhFRq1h06AshsKGwEJtq9zo2s1OnJRMwDe2hHz8e2Lu35sKpVm7kISKyaBYd+ifKymCvUiG0\nc+cmd+pUaiux4ewGxJ2Ka3ICJvfQE5HSWXTor9dosMDdHarqaoM7dUSdCZh9uvbBiZgTCOgeUO85\nuIeeiOi/LHbgWv6DBxhw9ix+eeYZOC9dCly7Bhw4oH/j9sfCH7Hs6DKU3i/F30f9HaN6j9L/fGN7\n6MeM4R56IrJdVj1wTT9nZ9Omejt1GpuAyT30RETNs9iVfo/UVHzz22/oN20akJqKu57d603AfGPY\nG7hx3bnBHvrx47mHnoiUyZiVvqSbEZOTk9G3b1/4+PgYvNckACxevBg+Pj4IDAysdxPhR/kB6Dd1\nKrT/+hc2l52A7zpfXP/1Ov4V+hPsUt7FsMHOGD4c+OWXmvd2b9wA4uNrWjiWHvgpKSlyl2Aytvza\nAL4+a2frr88YkoW+VqvFwoULkZycjEuXLiEhIQGXL1+ud0xSUhJycnJw9epVbNq0CfPmzWv0+eZ/\n+ikuLp2CgVeWYEPqDjx/MxGpr2/HvKleuHevZg+9RlNzndbIkdZ10ZQt/49ny68N4Ouzdrb++owh\nWU8/PT0dffr0gbe3NwDglVdewf79++Hn56c/JjExETExMQCAkJAQlJWVobi4GK6uDbdX/nYzHb/7\nzQ52Bz6E+91oPD1ehWXcQ09E1CaShb5Go4FXnT2Qnp6eOHPmTLPHFBQUGAz9lV0X4P90XIiX49tz\nDz0RkVSkuiHvnj17xOzZs/Vff/HFF2LhwoX1jomMjBTff/+9/uvnn39enDt3rsFzAeAHP/jBD360\n4qM5kq30PTw8kJ+fr/86Pz8fno/Mv3/0mIKCAngYuMG5sLwNRURENkGyN3IHDx6Mq1evIi8vD5WV\nldi9ezfGjBlT75gxY8Zg+/btAIC0tDS4uLgYbO0QEZFpSLbSt7e3x7p16/DCCy9Aq9Vi1qxZ8PPz\nw2effQZuMJ1BAAAE7ElEQVQAiI2NxejRo5GUlIQ+ffqgY8eO2Lp1q1SnJyIiI1jUxVnJyclYunQp\ntFotZs+ejeXLl8tdkmRmzpyJQ4cOoXv37vj555/lLkdy+fn5mD59Om7evAmVSoVXX30Vixcvlrss\nyTx48ABhYWGoqKhAZWUloqOj8f7778tdlqS0Wi0GDx4MT09PHDhwQO5yJOXt7Y1OnTqhXbt2cHBw\nQHp6utwlSaqsrAyzZ8/GxYsXoVKpsGXLFjzzzDOGD27tG7dSq66uFr179xa5ubmisrJSBAYGikuX\nLsldlmROnjwpMjIyREBAgNylmERRUZHIzMwUQghx9+5doVarberPTwgh7t27J4QQoqqqSoSEhIhT\np07JXJG0/v73v4spU6aIqKgouUuRnLe3t7h165bcZZjM9OnTxeeffy6EqPn/s6ysrNFjLeb2IHX3\n+Ts4OOj3+duK0NBQdOnSRe4yTKZHjx4YOHAgAMDJyQl+fn4oLCyUuSppOTo6AgAqKyuh1WrRtWvL\n7rFsyQoKCpCUlITZs2fb7EYKW31dv/76K06dOoWZM2cCqGm1d25i4JjFhL6hPfwajUbGiqi18vLy\nkJmZiZCQELlLkZROp8PAgQPh6uqKESNGoF+/fnKXJJnXXnsNH374Iexs9DZxKpUKI0eOxODBg7F5\n82a5y5FUbm4uunXrhhkzZmDQoEGYM2cOfvvtt0aPt5g/YRUvs7UJ5eXlmDhxIj755BM4OTnJXY6k\n7Ozs8NNPP6GgoAAnT560mUv6Dx48iO7duyMoKMhmV8OpqanIzMzE4cOHsX79epw6dUrukiRTXV2N\njIwMzJ8/HxkZGejYsSP++te/Nnq8xYS+Mfv8ybJVVVVhwoQJmDZtGsaOHSt3OSbTuXNn/OEPf8CP\nP/4odymSOH36NBITE9GrVy9MnjwZJ06cwPTp0+UuS1Jubm4AgG7dumHcuHE29Uaup6cnPD09MWTI\nEADAxIkTkZGR0ejxFhP6xuzzJ8slhMCsWbPQr18/LF26VO5yJFdSUoKysjIAwP3793Hs2DEEBQXJ\nXJU04uLikJ+fj9zcXOzatQvPPfec/noaW/Dbb7/h7t27AIB79+7h6NGj6N+/v8xVSadHjx7w8vJC\ndnY2AOD48ePw9/dv9HiLuYlKY/v8bcXkyZPx3Xff4datW/Dy8sI777yDGTNmyF2WZFJTU7Fjxw4M\nGDBAH4bvv/8+XnzxRZkrk0ZRURFiYmKg0+mg0+nwpz/9Cc8//7zcZZmErbVai4uLMW7cOAA1rZCp\nU6di1KhRzfyUdfn0008xdepUVFZWonfv3k1eA2VR+/SJiMi0LKa9Q0REpsfQJyJSEIY+EZGCMPSJ\niBSEoU/UCvHx8Vi0aJHcZRC1GEOfqBVsbVsjKQdDn+gReXl56Nu3L2bMmAFfX19MnToVR48exe9+\n9zuo1WqcPXtW7hKJWo2hT2TAtWvX8Prrr+PKlSvIysrC7t27kZqaio8++ghxcXFyl0fUahZzRS6R\nJenVq5f+UnZ/f3+MHDkSABAQEIC8vDwZKyNqG670iQzo0KGD/nM7Ozu0b99e/3l1dbVcZRG1GUOf\niEhBGPpEBjy6O6fu17Wfx8fHw8vLC15eXnjqqads7k5hZJs4cI2ISEG40iciUhCGPhGRgjD0iYgU\nhKFPRKQgDH0iIgVh6BMRKcj/B5PHmv5yTzR2AAAAAElFTkSuQmCC\n" + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEMCAYAAADEXsFmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YVHX+//HncGNpWNmqaDOsKKAwikoh3vxEKdG+dkNq\nRo5ttqHValu51VZmmXQj3axtZdFWW3ZjiWnfxC0jbBU1+xrmvVFCiQWDWlqaN+UIzO+PgxO3KsnM\n4eb1uK65nHPmHOY9V13zmnPO5/05Frfb7UZERFo8P7MLEBGRxkGBICIigAJBREQqKBBERARQIIiI\nSAUFgoiIAF4MhKKiIi666CJ69uxJr169ePbZZwH48ccfGT58ON27d2fEiBHs37/fs09aWhoRERFE\nRkaSnZ3trdJERKQWFm/1IezevZvdu3fTt29fDh06xIUXXsjixYuZO3cu7du35+677+bxxx/np59+\n4rHHHiMvL4/x48ezbt06nE4niYmJ5Ofn4+engxgREV/w2rdtp06d6Nu3LwBBQUFERUXhdDpZsmQJ\n119/PQDXX389ixcvBiAzMxOHw0FgYCChoaGEh4eTm5vrrfJERKQan/z83rlzJxs3bqR///7s2bOH\n4OBgAIKDg9mzZw8AJSUl2Gw2zz42mw2n0+mL8kREBAjw9hscOnSIq666imeeeYa2bdtWec1isWCx\nWOrct7bXTrS9iIjU7WRXCLx6hHDs2DGuuuoqrrvuOkaNGgUYRwW7d+8GYNeuXXTs2BEAq9VKUVGR\nZ9/i4mKsVmutf7e42M1NN7lp395NWpqbw4fduN3N9/Hggw+aXoM+sz6vPnPT/synwmuB4Ha7mThx\nIna7nalTp3rWJyUl8frrrwPw+uuve4IiKSmJjIwMXC4XhYWFFBQUEBcXV+vftlrhxRfhk09g/Xro\n3h1eegmOHfPWpxERaf68Fghr1qxh3rx5rFixgpiYGGJiYsjKyuLee+9l2bJldO/eneXLl3PvvfcC\nYLfbSU5Oxm63M3LkSNLT0096eqhHD1i4EN57DxYsgF69YNEiOMUwFBGRSrw27NRbLBZLrYc/bjcs\nWwb33gv+/vDYYzBsmAkFekFOTg4JCQlml+FTLe0zt7TPC/rMvlbXd2eVbZpLIBxXXg7vvAP33w/d\nuhnBcMEFPixQRKQROpVAaHZdX35+MG4cfPkljB4Nl11mLH/9tdmViYg0bs0uEI4LDITJk6GgAKKj\nYcAAmDIFKgY4iYhINc02EI4LCoLp0+Grr6B1a+jZ0ziddOCA2ZWJiDQuzT4QjmvfHmbPho0bwemE\niAhj+ddfza5MRKRxaDGBcNwf/whz58KKFbB6tdHDMHculJWZXZmIiLma3Sij+vr0U2Oo6r59MGsW\nJCWBZscQkeamRQ47/T3cbli6FKZNg7ZtjaGq8fEN+hYiIqZSINRTWRm8/TbMmGFcfJ41C3r39spb\niYj4VIvsQzgd/v5w3XXGiKThw2HECGO5sNDsykREvE+BUIszzoDbbzd6GMLCIDbWWP7hB7MrExHx\nHgXCCbRtCzNnQl6ecZ0hKgpSU+HgQbMrExFpeAqEUxAcDM8+C7m5xlFDRATMmQNHj5pdmYhIw1Eg\n1EO3bjBvHnz0EXz4oXHEMG+eMaGeiEhTp1FGp2HlSrjnHvjlF0hLg5Ej1cMgIo2Thp36gNsNixfD\nffdBx47w+OPGRHoiIo2Jhp36gMViTLO9dStcfz1cfbWx/OWXZlcmIlI/CoQGEhAAKSmQnw//7//B\n0KHGclGR2ZWJiJwaBUIDa90a7rrLCIZOnaBvX2N53z6zKxMROTGvBkJKSgrBwcFER0d71m3evJmB\nAwfSu3dvkpKSOFhpUH9aWhoRERFERkaSnZ3tzdK87txzjakvtm6FQ4egRw9j+fBhsysTEamdVwPh\nhhtuICsrq8q6SZMm8cQTT7BlyxZGjx7Nk08+CUBeXh4LFiwgLy+PrKwspkyZQnkzGM95/vnwr38Z\ns6pu3mxMt/2vf8GxY2ZXJiJSlVcDIT4+nnbt2lVZV1BQQHzFVKKJiYm8++67AGRmZuJwOAgMDCQ0\nNJTw8HByc3O9WZ5Pde8OCxZAZia8+64xed4776iHQUQajwBfv2HPnj3JzMzkyiuvZOHChRRVXHUt\nKSlhQKXxmjabDafTWevfmDlzpud5QkICCQkJ3iy5QcXGwrJl8PHHxn0YnnjCmG47MdHsykSkOcnJ\nySEnJ6de+/g8EF599VVuu+02Hn74YZKSkmjVqlWd21rq6PKqHAhNVWKiMRXGokUweTKEhhrNbbGx\nZlcmIs1B9R/LqampJ93H56OMevTowUcffcTnn3/OuHHjCAsLA8BqtXqOFgCKi4uxWq2+Ls+n/Pwg\nOdmYPO+qq4y7tSUnGyOURER8zeeB8EPFHNLl5eU88sgjTJ48GYCkpCQyMjJwuVwUFhZSUFBAXFyc\nr8szRWAg/OUvxsR5MTFGH8Nf/gIlJWZXJiItiVcDweFwMGjQILZv305ISAivvvoq8+fPp0ePHkRF\nRWGz2fjzn/8MgN1uJzk5GbvdzsiRI0lPT6/zlFFzddZZxm08v/rKmHo7OtqYEmP/frMrE5GWQHMZ\nNWJFRcb9GP7zH7j7brjlFqPxTUSkvjSXURMXEgKvvAI5ObBmjTF09ZVXoLTU7MpEpDnSEUITsnat\nMVT1++/h0Udh1ChNty0ip0bTXzdDbjdkZRnB0KaN0cMwdKjZVYlIY6dAaMbKy2H+fHjgAYiMNHoY\n+vQxuyoRaax0DaEZ8/ODa681RiSNHAmXXAJ/+hPs2GF2ZSLSVCkQmrhWreDWW40ehogI6NfPWN6z\nx+zKRKSpUSA0E23bwoMPGndq8/MDu91Y/vlnsysTkaZCgdDMdOwIzzwDn38OhYXGUNVnnoGjR82u\nTEQaOwVCM9W1K7zxBmRnG7OrRkbCm29CWZnZlYlIY6VRRi3E6tVwzz3G3dtmzYLLLlMPg0hLomGn\nUoXbDUuWGPMjnXcePP44DBpkdlUi4gsadipVWCxw5ZWwZQukpMC4ccbyF1+YXZmINAYKhBbI3x9u\nuMG478LQoXDRRcbyd9+ZXZmImEmB0IKdeSbccYfRw2C1GvdiuPNO2LvX7MpExAwKBOGcc+CRR2Db\nNvjlF2NE0iOPwOHDZlcmIr6kQBCPzp0hPd2YVXXbNqPzOT0djh0zuzIR8QUFgtQQHg4ZGcaNeTIz\nISrKWC4vN7syEfEmDTuVk1q+3Jhuu7TUmG57+HD1MIg0NepDkAbjdsO778L06WCzGcHQr5/ZVYnI\nqTK9DyElJYXg4GCio6M963Jzc4mLiyMmJoZ+/fqxbt06z2tpaWlEREQQGRlJdna2N0uTerJYYOxY\n49rCNdcYd2u7+mrYvt3sykSkwbi9aNWqVe4NGza4e/Xq5Vk3dOhQd1ZWltvtdruXLl3qTkhIcLvd\nbvcXX3zh7tOnj9vlcrkLCwvdYWFh7rKyshp/08slyyk6fNjtTktzu9u3d7tvvNHtLi42uyIROZFT\n+e706hFCfHw87dq1q7Kuc+fOHDhwAID9+/djtVoByMzMxOFwEBgYSGhoKOHh4eTm5nqzPDkNbdoY\n1xW2b4d27aB3b2P5p5/MrkxEfq8AX7/hY489xuDBg7nrrrsoLy/n//7v/wAoKSlhwIABnu1sNhtO\np7PWvzFz5kzP84SEBBISErxZspzA8TmRbr0VUlON6bb//ndjuXVrs6sTablycnLIycmp1z4+D4SJ\nEyfy7LPPMnr0aBYuXEhKSgrLli2rdVtLHUNZKgeCNA42G7z8stHpPH06zJlj3KDnz3+GAJ//XyYi\n1X8sp6amnnQfn/ch5ObmMnr0aADGjh3rOS1ktVopKirybFdcXOw5nSRNR2SkMRpp0SJ46y3o1ctY\n1sAwkcbP54EQHh7OypUrAVi+fDndu3cHICkpiYyMDFwuF4WFhRQUFBAXF+fr8qSB9O9v9C88/bQx\nDcaAAbBihdlViciJePVg3uFwsHLlSvbu3UtISAgPPfQQL730ErfccgtHjx6ldevWvPTSSwDY7XaS\nk5Ox2+0EBASQnp5e5ykjaRosFvif/4ERI2DBApg0yZgOIy3NmEhPRBoXNaaJz7hcxnWGRx4xptx+\n+GEICzO7KpGWwfTGNJHKWrWCW24xptuOijJOK/31r7B7t9mViQgoEMQEQUHwwAPw5ZcQGAg9exrL\nP/9sdmUiLZsCQUzToQP885+wYQMUFRnXF/75Tzh61OzKRFomBYKYrksXeO01+O9/jZFIPXrA669D\nWZnZlYm0LLqoLI3OJ58Y02AcOACzZsHll2u6bZHTpemvpclyu+H992HaNDj3XGO67cGDza5KpOnS\nKCNpsiwWuOIK2LwZbrwRrr3WWN62zezKRJovBYI0av7+cP31kJ8Pw4YZj+uvh2+/NbsykeZHgSBN\nwhlnwNSpRg9Dly5wwQXwt7/B3r1mVybSfCgQpEk5+2x46CHIy4Njx4zJ9B5+GA4dMrsykaZPgSBN\nUnAwPPccfPaZ0eAWEWEsu1xmVybSdCkQpEkLC4O334alS41RSVFRxnJ5udmViTQ9GnYqzcqKFUYP\ng8tlzKp6ySXqYRAB9SFIC+V2w3vvwX33QefORg9D//5mVyViLvUhSItkscCYMUbPwrXXwlVXGY+v\nvjK7MpHGTYEgzVZAgHFTnoIC4wghPt5ocisuNrsykcZJgSDNXuvWcPfdRnPbH/4AffoYyz/+aHZl\nIo2LAkFajHbtjOsJW7YYE+f16GEsHzlidmUijYMCQVocqxVefNGYVXX9eujeHV56CUpLza5MxFxe\nDYSUlBSCg4OJjo72rBs3bhwxMTHExMTQtWtXYirdbT0tLY2IiAgiIyPJzs72Zmki9OgBCxcaI5IW\nLDDu3LZokTFKSaQl8uqw09WrVxMUFMSECRPYunVrjdfvuusuzj33XO6//37y8vIYP34869atw+l0\nkpiYSH5+Pn5+VTNLw07FG9xuWLbM6GHw9zdOJQ0bZnZVIg3H9GGn8fHxtGvXrtbX3G4377zzDg6H\nA4DMzEwcDgeBgYGEhoYSHh5Obm6uN8sT8bBYYMQI+PxzuPNOuPlmY3nDBrMrE/GdALPeePXq1QQH\nBxMWFgZASUkJAwYM8Lxus9lwOp217jtz5kzP84SEBBISErxZqrQgfn4wbpzRt/Dvfxt3axsyBB55\nBMLDza5O5NTl5OSQk5NTr31MC4T58+czfvz4E25jqWPOgcqBIOINgYEweTJMmABPPw0DBkByMsyY\nAZ06mV2dyMlV/7Gcmpp60n1MGWVUWlrKe++9xzXXXONZZ7VaKSoq8iwXFxdjtVrNKE/E46yzYPp0\no8u5dWvjwvP99xvDVkWaG1MC4eOPPyYqKorzzz/fsy4pKYmMjAxcLheFhYUUFBQQFxdnRnkiNbRv\nD7Nnw8aN4HQa020/9RT8+qvZlYk0HK8GgsPhYNCgQeTn5xMSEsLcuXMBWLBggedi8nF2u53k5GTs\ndjsjR44kPT29zlNGImb54x9h7lxjVtVVq4yhq3PnQlmZ2ZWJnD7NdipyGj791Biqum8fzJoFSUma\nblsaJ01/LeIDbrdxg55p06BtW6OHIT7e7KpEqlIgiPhQWZlxt7YZM4yLz2lpUKlJX8RUpjemibQk\n/v5w3XXGiKThw43HhAmwc6fZlYmcGgWCSAM74wy4/XbjPgzdusGFFxrLP/xgdmUiJ6ZAEPGStm1h\n5kzIyzOuM0RFQWoqHDxodmUitVMgiHhZcDA8+yzk5hpHDRERMGcOuFxmVyZSlQJBxEe6dYN58+Cj\nj+DDDyEyEt56C8rLza5MxKBRRiImWbkS7rkHfvnFOLU0ZIhxi08Rb9CwU5FGzu2GzEz45z9h0ybj\nukN0NPTubTyio40jiVatzK5UmjoFgkgT4nbDt9/C1q3GfZ+3bDGeFxYaU29XDonevY1bgaorWk6V\nAkGkGfj1V/jyy6ohsWWLcVH6eDgc/7dXLwgKMrtiaYxOOxCOHTtGdnY2q1atYufOnVgsFrp06cKQ\nIUO45JJLCAjw/e0UFAgihu+//y0cjv/75ZfG/RqqH02EhRmNc9JynVYgPPzww7z77rsMHDiQuLg4\nzj//fMrLy9m1axe5ubmsXbuWsWPHcv/993ul+DoLViCI1KmsDL7+uubRxJ49YLdXDYnoaOjQweyK\nxVdOKxCWLFnCFVdcUecU1OXl5bz//vskJSWdfqX1oEAQqb+DB2HbtqohsWWLcdOfyiHRu7fRQHfG\nGWZXLA3ttAJh06ZN9O3bt9adXnjhBSZPnnz6Ff4OCgSRhuF2Q3FxzZD45hujZ6L60cQf/6iL2E3Z\naQVCt27deOedd4iNja2y/sEHH2TJkiVs3Lix4SqtBwWCiHcdPWpM0Fc5KLZuhcOHjWCofDTRqxec\nfbbZFcupOK1AWL9+PVdffTXz5s1j0KBBlJeXM2XKFL766iuWLFnC2Sb9X6BAEDHH3r1GMFQ+msjL\nM65DVO+diIgAE8acyAmc9iijLVu2MHr0aJ5//nlefvllAN5++23OMPEEowJBpPEoK4MdO2oeTTid\nRkNd9dFOwcFmV9xynVYg/PjjjwB88cUXjBo1iuHDh/Pcc8/h52dMf3Teeec1cLmnRoEg0vgdOgRf\nfFGzyS4goGbvhN1uXNwW7zqtQAgNDfWMMHK73VVGG1ksFnbs2HHSAlJSUvjggw/o2LEjW7du9ayf\nM2cO6enp+Pv7c9lll/H4448DkJaWxquvvoq/vz/PPvssI0aM+F0fSkQaH7cbSkpqhkR+PnTpUvNo\noksX8NP0mw3G9E7l1atXExQUxIQJEzyBsGLFCmbNmsXSpUsJDAzkhx9+oEOHDuTl5TF+/HjWrVuH\n0+kkMTGR/Px8zxFJfT6UiDQdLhds314zKA4cMC5aVx/tdO65ZlfcNJ3Kd2edl3127NhBt27dTrjz\nN998Q1hYWJ2vx8fHs7Pa/QNfeOEFpk2bRmBgIAAdKjpjMjMzcTgcBAYGEhoaSnh4OLm5uQwYMOCE\nNYhI09aq1W+jl8aP/239jz/+1juxebMxdfi2bdCuXc2jie7doeIrRU5DnYEwbdo0Dh8+TFJSErGx\nsXTu3Bm3282uXbv4/PPPWbJkCW3btiUjI6Neb1hQUMCqVau47777OPPMM/nHP/5BbGwsJSUlVb78\nbTYbTqez1r8xc+ZMz/OEhAQSEhLqVYOINH7nnWdMCT5kyG/rysuNe1QfP5L43/81pg7/7jvo0aNm\nk12nTi23dyInJ4ecnJx67VNnICxYsICvv/6ajIwMpk+fzrfffgtAly5dGDx4MHPmzDnpEURtSktL\n+emnn1i7di3r1q0jOTm5zusRdXVJVw4EEWk5/PyMprlu3WDUqN/WHzliDIE9HhRZWca/bnfNkOjZ\nE9q0Me8z+Er1H8upqakn3eeEI4XDw8MbfK4im83GmDFjAOjXrx9+fn7s3bsXq9VKUVGRZ7vi4mKs\nVmuDvreINE9t2kBsrPE4zu025nA6HhKrVsFzzxlNdyEhNXsnunXTRWyft46MGjWK5cuXM3ToUPLz\n83G5XLRv356kpCTGjx/PHXfcgdPppKCggLi4OF+XJyLNhMVinDLq1AkqD1g8dsy4t/Xxi9evvmo8\n37fPuIhdPShMGmFvCq8GgsPhYOXKlezbt4+QkBAeeughUlJSSElJITo6mlatWvHGG28AYLfbSU5O\nxm63ExAQQHp6ep2njEREfq/AQKP3wW6HceN+W79/f9UJADMyjH/PPrvl3MVON8gREanD8bvYVZ8A\ncOdO4y52d90F119vdpWnxvQ+BG9QIIiI2X75xbgZUVCQMeS1KTitQDh27JinV6AxUSCIiNTfqXx3\n1nlNvX///g1ekIiINF51BoJ+hYuItCx1jjL64YcfeOqpp2oNBovFwh133OHVwkRExLfqDISysjIO\nHjzoy1pERMREdV5UjomJMe02mSeii8oiIvV3WheVRUSkZanzCGHfvn384Q9/8HU9J6UjBBGR+lNj\nmoiIADplJCIi9aBAEBERQIEgIiIVFAgiIgIoEEREpIICQUREAAWCiIhUUCCIiAigQBARkQpeDYSU\nlBSCg4OJjo72rJs5cyY2m42YmBhiYmL48MMPPa+lpaURERFBZGQk2dnZ3ixNRESq8erUFatXryYo\nKIgJEyawdetWAFJTU2nbtm2N+ynk5eUxfvx41q1bh9PpJDExkfz8fPz8qmaWpq4QEak/06euiI+P\np127djXW11ZUZmYmDoeDwMBAQkNDCQ8PJzc315vliYhIJXXeIMeb5syZwxtvvEFsbCyzZ8/m3HPP\npaSkhAEDBni2sdlsOJ3OWvefOXOm53lCQgIJCQlerlhEpGnJyckhJyenXvv4PBAmT57MjBkzAHjg\ngQe48847eeWVV2rd1mKx1Lq+ciCIiEhN1X8sp6amnnQfn48y6tixIxaLBYvFwqRJkzynhaxWK0VF\nRZ7tiouLsVqtvi5PRKTF8nkg7Nq1y/P8vffe84xASkpKIiMjA5fLRWFhIQUFBcTFxfm6PBGRFsur\np4wcDgcrV65k7969hISEkJqaSk5ODps2bcJisdC1a1defPFFAOx2O8nJydjtdgICAkhPT6/zlJGI\niDQ83TFNRKQFMH3YqYiINB0KBBERARQIIiJSQYEgIiKAAkFERCooEEREBFAgiIhIBQWCiIgACgQR\nEamgQBAREUCBICIiFRQIIiICKBBERKSCAkFERAAFgoiIVFAgiIgIoEAQEZEKCgQREQEUCCIiUsGr\ngZCSkkJwcDDR0dE1Xps9ezZ+fn78+OOPnnVpaWlEREQQGRlJdna2N0sTEZFqvBoIN9xwA1lZWTXW\nFxUVsWzZMrp06eJZl5eXx4IFC8jLyyMrK4spU6ZQXl7uzfJERKQSrwZCfHw87dq1q7H+jjvu4Ikn\nnqiyLjMzE4fDQWBgIKGhoYSHh5Obm+vN8kREpJIAX79hZmYmNpuN3r17V1lfUlLCgAEDPMs2mw2n\n01nr37BcZPltIbTiISLia0NX4E5IMLuKWuXk5JCTk1OvfXwaCEeOHGHWrFksW7bMs87tdte5vcVi\nqXW9e0Xd+4iI+Iqlnl+4vpSQkEBCpbBKTU096T4+DYRvvvmGnTt30qdPHwCKi4u58MIL+eyzz7Ba\nrRQVFXm2LS4uxmq1+rI8EZEWzafDTqOjo9mzZw+FhYUUFhZis9nYsGEDwcHBJCUlkZGRgcvlorCw\nkIKCAuLi4nxZnohIi+bVQHA4HAwaNIj8/HxCQkKYO3duldcrnxKy2+0kJydjt9sZOXIk6enpdZ4y\nEhGRhmdxn+gkfiNksVhOeN1BRMRXLDk5jfaicnWn8t2pTmUREQEUCCIiDebo0aMMHTrU80vc39+f\nmJgYYmJiGDVqVJVtMzIymDVrFtu3b2fgwIGceeaZzJ49u8o2+/fvZ+zYsURFRWG321m7dm2N93zx\nxRd58803T1jXli1bTql+n/chiIg0V2+99RaXX3655/pnmzZt2LhxY63bZmVlcfvtt3PeeecxZ84c\nFi9eXGOb22+/nUsvvZRFixZRWlrK4cOHa2xz8803n7Su431f33//PR07dqxzOx0hiIg0kPnz53Pl\nlVeedDu3282mTZuIiYmhQ4cOxMbGEhgYWGWbAwcOsHr1alJSUgAICAjgnHPOqfG3Zs6c6TmySEhI\n4N5776V///706NGDTz75pMq2CxcuPGFdCgQRkQZQVlbGtm3b6N69u2fdr7/+yoUXXsjAgQPJzMz0\nrN+4caOnH6suhYWFdOjQgRtuuIELLriAG2+8kSNHjtTYzmKxeI5ILBYLZWVlfPbZZzz99NM1mtFW\nrVp1wvdUIIiINIC9e/fStm3bKuu+++471q9fz9tvv83UqVPZsWMHYJwuuvTSS0/490pLS9mwYQNT\npkxhw4YNnHXWWTz22GMnrWPMmDEAXHDBBezcubPKa9WXq1MgiIg0kOrDOjt37gxA165dSUhIYNOm\nTQAsW7aMESNGnPBv2Ww2bDYb/fr1A2Ds2LFs2LDhpDWcccYZgHFBu7S0tMprJ+vtUiCIiDSA9u3b\nc+jQIc/y/v37OXr0KGAcPaxZswa73c6BAwcoLS2tMRN09TDp1KkTISEh5OfnA/Dxxx/Ts2fPWt/7\nVHuzKt9yoDYaZSQi0gD8/f3p1asX27dvp0ePHnz55ZfcfPPN+Pn5UV5ezrRp04iMjGTRokUMHz7c\ns9/u3bvp168fP//8M35+fjzzzDPk5eURFBTEnDlzuPbaa3G5XISFhdWY7eG4un75V18/ZMiQE34G\ndSqLiPxO1TuVX3vtNfbs2cM999xT5z433ngjN954o8/narNYLOzZs+eEw04VCCIiv1P1QHC5XCQm\nJrJy5cpGNRfbli1b6NOnz0m/OxUIIiK/k+YyEhGRZkmBICIigAJBREQqKBBERARQIIiISAUFgoiI\nAF4OhJSUFIKDg4mOjvase+CBB+jTpw99+/Zl2LBhFBUVeV5LS0sjIiKCyMhIsrOzvVmaiIhU49U+\nhNWrVxMUFMSECRPYunUrAAcPHvTMCDhnzhw2b97Mv//9b/Ly8hg/fjzr1q3D6XSSmJhIfn4+fn5V\nM0t9CCLSWKgPoR7i4+NrTOBUeXrYQ4cO0b59ewAyMzNxOBwEBgYSGhpKeHg4ubm53ixPREQqMWVy\nu+nTp/Pmm2/SunVrz5d+SUkJAwYM8Gxjs9lwOp1mlCci0iKZEgiPPvoojz76KI899hhTp06t9wx+\nMyutT6h4iIj43IoVZldQp5ycHHJycuq1j6nTX48fP95z1yCr1VrlAnNxcTFWq7XW/WbqGoKINAKN\n+ZsoISGBhErXN6rfTrM2Ph92WlBQ4HmemZlJTEwMAElJSWRkZOByuSgsLKSgoMDn08OKiLRkXj1C\ncDgcrFy5kr179xISEkJqaipLly5l+/bt+Pv7ExYWxgsvvACA3W4nOTkZu91OQEAA6enpjWr6WBGR\n5k7TX4uItACmDzsVEZGmQ4EgIiKAAkFERCooEEREBFAgiIhIBQWCiIgACgQREamgQBAREUCBICIi\nFRQIIiLEBMLwAAAHN0lEQVQCKBBERKSCAkFERAAFgoiIVFAgiIgIoEAQEZEKCgQREQEUCCIiUkGB\nICIigAJBREQqeDUQUlJSCA4OJjo62rPu73//O1FRUfTp04cxY8Zw4MABz2tpaWlEREQQGRlJdna2\nN0trUnJycswuweda2mduaZ8X9JkbI68Gwg033EBWVlaVdSNGjOCLL75g8+bNdO/enbS0NADy8vJY\nsGABeXl5ZGVlMWXKFMrLy71ZXpPR2P8n8oaW9plb2ucFfebGyKuBEB8fT7t27aqsGz58OH5+xtv2\n79+f4uJiADIzM3E4HAQGBhIaGkp4eDi5ubneLE9ERCox9RrCq6++yqWXXgpASUkJNpvN85rNZsPp\ndJpVmohIy+P2ssLCQnevXr1qrH/kkUfcY8aM8Sz/9a9/dc+bN8+zPHHiRPe7775bYz9ADz300EOP\n3/E4mQBM8Nprr7F06VL++9//etZZrVaKioo8y8XFxVit1hr7GpkgIiINzeenjLKysnjyySfJzMzk\nzDPP9KxPSkoiIyMDl8tFYWEhBQUFxMXF+bo8EZEWy6tHCA6Hg5UrV7J3715CQkJITU0lLS0Nl8vF\n8OHDARg4cCDp6enY7XaSk5Ox2+0EBASQnp6OxWLxZnkiIlKJxd1EzsFkZWUxdepUysrKmDRpEvfc\nc4/ZJXldSkoKH3zwAR07dmTr1q1ml+N1RUVFTJgwge+//x6LxcJNN93EbbfdZnZZXvXrr78ydOhQ\njh49isvl4sorr/QMxW7uysrKiI2NxWaz8Z///MfscrwuNDSUs88+G39/fwIDAxvlKMomEQhlZWX0\n6NGDjz/+GKvVSr9+/Zg/fz5RUVFml+ZVq1evJigoiAkTJrSIQNi9eze7d++mb9++HDp0iAsvvJDF\nixc3+//OR44coU2bNpSWljJ48GD+8Y9/MHjwYLPL8rqnnnqK9evXc/DgQZYsWWJ2OV7XtWtX1q9f\nz3nnnWd2KXVqElNX5ObmEh4eTmhoKIGBgYwbN47MzEyzy/K62vo4mrNOnTrRt29fAIKCgoiKiqKk\npMTkqryvTZs2ALhcLsrKyhr1F0ZDKS4uZunSpUyaNKlFDRRp7J+1SQSC0+kkJCTEs6weheZv586d\nbNy4kf79+5tditeVl5fTt29fgoODueiii7Db7WaX5HV/+9vfePLJJz1Nqi2BxWIhMTGR2NhYXn75\nZbPLqVWT+K+hi8sty6FDhxg7dizPPPMMQUFBZpfjdX5+fmzatIni4mJWrVrV6Kc3OF3vv/8+HTt2\nJCYmptH/Ym5Ia9asYePGjXz44Yc8//zzrF692uySamgSgVC9R6GoqKhKV7M0H8eOHeOqq67iT3/6\nE6NGjTK7HJ8655xzuOyyy/j888/NLsWrPv30U5YsWULXrl1xOBwsX76cCRMmmF2W13Xu3BmADh06\nMHr06EZ5UblJBEJsbCwFBQXs3LkTl8vFggULSEpKMrssaWBut5uJEydit9uZOnWq2eX4xN69e9m/\nfz8Av/zyC8uWLSMmJsbkqrxr1qxZFBUVUVhYSEZGBhdffDFvvPGG2WV51ZEjRzh48CAAhw8fJjs7\nu8os0I1FkwiEgIAAnnvuOS655BLsdjvXXHNNsx95AkYfx6BBg8jPzyckJIS5c+eaXZJXrVmzhnnz\n5rFixQpiYmKIiYmpMVtuc7Nr1y4uvvhi+vbtS//+/bniiisYNmyY2WX5VEs4Jbxnzx7i4+M9/50v\nv/xyRowYYXZZNTSJYaciIuJ9TeIIQUREvE+BICIigAJBREQqKBBERARQIIictmuuuYZvvvnmlLff\nsmULEydO9GJFIr+PAkHkNHz99dccPnyYsLCwU96nd+/efPPNN3z//fderEyk/hQIInV48cUXPf0Q\nXbt25eKLL66xTUZGRpUmyaCgIO6++2569erF8OHDWbt2LUOHDiUsLKzKFM8jR45k4cKFPvkcIqdK\ngSBSh5tvvpmNGzeybt06QkJCuPPOO2tss2bNGmJjYz3LR44cYdiwYWzbto22bdsyY8YMli9fznvv\nvceMGTM828XFxbFq1SqffA6RU2XKPZVFmpLbbruNYcOGcdlll9V47dtvv/XMUQPQqlUrLrnkEgCi\no6M588wz8ff3p1evXuzcudOzXefOnassizQGCgSRE3jttdcoKioiPT29zm0qN/sHBgZ6nvv5+dGq\nVSvP89LS0ir7tIQpG6RpUSCI1GH9+vXMnj37hNMUd+nShV27dnH++efX62/v2rWLLl26nG6JIg1K\n1xBE6vD888/z008/cdFFFxETE8NNN91UY5vBgwdXma66+q/+ysuVn+fm5jJkyBAvVC3y+2lyO5HT\nsGPHDm699VY++OCDeu2XkJDAO++8Q8eOHb1UmUj96QhB5DR069aNtm3b1rsxLTw8XGEgjY6OEERE\nBNARgoiIVFAgiIgIoEAQEZEKCgQREQEUCCIiUkGBICIiAPx/mp90HdOD0qoAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.9 Page No. 90" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=136.0 # thermal conductivity of aluminium in BTU/(hr.ft.degree Rankine)from appendix table B1\n", + "L=9/(8*12.0) #length in ft\n", + "W=9/(4*12.0) #width in ft\n", + "delta=0.002604 #ft\n", + "hc=0.8 # the convective heat transfer coefficient estimated as 1 BTU/(hr.ft**2. degree Rankine)\n", + "T_w=1000.0 # the root temperature in degree fahrenheit\n", + "T_inf=90.0 # the ambient temperature in degree fahrenheit\n", + "\n", + "import math\n", + "m=math.sqrt(hc/(k*delta))\n", + "P=2*W\n", + "A=2*delta*W\n", + "qz1=math.sqrt(hc*P*k*A)*(T_w-T_inf)*(sinh(m*L)+(hc/(m*k)*cosh(m*L)))/(cosh(m*L)+(hc/(m*k)*sinh(m*L)))\n", + "qz2=math.sqrt(k*A*hc*P)*(T_w-T_inf)*math.tanh(m*L)\n", + "Lc=L+delta\n", + "qz3=k*A*m*(T_w-T_inf)*math.tanh(m*L*(1+delta/Lc))\n", + "\n", + "print\"(a)The heat transferred is \",round(qz1,2),\"BTU/hr\"\n", + "print\"(b)The heat transferred is \",round(qz2,2),\"BTU/hr In the book the answer is incorrect\"\n", + "print\"(c)The heat transferred is \",round(qz3,2),\" BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The heat transferred is 26.12 BTU/hr\n", + "(b)The heat transferred is 25.43 BTU/hr In the book the answer is incorrect\n", + "(c)The heat transferred is 26.1 BTU/hr\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.10 Page No 94" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=8.32 # thermal conductivity BTU/(hr.ft.degree Rankine)\n", + "hc=400.0 # the convective heat transfer coefficient given in BTU/(hr.ft**2. degree Rankine)\n", + "\n", + "import math\n", + "delta_opt=0.55/(12*2)\n", + "Lc=math.sqrt(delta_opt*k/(0.583*hc))\n", + "\n", + "A=Lc*delta_opt\n", + "parameter=Lc**1.5*math.sqrt(hc/(k*A))\n", + "efficiency=0.6\n", + "W=1/(2.0*12.0) # width in ft\n", + "T_w=190.0 # wall temperature in degree fahrenheit\n", + "T_inf=58.0 # ambient temperature in degree fahrenheit\n", + "L=1.0 # length in ft\n", + "delta=W/2.0 \n", + "q_ac=efficiency*hc*2*W*math.sqrt(L**2+delta**2)*(T_w-T_inf)\n", + "\n", + "print\"(a)The optimum length is \",round(Lc*12,2),\"inch\"\n", + "print\"(b)The actual heat transferred is \",round(q_ac,2),\"BTU/hr. NOTE: In the book answer is incorrect\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The optimum length is 0.34 inch\n", + "(b)The actual heat transferred is 2640.57 BTU/hr. NOTE: In the book answer is incorrect\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.11 Page No 95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "N=9 # number of fins\n", + "delta=0.003/2.0 \n", + "L=0.025\n", + "Lc=L+delta\n", + "R=0.219/2\n", + "R2c=R+delta\n", + "R1=R-L\n", + "T_w=260 # root wall temperature in degree celsius\n", + "T_inf=27 # ambient temperature in degree celsius\n", + "hc=15 \n", + "k=52 # thermal conductivity of cast iron in W/(m.K)from appendix table B2\n", + "\n", + "import math\n", + "Ap=2*delta*Lc\n", + "As=2*math.pi*(R2c**2-R1**2)\n", + "radius_ratio=R2c/R1 # for finding efficiency from figure 2.38\n", + "variable=Lc**1.5*math.sqrt(hc/(k*Ap))\n", + "efficiency=0.93 # efficiency from figure 2.38\n", + "qf=N*efficiency*As*hc*(T_w-T_inf)\n", + "Sp=0.0127 # fin spacing\n", + "Asw=2*math.pi*R1*Sp*N # exposed surface area\n", + "qw=hc*Asw*(T_w-T_inf)\n", + "q=qf+qw\n", + "\n", + "H=N*(Sp+2*delta)\n", + "Aso=2*math.pi*R1*H # surface area without fins\n", + "qo=hc*Aso*(T_w-T_inf)\n", + "\n", + "effectiveness=q/qo # effectiveness defined as ratio of heat transferred with fins to heat transferred without fins\n", + "\n", + "print\"(a)The total heat transferred from the cylinder is \",round(q,0),\"W\"\n", + "print\"(b)The Heat transferred without fins is W\",round(qo,0),\"W\"\n", + "print\"(c)The fin effectiveness is \",round(effectiveness,2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The total heat transferred from the cylinder is 1164.0 W\n", + "(b)The Heat transferred without fins is W 262.0 W\n", + "(c)The fin effectiveness is 4.44\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER4.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER4.ipynb new file mode 100755 index 00000000..3a94d489 --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER4.ipynb @@ -0,0 +1,547 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4: Unsteady State heat Conduction " + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.1 Page No.190" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=12.0 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "c=0.1 # specific heat in BTU/(lbm.degree Rankine) \n", + "D=0.025/12.0 # diameter in ft\n", + "density=525.0 # density in lbm/cu.ft\n", + "hc=80 # convective coefficient in BTU/(hr. sq.ft. degree Rankine)\n", + "T_i=65.0 # intial temperature in degree fahrenheit\n", + "T_inf=140.0 # fluid temperature in degree fahrenheit\n", + "As=3.14*D**2 # surface area in sq.ft\n", + "Vs=3.14*D**(0.5) # volume in cu.ft\n", + "\n", + "import math\n", + "reciprocal_timeconstant=(hc*6)/(density*D*c)\n", + "T=139\n", + "t=math.log((T-T_inf)/(T_i-T_inf))/(-reciprocal_timeconstant)\n", + "\n", + "print\"The response time of the junction is %.1f s\",round(t*3600,2),\"s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The response time of the junction is %.1f s 3.54 s\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.2 Page No. 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k=236.0 # thermal conductivity in W/(m.K)\n", + "Cp=896.0 # specific heat in J/(kg.K)\n", + "sp_gr=2.702 # specific gravity\n", + "density=2702.0 # density in kg/cu.m\n", + "D=0.05 # Diameter in m\n", + "L=0.60 # length in m\n", + "hc=550.0 # unit surface conductance between the metal and the bath in W/(K.sq.m)\n", + "\n", + "import math\n", + "Vs=(math.pi*D**2*L)/4.0 # Volume in cu.m\n", + "As=(2*math.pi*D**2/4.0)+(math.pi*D*L) # surface area in sq.m\n", + "import math\n", + "Bi=(hc*Vs)/(k*As) # Biot Number\n", + "T_i=50.0 # initial temperature in degree celsius\n", + "T_inf=2.0 # temperature of ice water bath in degree celsius\n", + "t=60.0 # time=1 minute=60 s\n", + "As_=0.102 #approx value taken in book for calculating T and Q\n", + "T=T_inf+(T_i-T_inf)*math.exp(-(hc*As_*t)/(density*Vs*Cp))\n", + "Q=density*Vs*Cp*(T_inf-T_i)*(1-math.exp(-(hc*As_*t)/(density*Vs*Cp)))\n", + "\n", + "print\"(a)The temperature of aluminium is\",round(T,1),\"C\"\n", + "print\"(b)The cumulative heat transferred is \",round(-Q/1000,1),\"KJ\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The temperature of aluminium is 16.7 C\n", + "(b)The cumulative heat transferred is 94.8 KJ\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.3 Page No. 200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "hc=30\n", + "L=0.24\n", + "k=1.25 #Conductivity\n", + "c=890\n", + "rou=550\n", + "Fo=0.4 #Fourier no\n", + "\n", + "Bi=hc*L/k\n", + "alpha=k/(rou*c)\n", + "Tc=150\n", + "T_inf=600\n", + "T_i=50\n", + "t=(L**2*Fo)/(alpha)\n", + "TC1=0.82 #Centreline temprature\n", + "T=0.71*(T_i-T_inf)*TC1\n", + "x=0.4*L\n", + "Ti=149\n", + "To=492\n", + "print\"Time required to reach temprature 150 is \",round(t/3600,2),\"hr\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Time required to reach temprature 150 is 2.51 hr\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.4 Page No. 204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "hc=6 #Surface Conductance\n", + "D=0.105 #Orange Diameter\n", + "k=0.431 #Thermal conductivity \n", + "c=2000 #Specific heat of orange\n", + "rou=998 #Density\n", + "Fo=1.05 #Fourier no.\n", + "\n", + "import math\n", + "Vs=math.pi*D**3/6\n", + "As=math.pi*D**2\n", + "Bi=hc*Vs/(k*As)\n", + "Bi_=hc*(D/2)/(k)\n", + "alpha=k/(rou*c)\n", + "Tc=20\n", + "T_inf=23\n", + "T_i=4\n", + "t=(Fo*(D/2.0)**2)/alpha\n", + "a=Bi_**2*Fo\n", + "Q=0.7*rou*c*(math.pi/6.0*(Fo**3))*(T_i-T_inf)\n", + "\n", + "print\"The time required is \",round(t/3600,2),\"hr\"\n", + "print\"The heat transfered is\",round(Q/1000,2),\"kj\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The time required is 3.72 hr\n", + "The heat transfered is -16090.84 kj\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.5 Page No.208" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "D=0.105 #diameter\n", + "k=0.3 #Thermal conductivity \n", + "c=0.41 #Specific heat \n", + "sp_gr=2.1 ##Specific gravity\n", + "rou_water=62.4 #Density\n", + "alpha=k/(sp_gr*rou_water*c)\n", + "t=3*30*24\n", + "\n", + "T_inf=10\n", + "Ts=10\n", + "T=32\n", + "T_i=70\n", + "dimensionless_temp=(T-T_i)/(T_inf-T_i)\n", + "variable_fig4_12=0.38 #The value of x/(2*(alpha*t)**0.5) from figure 4.12\n", + "x=2*math.sqrt(alpha*t)*variable_fig4_12\n", + "\n", + "print\"The depth of the freeze line in soil is ft\",round(x,2),\"ft\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The depth of the freeze line in soil is ft 2.64 ft\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.6 Page No.211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "k_al=236\n", + "p_al=2.7*1000\n", + "c_al=896\n", + "k_oak=0.19\n", + "p_oak=0.705*1000\n", + "c_oak=2390\n", + "\n", + "import math\n", + "math.sqrt_kpc_al=math.sqrt(k_al*p_al*c_al)\n", + "kpc_R=4\n", + "T_Li=20\n", + "T_Ri=37.3\n", + "T_al=(T_Li*(math.sqrt_kpc_al)+T_Ri*math.sqrt(kpc_R))/(math.sqrt_kpc_al+math.sqrt(kpc_R))\n", + "math.sqrt_kpc_oak=math.sqrt(k_oak*p_oak*c_oak)\n", + "T_oak=(T_Li*(math.sqrt_kpc_oak)+T_Ri*math.sqrt(kpc_R))/(math.sqrt_kpc_oak+math.sqrt(kpc_R))\n", + "\n", + "print\"The temperature of aluminium is felt as \",round(T_al,2),\"C\"\n", + "print\"The temperature of oak is felt as %.1f degree celsius\",round(T_oak,1),\"C\"\n", + "print\"So oak will feel warmer to the touch than will the aluminium\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The temperature of aluminium is felt as 20.0 C\n", + "The temperature of oak is felt as %.1f degree celsius 20.1 C\n", + "So oak will feel warmer to the touch than will the aluminium\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.7 Page No.215" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou=62.46\n", + "cp=0.9988\n", + "k=0.345\n", + "alpha=k/(rou*cp)\n", + "D=2.5/12.0\n", + "L=4.75/12.0\n", + "\n", + "Vs=math.pi*D**2*L/4\n", + "As=(math.pi*D*L)+(math.pi*D**2)/2\n", + "Lc=Vs/As\n", + "hc=1.7\n", + "Bi=hc*Lc/k\n", + "t=4\n", + "\n", + "Fo_cylinder=alpha*t/(D/2)**2\n", + "Bi_cylinder=hc*(D/2)/k\n", + "reciprocal_Bi_cylinder=1/Bi_cylinder\n", + "dim_T_cylinder=0.175 #The value of dimensionless temperature of cylinder from figure 4.7a at corresponding values of Fo and 1/Bi\n", + "\n", + "Fo_plate=alpha*t/(L/2)**2\n", + "Bi_plate=hc*L/(2*k)\n", + "reciprocal_Bi_plate=1/Bi_plate\n", + "dim_T_plate=0.55 #The value of dimensionless temperature of infinite plate from figure 4.7a at corresponding values of Fo and 1/Bi\n", + "\n", + "dim_T_shortcylinder=dim_T_cylinder*dim_T_plate\n", + "T_inf=30\n", + "T_i=72\n", + "Tc=dim_T_shortcylinder*(T_i-T_inf)+T_inf\n", + "dim_Tw_cylinder=0.77 #The dimensionless temperature from figure 4.7b corresponding to the value of 1/Bi and r/R=1\n", + "dim_Tw_plate=0.65 #The dimensionless temperature from figure 4.6b corresponding to the value of 1/Bi and x/L=1\n", + "dim_Tw_shortcylinder=dim_Tw_cylinder*dim_Tw_plate\n", + "Tw=dim_Tw_shortcylinder*(Tc-T_inf)+T_inf\n", + "\n", + "print\"The temperature at centre of can is %.1f degree celsius\",round(Tc,0),\"F\"\n", + "print\"The bear temperature near the metal of the can is\",round(Tw,0),\"F\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The temperature at centre of can is %.1f degree celsius 34.0 F\n", + "The bear temperature near the metal of the can is 32.0 F\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.8 Page No. 219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou=7817 #Density\n", + "c=461 #Specific heat \n", + "k=14.4 #Thermal conductivity \n", + "alpha=.387e-5\n", + "L1=0.03\n", + "L2=0.03\n", + "L3=0.04\n", + "x=0.04\n", + "T_i=95 #Internal temprature \n", + "T_inf=17 #Temprature at infinity\n", + "\n", + "L=L1/2\n", + "hc=50\n", + "reciprocal_Bi_plate=k/(hc*L)\n", + "Tinf=0.085 #Temprature distribution for infinite plate\n", + "Tsi=0.225 #Temprature distribution for semi infinite plate\n", + "T=(Tinf**2)*(1-Tsi)*(T_i-T_inf)+T_inf\n", + "t=350\n", + "\n", + "print\"At a time 3000s The temprature is \",round(T,1),\"C\"\n", + "print\"From the table The time requires to reach tempratue 50C is \",t,\"s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "At a time 3000s The temprature is 17.4 C\n", + "From the table The time requires to reach tempratue 50C is 350 s\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.9 Page No.226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou=0.5*1000\n", + "cp=837\n", + "k=0.128\n", + "alpha=0.049e-5\n", + "Ti=20 #Initial temprature\n", + "dt=0.5*(0.05)**2/alpha\n", + "\n", + "p=0\n", + "T0=200\n", + "m=1\n", + "T11=(Ti+T0)/2.0\n", + "m=2\n", + "T21=(Ti+Ti)/2.0\n", + "m=3\n", + "T31=(Ti+Ti)/2.0\n", + "m=4\n", + "T41=(Ti+Ti)/2.0\n", + "m=5\n", + "T51=(Ti+Ti)/2.0\n", + "m=6\n", + "T61=(Ti+Ti)/2.0\n", + "\n", + "p=1\n", + "m=1\n", + "T12=(Ti+T0)/2.0\n", + "m=2\n", + "T22=(Ti+T12)/2.0\n", + "m=3\n", + "T32=(Ti+T21)/2.0\n", + "m=4\n", + "T42=(Ti+T31)/2.0\n", + "m=5\n", + "T52=(Ti+T41)/2.0\n", + "m=6\n", + "T62=(Ti+T51)/2.0\n", + "t=4.97\n", + "print\"The time that will pass before the heat added\",t,\"hr\"\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "x1=[0,30]\n", + "T1=[20,20]\n", + "\n", + "xlabel(\"x (cm)\") \n", + "ylabel(\"T (C)\") \n", + "plt.xlim((0,35))\n", + "plt.ylim((0,250))\n", + "\n", + "a1=plot(x1,T1)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The time that will pass before the heat added 4.97 hr\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEMCAYAAAAvaXplAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFh1JREFUeJzt3X9M1Pcdx/HXVyF0C2yytZzkzvSsQOQEuUsRXVIdTtA0\n206JjoqrIxOXxmV/GN1m66bDZVFc0iXKZtJstmPpIjXZRP4QwrLs1LpkRzvcL5ZqO6x4AimiiVAF\nCt/90Xgpfjj1lOPuyvORmBzfu+/x9nt6T+573+9h2bZtCwCAT5gV7wEAAImHOAAADMQBAGAgDgAA\nA3EAABiIAwDAELM4dHd3a+XKlVq0aJEKCgp0+PBhSVJtba1cLpd8Pp98Pp9aWlrC6xw4cEC5ubla\nuHCh2traYjUaAOA+rFid59Db26ve3l55vV4NDg7q6aefVlNTk44fP66MjAzt2LFjwu07Ozu1adMm\ntbe3KxQKqaysTBcuXNCsWby4AYDpFrNn3rlz58rr9UqS0tPTlZ+fr1AoJEmarEcnT55UVVWVUlNT\n5Xa7lZOTo2AwGKvxAAD3MC0/ll+6dEkdHR1atmyZJKm+vl5FRUWqqanRjRs3JElXr16Vy+UKr+Ny\nucIxAQBMr5RYf4PBwUFt2LBBhw4dUnp6urZt26a9e/dKkvbs2aOdO3fq6NGjk65rWdYDLQMA3F80\n7yLE9JXD6Oio1q9fr+eff17r1q2TJGVlZcmyLFmWpa1bt4Z3HTmdTnV3d4fXvXLlipxO56T3a9t2\n0v75yU9+EvcZZuLszB//P8wf3z/RilkcbNtWTU2NPB6Ptm/fHl7e09MTvnzixAkVFhZKkvx+vxob\nGzUyMqKuri5dvHhRJSUlsRoPAHAPMdutdO7cOb3++utavHixfD6fJGn//v06duyYzp8/L8uyNH/+\nfL3yyiuSJI/Ho8rKSnk8HqWkpOjIkSPsQgKAOIlZHJ555hmNj48by5999tmI6+zevVu7d++O1UgJ\nobS0NN4jPLRknl1i/nhj/uQSs/McYsWyrIfafwYAM1m0z52cYQYAMBAHAICBOAAADMQBAGAgDgAA\nA3EAABiIAwDAQBwAAAbiAAAwEAcAgIE4AAAMxAEAYCAOAAADcQAAGIgDAMBAHAAABuIAADAQBwCA\ngTgAAAzEAQBgIA4AAANxAAAYiAMAwEAcAAAG4gAAMBAHAICBOAAADMQBAGAgDgAAA3EAABiIAwDA\nQBwAAAbiAAAwEAcAgIE4AAAMMYtDd3e3Vq5cqUWLFqmgoECHDx+WJA0MDKi8vFx5eXlavXq1bty4\nEV7nwIEDys3N1cKFC9XW1har0QAA92HZtm3H4o57e3vV29srr9erwcFBPf3002pqatJrr72mxx9/\nXD/84Q918OBBXb9+XXV1ders7NSmTZvU3t6uUCiksrIyXbhwQbNmTeyXZVmK0cgA8KkV7XNnzF45\nzJ07V16vV5KUnp6u/Px8hUIhNTc3q7q6WpJUXV2tpqYmSdLJkydVVVWl1NRUud1u5eTkKBgMxmo8\nAMA9pEzHN7l06ZI6Ojq0dOlS9fX1yeFwSJIcDof6+vokSVevXtWyZcvC67hcLoVCoUnvr7a2Nny5\ntLRUpaWlMZsdAJJRIBBQIBB46PVjHofBwUGtX79ehw4dUkZGxoTrLMuSZVkR14103SfjAAAw3f2D\n8759+6JaP6ZHK42Ojmr9+vXavHmz1q1bJ+njVwu9vb2SpJ6eHmVlZUmSnE6nuru7w+teuXJFTqcz\nluMBACKIWRxs21ZNTY08Ho+2b98eXu73+9XQ0CBJamhoCEfD7/ersbFRIyMj6urq0sWLF1VSUhKr\n8QAA9xCzo5XefPNNrVixQosXLw7vHjpw4IBKSkpUWVmpy5cvy+126/jx45ozZ44kaf/+/Xr11VeV\nkpKiQ4cOac2aNebAHK0EAFGL9rkzZnGIFeIAANFLmENZAQDJizgAAAzEAQBgIA4AAANxAAAYiAMA\nwEAcAAAG4gAAMBAHAICBOAAADMQBAGAgDgAAA3EAABiIAwDAQBwAAAbiAAAwEAcAgIE4AAAMxAEA\nYCAOAAADcQAAGIgDAMBAHAAABuIAADAQBwCAgTgAAAzEAQBgIA4AAANxAAAYiAMAwEAcAAAG4gAA\nMBAHAICBOAAADMQBAGCIaRy2bNkih8OhwsLC8LLa2lq5XC75fD75fD61tLSErztw4IByc3O1cOFC\ntbW1xXI0AMA9WLZt27G687Nnzyo9PV3f+ta39K9//UuStG/fPmVkZGjHjh0TbtvZ2alNmzapvb1d\noVBIZWVlunDhgmbNmtgvy7IUw5EB4FMp2ufOmL5yWL58uTIzM43lkw148uRJVVVVKTU1VW63Wzk5\nOQoGg7EcDwAQQVzec6ivr1dRUZFqamp048YNSdLVq1flcrnCt3G5XAqFQvEYDwBmvJTp/obbtm3T\n3r17JUl79uzRzp07dfTo0Ulva1nWpMtra2vDl0tLS1VaWjrVYwJAUgsEAgoEAg+9/rTHISsrK3x5\n69at+vrXvy5Jcjqd6u7uDl935coVOZ3OSe/jk3EAAJju/sF53759Ua0/7buVenp6wpdPnDgRPpLJ\n7/ersbFRIyMj6urq0sWLF1VSUjLd4wEAFONXDlVVVTp9+rT6+/s1b9487du3T4FAQOfPn5dlWZo/\nf75eeeUVSZLH41FlZaU8Ho9SUlJ05MiRiLuVAACxFdNDWWOBQ1kBIHoJdSgrACA5EQcAgIE4AAAM\nxAEAYCAOAADDA8fh9u3bGh4ejuUsAIAEETEO4+Pj+uMf/6hvfOMbcjqdmj9/vp588kk5nU5t2LBB\nJ06c4JBSAPiUiniew4oVK7R8+XL5/X55vV6lpaVJkoaHh9XR0aHm5ma9+eabOnPmzPQOzHkOABC1\naJ87I8ZheHg4HIRIHuQ2U404AED0puwkuH/84x86deqUsfzUqVN6++23JWnawwAAmB4R47Br1y55\nPB5jucfj0fe///2YDgUAiK+Icbh586bcbrex3O12q7+/P5YzAQDiLGIc7vyGtsncunUrJsMAABJD\nxDisWrVKP/rRjya8gTE+Pq49e/boK1/5yrQMBwCIj4hHKw0ODmrr1q0KBoPyer2SPn6Turi4WL/5\nzW+UkZExrYPewdFKABC9KTuU9Y733ntP//nPf2RZljwejxYsWPDIQz4K4gAA0ZuyOLz33nv3DcGD\n3GaqEQcAiN6UxeG5557T0NCQ/H6/iouLlZ2dLdu21dPTo7feekvNzc3KyMhQY2PjlA3/QAMTBwCI\n2pTuVnr33XfV2Nioc+fO6f3335ckPfnkk3rmmWdUVVWlp5566tEnjhJxAIDoTfl7DomGOABA9Pgd\n0gCAR0YcAAAG4gAAMBAHAIAhYhxGR0encw4AQAKJGIelS5dO5xwAgAQSMQ4cLgoAM1dKpCs++OAD\n/eIXv5g0EpZlaceOHTEdDAAQPxHjMDY2pps3b07nLACABBHxDGmfz6eOjo7pnue+OEMaAKLHGdIA\ngEcW8ZXDtWvX9MUvfnG657kvXjkAQPT44D0AgIHdSgCAR0YcAAAG4gAAMMQ0Dlu2bJHD4VBhYWF4\n2cDAgMrLy5WXl6fVq1frxo0b4esOHDig3NxcLVy4UG1tbbEcDQBwDzGNw7e//W21trZOWFZXV6fy\n8nJduHBBq1atUl1dnSSps7NTb7zxhjo7O9Xa2qrvfve7Gh8fj+V4AIAIYhqH5cuXKzMzc8Ky5uZm\nVVdXS5Kqq6vV1NQkSTp58qSqqqqUmpoqt9utnJwcBYPBWI4HAIhg2t9z6Ovrk8PhkCQ5HA719fVJ\nkq5evSqXyxW+ncvlUigUmu7xAAC6x2crTQfLsmRZ1j2vn0xtbW34cmlpqUpLS6d4MgBIboFAQIFA\n4KHXn/Y4OBwO9fb2au7cuerp6VFWVpYkyel0qru7O3y7K1euyOl0Tnofn4wDAMB09w/O+/bti2r9\nad+t5Pf71dDQIElqaGjQunXrwssbGxs1MjKirq4uXbx4USUlJdM9HgBAMX7lUFVVpdOnT6u/v1/z\n5s3TT3/6U7344ouqrKzU0aNH5Xa7dfz4cUmSx+NRZWWlPB6PUlJSdOTIkXvucgIAxA6frQQAMwCf\nrQQAeGTEAQBgIA4AAANxAAAYiAMAwEAcAAAG4gAAMBAHAICBOAAADMQBAGAgDgAAA3EAABiIAwDA\nQBwAAAbiAAAwEAcAgIE4AAAMxAEAYCAOAAADcQAAGIgDAMBAHAAABuIAADAQBwCAgTgAAAzEAQBg\nIA4AAANxAAAYiAMAwEAcAAAG4gAAMBAHAICBOAAADMQBAGAgDgAAA3EAABhS4vWN3W63Pve5z2n2\n7NlKTU1VMBjUwMCAnnvuOb3//vtyu906fvy45syZE68RAWDGitsrB8uyFAgE1NHRoWAwKEmqq6tT\neXm5Lly4oFWrVqmuri5e4wHAjBbX3Uq2bU/4urm5WdXV1ZKk6upqNTU1xWMsAJjx4rZbybIslZWV\nafbs2XrhhRf0ne98R319fXI4HJIkh8Ohvr6+Sdetra0NXy4tLVVpaek0TAwAySMQCCgQCDz0+pZ9\n94/v06Snp0fZ2dn64IMPVF5ervr6evn9fl2/fj18my984QsaGBiYsJ5lWcYrDgDAvUX73Bm33UrZ\n2dmSpCeeeEIVFRUKBoNyOBzq7e2V9HE8srKy4jUeAMxocYnDhx9+qJs3b0qShoaG1NbWpsLCQvn9\nfjU0NEiSGhoatG7duniMBwAzXlx2K3V1damiokKS9NFHH+mb3/ymXnrpJQ0MDKiyslKXL1+OeCgr\nu5UAIHrRPnfG7T2Hh0UcACB6SfOeAwAgcREHAICBOAAADMQBAGAgDgAAA3EAABiIAwDAQBwAAAbi\nAAAwEAcAgIE4AAAMxAEAYCAOAAADcQAAGIgDAMBAHAAABuIAADAQBwCAgTgAAAzEAQBgIA4AAENK\nvAd4GJYV7wkAzES2He8Jpk9SxmEmPUAAEA/sVgIAGIgDAMBAHAAABuIAADAQBwCAgTgAAAzEAQBg\nIA4AAANxAAAYiAMAwEAcAAAG4gAAMCRcHFpbW7Vw4ULl5ubq4MGD8R5nygUCgXiP8NCSeXaJ+eON\n+ZNLQsVhbGxM3/ve99Ta2qrOzk4dO3ZM//3vf+M91pRK5n9gyTy7xPzxxvzJJaHiEAwGlZOTI7fb\nrdTUVG3cuFEnT56M91gAMOMkVBxCoZDmzZsX/trlcikUCsVxIgCYmSzbTpxfnfOHP/xBra2t+vWv\nfy1Jev311/W3v/1N9fX14dtY/Bo4AHgo0TzdJ9RvgnM6neru7g5/3d3dLZfLNeE2CdQyAPjUSqjd\nSsXFxbp48aIuXbqkkZERvfHGG/L7/fEeCwBmnIR65ZCSkqJf/vKXWrNmjcbGxlRTU6P8/Px4jwUA\nM05CvXKQpGeffVbvvPOO3n33Xb300kvh5cl+/oPb7dbixYvl8/lUUlIS73Hua8uWLXI4HCosLAwv\nGxgYUHl5ufLy8rR69WrduHEjjhPe22Tz19bWyuVyyefzyefzqbW1NY4T3lt3d7dWrlypRYsWqaCg\nQIcPH5aUHI9BpNmTZfvfvn1bS5culdfrlcfjCT8PJcO2lyLPH/X2t5PARx99ZC9YsMDu6uqyR0ZG\n7KKiIruzszPeY0XF7Xbb165di/cYD+zMmTP23//+d7ugoCC87Ac/+IF98OBB27Ztu66uzt61a1e8\nxruvyeavra21X3755ThO9eB6enrsjo4O27Zt++bNm3ZeXp7d2dmZFI9BpNmTafsPDQ3Ztm3bo6Oj\n9tKlS+2zZ88mxba/Y7L5o93+CffKYTKflvMf7CR6M3358uXKzMycsKy5uVnV1dWSpOrqajU1NcVj\ntAcy2fxS8jwGc+fOldfrlSSlp6crPz9foVAoKR6DSLNLybP9P/vZz0qSRkZGNDY2pszMzKTY9ndM\nNr8U3fZPijh8Gs5/sCxLZWVlKi4uDh+qm2z6+vrkcDgkSQ6HQ319fXGeKHr19fUqKipSTU1Nwu4W\nuNulS5fU0dGhpUuXJt1jcGf2ZcuWSUqe7T8+Pi6v1yuHwxHeRZZM236y+aXotn9SxOHTcG7DuXPn\n1NHRoZaWFv3qV7/S2bNn4z3SI7EsK+kel23btqmrq0vnz59Xdna2du7cGe+R7mtwcFDr16/XoUOH\nlJGRMeG6RH8MBgcHtWHDBh06dEjp6elJtf1nzZql8+fP68qVKzpz5oz+8pe/TLg+0bf93fMHAoGo\nt39SxOFBzn9IdNnZ2ZKkJ554QhUVFQoGg3GeKHoOh0O9vb2SpJ6eHmVlZcV5ouhkZWWF/1Nv3bo1\n4R+D0dFRrV+/Xps3b9a6deskJc9jcGf2559/Pjx7sm1/Sfr85z+vr371q3r77beTZtt/0p3533rr\nrai3f1LEIdnPf/jwww918+ZNSdLQ0JDa2tomHEWTLPx+vxoaGiRJDQ0N4f/0yaKnpyd8+cSJEwn9\nGNi2rZqaGnk8Hm3fvj28PBkeg0izJ8v27+/vD+9yuXXrlv70pz/J5/MlxbaXIs9/J2zSA27/qX+f\nPDZOnTpl5+Xl2QsWLLD3798f73Gi8r///c8uKiqyi4qK7EWLFiXF/Bs3brSzs7Pt1NRU2+Vy2a++\n+qp97do1e9WqVXZubq5dXl5uX79+Pd5jRnT3/EePHrU3b95sFxYW2osXL7bXrl1r9/b2xnvMiM6e\nPWtblmUXFRXZXq/X9nq9dktLS1I8BpPNfurUqaTZ/v/85z9tn89nFxUV2YWFhfbPf/5z27btpNj2\nth15/mi3f0J9thIAIDEkxW4lAMD0Ig4AAANxAAAYiAMAwEAcgIcwPDysL3/5y4/8cRDDw8NasWKF\nxsfHp2gyYGoQB+Ah/P73v9fXvva1Rz5LNi0tTcuXL0/oz+nBzEQcgE9ob29XUVGRhoeHNTQ0pIKC\nAnV2dhq3O3bsmNauXRv++uDBg1q8eLG8Xq92794tSSotLdWOHTu0ZMkS5efnq729XRUVFcrLy9Oe\nPXvC6/r9fh07diz2fzkgCgn1y36AeFuyZIn8fr9+/OMf69atW9q8ebM8Hs+E24yNjenf//638vLy\nJEktLS1qbm5WMBjUY489Fj471bIspaWlqb29XYcPH9batWvV0dGhzMxMLViwQDt27FBmZqa8Xq/+\n+te/TvvfFbgX4gDcZe/evSouLtZnPvMZ1dfXG9f39/dP+BC8P//5z9qyZYsee+wxSdKcOXPC1935\nmJeCggIVFBSEP9Xzqaee0uXLl5WZmam0tDSNj4/r9u3b4fsA4o3dSsBd+vv7NTQ0pMHBQd26dWvS\n29z9RnSkN6bT0tIkffwpmXcu3/l6bGxswvqJ/CmfmHmIA3CXF154QT/72c+0adMm7dq1y7j+8ccf\n1+DgYPjr8vJyvfbaa+GQXL9+ParvNzw8rNmzZ0+IBxBvxAH4hN/97ndKS0vTxo0b9eKLL6q9vV2B\nQGDCbWbPnq2CggK98847kqQ1a9bI7/eruLhYPp9PL7/8snG/9/r8/46ODn3pS1+a8r8L8Cj44D3g\nIfz2t79VX1/fpK8sorV7924tWbJEFRUVUzAZMDWIA/AQRkZGVFZWptOnTz/SewXDw8MqLy9/5PsB\nphpxAAAYeM8BAGAgDgAAA3EAABiIAwDAQBwAAAbiAAAw/B+sQEsUoRrXsQAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.10 Page No. 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou=7.817*62.4 #density\n", + "c=0.110\n", + "k=8.32\n", + "alpha=0.417e-4\n", + "dx=1/12.0\n", + "Fo=1\n", + "\n", + "dt=Fo*dx**2/alpha\n", + "n=8 #Enter the number of time intervals from Saulev plot\n", + "time=n*dt\n", + "\n", + "print\"The required time is hr\",round(time/3600,2),\"hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required time is hr 0.37 hr\n" + ] + } + ], + "prompt_number": 42 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER5.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER5.ipynb new file mode 100755 index 00000000..eed3e1b0 --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER5.ipynb @@ -0,0 +1,115 @@ +{ + "metadata": { + "name": "CHAPTER5" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter5 : Introduction to Convection" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.1 Page NO. 248" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "Cp=871\n", + "Gamma=1.3\n", + "\n", + "Cv=Cp/Gamma\n", + "dT=20\n", + "m=5\n", + "Qp=m*Cp*dT\n", + "Qv=m*Cv*dT\n", + "\n", + "print\" The heat required at constant pressure is \",Qp/1000,\"kj\"\n", + "print\"The heat required at constant volume is \",Qv/1000,\"kj\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The heat required at constant pressure is 87 kj\n", + "The heat required at constant volume is 67.0 kj\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.2 Page NO.250" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "T1_Fr=-50\n", + "T2_Fr=-40\n", + "rou1_Fr=1.546*1000\n", + "rou2_Fr=1.518*1000\n", + "\n", + "beta_Fr=-(rou1_Fr-rou2_Fr)/(rou1_Fr*(T1_Fr-T2_Fr))\n", + "beta_acc_Fr=2.63e-3 # the accurate value of volumetric thermal expansion coefficient for Freon-12\n", + "error_Fr=(beta_acc_Fr-beta_Fr)*100/beta_acc_Fr\n", + "T1_He=366\n", + "T2_He=477\n", + "rou1_He=0.13280\n", + "rou2_He=0.10204\n", + "beta_He=-(rou1_He-rou2_He)/(rou1_He*(T1_He-T2_He))\n", + "\n", + "print\"The volumetric thermal expansion coefficient calculated for Freon-12 is \",round(beta_Fr,6),\"1/K\"\n", + "print\"The error introduced in the case of Freon-12 is percent\",round(error_Fr,0),\"percent\"\n", + "print\"The volumetric thermal expansion coefficient calculated for Freon-12 is \",round(beta_He,6),\"1/K\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The volumetric thermal expansion coefficient calculated for Freon-12 is 0.001811 1/K\n", + "The error introduced in the case of Freon-12 is percent 31.0 percent\n", + "The volumetric thermal expansion coefficient calculated for Freon-12 is 0.002087 1/K\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER6.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER6.ipynb new file mode 100755 index 00000000..a9d21547 --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER6.ipynb @@ -0,0 +1,486 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6: Convection Heat Transfer in a Closed Circuit" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.1 page No.301" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "Cp_20=2382\n", + "rou_20=1.116*1000\n", + "v_20=19.18e-6\n", + "kf_20=0.249\n", + "a_20=0.939e-7\n", + "Pr_20=204.0\n", + "OD=1.588/100.0\n", + "ID=1.446/100.0\n", + "A=1.642e-4\n", + "Q=3.25e-6\n", + "\n", + "V=Q/A\n", + "Re=V*ID/v_20\n", + "Z_h=0.05*ID*Re\n", + "Tbi=20 # bulk-fluid inlet temperature in degree celsius\n", + "qw=2200 # incident heat flux in W/m**2\n", + "L=3 # Length of copper tube in m\n", + "R=ID/2 # inner radius in m\n", + "Tbo=Tbi+(2*qw*a_20*L)/(V*kf_20*R)\n", + "Z_t=0.05*ID*Re*Pr_20\n", + "Two=Tbo+(11*qw*ID)/(48*kf_20) # The wall temperature at outlet in degree celsius\n", + "\n", + "print\"The bulk-fluid outlet temperature is degree celsius\",round(Tbo,0),\"C\"\n", + "print\"The wall temperature at outlet is degree celsius\",round(Two,0),\"C\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The bulk-fluid outlet temperature is degree celsius 55.0 C\n", + "The wall temperature at outlet is degree celsius 84.0 C\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.2 page No.308" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "T_avg=(140+70)/2.0\n", + "rou=0.994*62.4\n", + "kf=0.363\n", + "cp=0.9980\n", + "a=5.86e-3\n", + "v=0.708e-5\n", + "Pr=4.34\n", + "OD=1.125/12.0 # outer diameter in ft\n", + "ID=0.8792 # inner diameter in ft\n", + "A=0.006071 # cross sectional area in sq.ft\n", + "m_flow=1.5 # mass flow rate in lbm/s\n", + "V=m_flow*3600.0/(rou*A); # velocity in ft/hr\n", + "import math\n", + "L=20.0\n", + "Tw=240.0\n", + "Tbo=140.0\n", + "Tbi=70.0\n", + "hL=-(rou*V*ID*cp*math.log((Tw-Tbo)/(Tw-Tbi)))/(4*L)\n", + "\n", + "print\"The average convective coefficient is \",round(hL/10,1),\"BTU/(hr. sq.ft.degree Rankine\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The velocity is 14340.4425132 ft/hr\n", + "The average convective coefficient is 517.7 BTU/(hr. sq.ft.degree Rankine\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.3 page No. 310" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "kf=0.6 # thermal conductivity in W/(m-K)\n", + "cp=3.85*1000 # specific heat in J/(kg*K)\n", + "rou=1030 # density in kg/m**3\n", + "mu=2.12e3 # viscosity in N s/m**2\n", + "OD=1.588/100 # outer diameter in m\n", + "ID=1.340/100 # inner diameter in m\n", + "A=1.410e-4 # cross sectional area in m**2\n", + "rou=1030\n", + "V=0.1\n", + "mu=2.12e-3\n", + "\n", + "Re=rou*V*ID/(mu)\n", + "ze=0.05*ID*Re\n", + "Tbo=71.7 # final temperature in degree celsius\n", + "Tbi=20 # initial temperature in degree celsius\n", + "L=6 # heating length in m\n", + "qw=rou*V*ID*cp*(Tbo-Tbi)/(4*L)\n", + "q=qw*math.pi*ID*L\n", + "Pr=(cp*mu)/kf # Prandtl Number\n", + "zf=0.05*ID*Re*Pr\n", + "\n", + "print\"The heat flux is \",round(qw,0),\"W/sq.m\"\n", + "print\"The power required is \",round(q,0),\"W\"\n", + "print\"The length required for flow to be thermally developed is\",round(zf,1),\"m\"\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "z1=[0,0.2,1,6]\n", + "Twz=[20,40,60,125]\n", + "z2=[-1,0,6]\n", + "Twb=[20,20,72]\n", + "z3=[0.2,1,2,6]\n", + "hz=[112,72,58,40]\n", + "plt.grid()\n", + "xlabel(\"z (m)\") \n", + "ylabel(\"T (C) \") \n", + "plt.xlim((-1,6))\n", + "plt.ylim((0,140))\n", + "\n", + "ax.annotate('(Twz)', xy=(6,125))\n", + "ax.annotate('(Tbz)', xy=(6,72))\n", + "ax.annotate('(hz)', xy=(6,40))\n", + "a1=plot(z1,Twz)\n", + "a2=plot(z2,Twb)\n", + "a3=plot(z3,hz)\n", + "show(a1)\n", + "show(a2)\n", + "show(a3)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat flux is 11447.0 W/sq.m\n", + "The power required is 2891.0 W\n", + "The length required for flow to be thermally developed is 5.9 m\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEPCAYAAACQmrmQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX6//HXwSUzTVwKF0hMIMINTMVMFFRUjkvuDjaj\nptl8NSvHEg3n1zLTJGbOpKXVlKIt41JOuUSEG2I0CqaU5YIYkApSiihiKMv9++OOk6jAYTnnvu9z\nrufj4cPOwjlvzzBc3Nfnc1+3SVEUBSGEEMIGXLQOIIQQwnFJkRFCCGEzUmSEEELYjBQZIYQQNiNF\nRgghhM1IkRFCCGEzNisy06ZNw83NjS5dutz02NKlS3FxcSE3N9dy36JFi/D29sbX15e4uDhbxRJC\nCGFHNisyjz76KLGxsTfdf+rUKbZv30779u0t9x05coQNGzZw5MgRYmNjmTVrFqWlpbaKJoQQwk5s\nVmSCgoJo3rz5TffPnTuXV199tdx9mzdvJjw8nAYNGuDp6YmXlxdJSUm2iiaEEMJO7Loms3nzZtzd\n3enatWu5+7OysnB3d7fcdnd358yZM/aMJoQQwgbq2+uNrly5wiuvvML27dst91U20cZkMtkjlhBC\nCBuyW5E5efIkGRkZdOvWDYDTp0/zwAMPsH//ftq1a8epU6cszz19+jTt2rW76TXatWtHVlaWvSIL\nIYRD6NixI2lpadq8uWJD6enpSufOnW/5mKenp3L+/HlFURTlhx9+ULp166ZcvXpV+fHHH5V7771X\nKS0tvelrbBzX5l544QWtI9SK5NeW5NeOkbMrirY/O222JhMeHk6fPn1ITU3Fw8OD6Ojoco9f3w7z\n8/NjwoQJ+Pn5ERYWxsqVKx2yXZaRkaF1hFqR/NqS/Noxcnat2axdtm7dukof//HHH8vdjoyMJDIy\n0lZxhBBCaEDO+LejqVOnah2hViS/tiS/doycXWum3/p1hmAymSrdkSaEEOJmWv7slCMZO4qPj9c6\nQq1Ifm1Jfu0YObvWpMgIIYSwGWmXCSGEg5N2mRBCCIckRcaOjN7XlfzakvzaMXJ2rUmREUIIYTOy\nJiOEEA5O1mSEEEI4JCkydmT0vq7k15bk146Rs2tNiowQQgibkTUZIYRwcCaTicLCQlq3bo2Hhwf1\n6tXjp59+olmzZjRr1oy77rqLuLi4ar3m8uXLad68OX/6058qf28pMkII4dhMJhOrVq3i/PnzzJs3\nD4BHH32UESNGMGbMmBq9Zn5+PgMHDiQpKanS50m7zI6M3teV/NqS/NoxcvYy69at4+GHHy53n6Io\nJCcnM3bsWAA2b95M48aNKS4uprCwkI4dO5KdnY2/vz8BAQEEBARQv359Tp06RdOmTWnZsiU//PBD\npe9rt8svCyGE0M7333+Pj49PuftMJhPdu3cnJSUFgL1799KlSxeSkpIoKiqid+/etGnTxvL4ihUr\n2Lt3Lx4eHgD06tWLhIQEOnXqVOH7SpGxo+DgYK0j1Irk15bk146Rs5dp2rTpLe+vV68eHTt25Nix\nYyQnJzN37lwSEhIoKSkhKCjI8rzExETee+89EhMTLfe1bdv2pgtQ3kjaZUII4QQqW8/u168fMTEx\nNGjQgIEDB7J3716++uorS5HJzs7mscce4+OPP6Zx48blXtNkMlX6vlJk7MjofV3Jry3Jrx0jZy9z\n+fLlm+4rKzxBQUG8/vrr9OnTh1atWnH+/HlSU1Pp1KkTRUVFjB8/nldffRUvL69yX5+dnY2np2el\n7ytFRgghHJCiwJdfwrBh6u3OnTtz/Pjxcs8pOwrp1asXP//8M/369QOgW7dudOnSBYCvv/6ab775\nhueff96y+H/27FkAkpKSyrXUbkW2MAshhAMpKID334fly6FhQ3j6aZg+3UR0dDQ5OTnMnz+/Tt7n\n0qVLDBw4kOTk5EqfJ0VGCCEcQGYmvPkmREdDUJBaXPr3B5NJ/dl59epVBg0axJ49e6pcR7HG8uXL\nadGiBX/84x8rfZ60y+zI6H1dya8tya8dvWZXFEhIgLFjoXt3KC2F5GT49FMIDlYLTJmGDRuSkJBQ\nJwUG4KmnnqqywIANi8y0adNwc3Oz9PUA5s2bx/3330+3bt0YM2YMFy9etDy2aNEivL298fX1rfZ4\nAyGEcCaFhbBmjVpYZsyAAQPUI5mlS6FDB63TlWezdtnevXtp0qQJkydP5vDhwwBs376dgQMH4uLi\nwoIFCwCIioriyJEjTJo0ieTkZM6cOcOgQYNITU3FxaV8DZR2mRDCmWVlwdtvw7//Df7+aktsyBBw\nqeJwwSGvJxMUFETz5s3L3RcaGmopHIGBgZw+fRpQRxmEh4fToEEDPD098fLyqnIejhBCOIukJHjk\nEejUCc6fh/h4iI2FsLCqC4zWNIu3evVqzGYzAFlZWbi7u1sec3d358yZM1pFsxm99nWtJfm1Jfm1\no0X2oiJYvx4efBAmTlRbY+npsGIF+PraPU6NaTJW5h//+AcNGzZk0qRJFT6nosWpqVOnWk7+cXV1\nxd/f3zLyoewbQa+3y+b/6CWP5NdXPskvtwE6dw7m3/+Gf/0rnnbt4IUXghk5EvbujSclxbrXi4+P\nZ82aNQBVnixpazbdwpyRkcGIESMsazIAa9as4d1332Xnzp00atQIUNdlAMs6zdChQ3nppZcIDAws\nH1bWZIQQDurwYVi2DDZtgtGj4amn1HWXuuCQazK3Ehsby5IlS9i8ebOlwACMHDmS9evXc+3aNdLT\n0zlx4gS9evWyZzQhhLC7khLYvFndHTZ0KHh6QmoqrF5ddwVGazYrMuHh4fTp04fjx4/j4eHB6tWr\nefLJJ7l8+TKhoaEEBAQwa9YsAPz8/JgwYQJ+fn6EhYWxcuXKOtvLrSdlh7NGJfm1Jfm1U9fZL16E\nf/4TvL3hlVfgscfU9Za//hXuuqtO30pzNluTWbdu3U33TZs2rcLnR0ZGEhkZaas4QgihudRUddzL\nf/6jbj3+z3+gd2+tU9mWjJURQggbUhSIi1PXWw4cgMcfh5kzoV07+2XQ8menXLRMCCFs4FaDKjdt\ngttv1zqZfen8NB7HYuSeNEh+rUl+7VQne2YmzJsH7durRzBvvQUpKTBtmvMVGJAiI4QQtVadQZXO\nRtZkhBCihgoL1bPyly2DK1fUc1umTIEmTbROVp6WPzulyAghRDXVdFClVpzmZExnZ+SeNEh+rUl+\n7ZRlN/KgSq3Ix6I3R4/ChQtapxBC/KaoCHbtMv6gSq1Iu0xvZs9WVxFXrNA6iRBO7dw5tR22ciV4\neaktsZEjoV49rZNVn6zJWMkpikxuLvj5QUyM+iuTEMKubDmoUiuyJuMkrOpJt2ihDjN64gl1H6SO\nGLmnDpJfa3rOX9WgSj1n1zspMno0daraMvvtehBCCNtwpkGVWpF2mV4dPAhms7oR4IbLWAshaufG\nQZVPP+3YgyqlXSZu1r07jBmj/kolhKg1RYEvv1R/d+vbF1xd1fWXdescu8BoTYqMHVW7r/vyy+rq\n48GDNslTXUbvS0t+bWmVv6BAnR/m5wcRETBunDpf7OWXrZ+EbPTPXktSZPRMx5sAhNA7GVSpD7Im\no3elpdCnj3oRikou+iaEUFtie/eqW5Dj49U9NLNnQ4cOWifTlpwnYyWnLDIgmwCEqIJRBlVqRRb+\nnUSN+7o62QRg9L605NeWLfJnZcHzz6vntaxfr3aXjx5VO8x1WWCM/tlrSYqMUehsE4AQWpJBlcYh\n7TIjWb0a3n0XEhPl/0nC6RQVqb9nLVsGZ8+qay3Tp6tbkUXlZE3GSk5fZGQTgHBCjjSoUiuyJuMk\nat3XdXFR/58WGanJ5QCM3peW/Nqqbv7Dh9UxL97ekJYG27apbbHRo+1fYIz+2WvJZkVm2rRpuLm5\n0aVLF8t9ubm5hIaG4uPjw+DBg8nLy7M8tmjRIry9vfH19SUuLs5WsYxPJ5sAhLCFqgZVCuOxWbts\n7969NGnShMmTJ3P48GEAIiIiaNWqFRERESxevJgLFy4QFRXFkSNHmDRpEsnJyZw5c4ZBgwaRmpqK\nyw3rDk7fLisjlwMQDubiRVi1Ct58Ux1M+fTT6pn5DRtqncwxOGS7LCgoiOY3nNOxZcsWpkyZAsCU\nKVP47LPPANi8eTPh4eE0aNAAT09PvLy8SEpKslU045NJAMJBpKb+frJkcrI6sHL/fpg0SQqMo7Dr\nmkxOTg5ubm4AuLm5kZOTA0BWVhbu7u6W57m7u3PmzBl7RrOLOu3ranA5AKP3pSW/tsryG3FQpdE/\ney3V1+qNTSYTJpOp0sdvZerUqXh6egLg6uqKv78/wcHBwO/fCHq9nZKSUnev5+JC/LRp8OyzBI8e\nDc2bGyu/Brclv7a39+9PYfNmiI0NpmFDGDIknqefhiFD9JHPkW7Hx8ez5rdfQMt+XmrFpluYMzIy\nGDFihGVNxtfXl/j4eFq3bk12djYhISEcO3aMqKgoABYsWADA0KFDeemllwgMDCwfVtZkbjZrFphM\nsGKF1kmEuKXMTHWtJToagoLU9Zb+/dVvW2EfDrkmcysjR45k7dq1AKxdu5ZRo0ZZ7l+/fj3Xrl0j\nPT2dEydO0KtXL3tGMy6ZBCB0SFEgIQHGjlX3ppSWqmsun34KwcFSYJyJzYpMeHg4ffr04fjx43h4\neBAdHc2CBQvYvn07Pj4+7Nq1y3Lk4ufnx4QJE/Dz8yMsLIyVK1dW2kozqrLD2Tplx00ANslvR5Lf\n9goL1WXC7t1hxgx1K3JmJixdCpmZ8VrHqzEjfPZ6ZbM1mXXr1t3y/h07dtzy/sjISCIjI20Vx7FN\nnaqeEr1mjUwCEJrIyoK331a/Df391d97hgyR6UdCxso4DrkcgNBAUpI6SywmRt12/OST4OurdSpx\nI5ldZiUpMlWQTQDCDmRQpfE4zcK/s7N5X9fGmwCM3peW/LVz7pzaBuvQQW2NRUSoM8Weeca6AqN1\n/towcnatSZFxJDIJQNiAngZVCuORdpmjkcsBiDpQUqIWk2XL4PhxmDkT/vxnda6YMB5Zk7GSFBkr\nySYAUUMyqNIxyZqMk7BbX9dGlwMwel9a8lfMHoMqjfz5Gzm71qTIOCqZBCCqYMRBlcJ4pF3myFav\nhnffhcREOStOWBQUwPvvw/Ll6lHK009DeDjcfrvWyYStSLtM2IYGlwMQ+pWZCfPmQfv2EBcHb70F\nKSnq/hApMMJWpMjYkd37ui4usHIlREaqV9OsJaP3pZ0xv54GVRr58zdydq1JkXF0ZZsA/t//0zqJ\nsKPKBlV26KB1OuFMZE3GGeTmgp+fOmCqe3et0wgbunFQpXpRMFmSc3ayJiNsSyYBOLykJHjkEejU\nCc6fV8/Ij42FsDApMEJb8u1nR5r2detgE4DR+9KOlr+oCNavhwcfhIkT1YPU9HR1PqoeJyEb+fM3\ncnat2ex6MkJnyjYBmM0wapR6dCMM6dw5tR22ciV4eamDKkeOlDliQp9kTcbZyOUADOvwYXWW2KZN\n6nDKp55S112EqIrMLrOSFJk6IJsADEUGVYq6IAv/TkIXfd1abALQRf5aMFL+ixfhn/9Ux+u/8oo6\nan/Nmnj++lfjFhgjff43MnJ2rUmRcUYyCUC3KhtU2aCB1umEqD5plzmrsssBHDkimwA0pijqmJdl\ny+DAAfVSQDNnQrt2WicTjkLWZKwkRaaOySYATcmgSmEvsibjJHTX163m5QB0l7+a9JK/poMq9ZK/\npoyc38jZtaZJkVm0aBGdOnWiS5cuTJo0iatXr5Kbm0toaCg+Pj4MHjyYvLw8LaI5F5kEYDd6GlQp\nhD3ZvV2WkZHBgAEDOHr0KLfddhsTJ07EbDbzww8/0KpVKyIiIli8eDEXLlwgKiqqfFhpl9W90lLo\n00ddCJg2Tes0DqewUD0rf9kyuHJFPbdlyhRo0kTrZMKZOFW77M4776RBgwZcuXKF4uJirly5Qtu2\nbdmyZQtTpkwBYMqUKXz22Wf2juac6vhyAEKVlQXPPw+enmqReeUVOHpUPWiUAiOcid2LTIsWLXjm\nmWe45557aNu2La6uroSGhpKTk4ObmxsAbm5u5OTk2Duazem2r2vl5QB0m99K9shvy0GV8vlrx8jZ\ntWb32WUnT57k9ddfJyMjg2bNmjF+/Hg+/PDDcs8xmUyYKmhST506FU9PTwBcXV3x9/cnODgY+P0b\nQa+3U1JSdJWn3O2XXybeywu6dSP48ceNl9+K27bK/9BDwWzaBH/7Wzy5uTBvXjArVkBKSjxnz4Kv\nr77zG/3zl9s3346Pj2fNb+fBlf281Ird12Q2bNjA9u3bee+99wD44IMP2LdvH7t27WL37t20bt2a\n7OxsQkJCOHbsWPmwsiZjW6tXw7vvQmKizIe3wo2DKp9+WgZVCn1yqjUZX19f9u3bx6+//oqiKOzY\nsQM/Pz9GjBjB2rVrAVi7di2jRo2ydzQhkwCscviwOubF2xvS0tTZYvHx6tBKKTBClGf3ItOtWzcm\nT55Mjx496Nq1KwCPP/44CxYsYPv27fj4+LBr1y4WLFhg72g2V3Y4q1sulW8C0H3+KtQmf0kJbN6s\nXsZ46FB1QT81VT34s9ckZGf+/LVm5Oxa0+R6MhEREURERJS7r0WLFuzYsUOLOOJ6128CkEkAXLwI\nq1bBm2+qgymffhrGjVPP0BdCVK3SNZmioiLi4uJISEggIyMDk8lE+/bt6devH0OGDKF+ffvWKFmT\nsRO5HACpqeq4l//8B4YMUYtL795apxKiZnS5JvP3v/+dnj17sm3bNnx9fZk2bRpTpkzhvvvuY+vW\nrfTo0YOXX37ZnlmFvTjpJABFgS+/VOeG9u0Lrq7q+su6dVJghPFdvXqV5s2b07VrVwICAmjZsiX3\n3nsvAQEBhIaGsmfPHkaMGGH1602YMIH09PSqn6hUYPPmzUppaWlFDyslJSXK5s2bK3zcFiqJawi7\nd+/WOoL1SkoUJTBQUVatstxlqPy3UFH+y5cVZeVKRfH1VZSuXdV/8pUr9s1mDUf9/I3AyNkVRf3Z\nuWrVKuXVV1+13Dd16lRl06ZNltu7d+9Whg8fbvVrxsXFKU8++WSVz6vwSOaee+6p8FyVt956CxcX\nF0aOHGl11RMGU8UmAEdQ00GVQhjRunXrePjhh8vdp1zXQjOZTFy6dInhw4fj6+vLzJkzURSFLVu2\nEBAQQEBAAPfddx/33nsvoJ6PExMTU/UbV1R9OnTooCQnJ990//PPP6/4+/tbXe3qUiVxha3MnKko\ns2ZpnaLOlJYqyp49ijJmjKK0aKEoc+cqyo8/ap1KCNsClNatW5e7b+rUqconn3xiub17926lUaNG\nSnp6ulJSUqKEhoaWe1xRFGXChAnKypUrLbf79eunHDlypNL3rvBI5uOPP2bChAl8/fXXAJSWlvJ/\n//d/7Nmzhz179lS/jApjqublAPSqsFA9/ad7d5gxQ92KnJkJS5eqV6EUwtE1bdq0yuf06tULT09P\nXFxcCA8P56uvvrI89uqrr9K4cWNmzpxpua9t27ZkZGRU+poVFpkHHniAzz77jD/96U/ExsYyfvx4\nfvnlF7788kvuvPNOK/5J4kaG3Gt/3SaA+F27tE5TbdcPqly5Mt7QgyoN+f1zHSPnN3L2MooVu8uu\nXyJRFMVye8eOHWzatIm33377ptd0qWI6SIWP5ubm4u7uzpo1a3jkkUdo0KAB77zzDgUFBeQ6aI9e\nVKBsEsBHH0FRkdZprHKrQZWvvlo3gyqFMIqCawVsS90GwOXLl6t8flJSEhkZGZSWlrJx40aCgoLI\nzMzkiSeeYOPGjdx2223lnp+dnU379u0rfc0KT3Tp3r27pYo1bdqU/fv307NnT0Ctdj/++GOVgUV5\nZYPsDMfFBdasIXjmTHWWyjPPqKvjd9yhdbJyiorUzt6yZZCdDU8+qZ5P6uqqPl42qNKoDPv98xsj\n5zdS9rTcNGJOxBBzIobEU4k80OYBADp37szx48e57777LM+9/sjFZDLRs2dPZs+eTVpaGgMGDGDU\nqFH87W9/Izc31zLqq127dmzbto2ioiJOnz6Nr69vpXnsPiCzNuRkTB3Yvx8WL4avvoLZs9W+U8uW\nmkaSQZXCmRUWF5KQmWApLPnX8jF7mTF7mxl07yCaNWqGyWQiOjqanJwc5s+fXyfvGxcXx+eff86y\nZcsqf2JFOwJOnjxZ5Y6FtLS0Kp9TlyqJawhG32tfLv/Ro4oybZqiNG+uKE8/rSiZmXbP8913ijJ9\nuqK4uirKo48qyqFDlT/foT5/AzJyfr1lz7iQobyV/JYy4j8jlKavNFX6rOqjvLznZeVg1kGlpLTk\npucDytWrV5WgoKBKz3+sjvHjxyvp6elVPq/Cdtlzzz1HQUEBI0eOpEePHrRp0wZFUcjOzubAgQNs\n2bKFpk2bsn79+jqpisJgfH3VoV4vvQSvv65OiRw5EiIi1JE0NlJSok49XrYMjh+HmTPVETB33WWz\ntxRCc0UlRSSeSrQcreQU5DDUayjhncOJfjialo2r7iY0bNiQhISEOsu0ceNGq55XabssLS2N9evX\nk5iYSGZmJgDt27enb9++hIeHW07KsRdpl+nYhQtqv2r5cggMhAULoE+fOnt5GVQpnE1WfhaxabHE\nnIhhx4878G7pbWmD9Wjbg3ou1veDtfzZKWsyom79+itER8OSJeDurhYbsxkqmB5RFRlUKZxFcWkx\n+0/vV49W0mLIzMsktGMoZi8zQ72G4tbErcavrcsBmaLuGX2vvVX5b78dZs2CEyfUvyMjoWtX+PBD\nq7c/22pQpVN8/jpm5Py2yv5LwS988O0HhG8Kx+01N56IeQIFhTfC3uDneT+zYdwGpvhPqVWB0Zom\n15MRTqB+fQgPhz/8Qa0YixfDX/9a6fbnggJ4/331yKVhQ/WoZdMmmSMmHEepUso3Wd9YjlaOnTvG\nwA4DMXubWRK6BPc73bWOWOekXSbsp4Ltz5mZ6lpLdDQEBanFpX//GnfYhNCVC79eIO5kHDFpMcSm\nxdLy9paYvdW1lb739KVhPdsvLMqajJWkyDiIY8dQXl1C8Sef8uXdk4k8N5fQ6fcwe7bMERPGpygK\n3+V8Zzla+fbst/Rr3w+zt5kwrzA6NLf/N7ku12SKDDI+xEiM3JOGuslfWAhr9vnS/dAqBrb6jnbt\n6/Otiz9Lz0+lw69Hah+yEvL5a8vI+avKfunqJT49+ikztszA/V/ujNk4huzL2SwMWkjOszlsm7SN\nWT1naVJgtFbhmkxgYCAHDT55V+hHVha8/bZ6Zr6/vzpzc8gQd1xcXoMLC9XtzyEhNtn+LERdUxSF\no+eOEnMihi/SviDpTBIPuj+I2dvMvIfm4d3Cu8LrcTmbCttlAQEBHDp0yN55KiXtMuNJSlJPnIyJ\ngUmT1HliFY46quPtz0LUpYJrBezO2G05IbJUKWWY9zDCvMMY0GEATRrqd6y3Ltdk3N3dmTt37i2D\nmUwm5s6da/Nwt3pfKTL6d6tBldOn/z6oskrFxfDxxxAVBaWlMH8+TJwIDRrYNLcQN7px2GSPtj0s\nJ0T63eVnmKMVXa7JlJSUkJ+fz+XLl2/6k5+fb8+MDsPIPWmoOv+5c2obrEMHtTUWEQEnT6q7lq0u\nMPD79ueUFPWoZtUqdfrzG2/AlSs2y693kt/2CosLiTsZx5zYOfi84UNQdBDfnv2WB4sf5PRfTrN7\nym7mPTSPTnd3MkyB0VqFazKtW7fmhRdesMmb5uXl8dhjj/HDDz9YpoN6e3szceJEMjMz8fT0ZOPG\njbhW6yeT0Mrhw+pRy6ZNMHq0OlvM378OXthkgqFD1T9l25///nfdTH8WjiEzL5Mv0r4g5kQM8Rnx\ndHHrgtnLzIZxG+jWuhsuJhfi4+Np1qiZ1lENSZM1mSlTptC/f3+mTZtGcXExBQUF/OMf/6BVq1ZE\nRESwePFiLly4QFRUVPmw0i7TjVsNqvzzn+0wqPLYMfXo5tNPYcoUmDsXPDxs/KbCkVQ0bNLsZWZw\nx8FWDZs0Gl2uyZw/f56WNvhN8eLFiwQEBNx00TNfX1/27NmDm5sbZ8+eJTg4mGPHjpUPK0VGc7oZ\nVHn6tDr9efVqu0x/FsZWl8MmjUiXazK2KDAA6enp3HXXXTz66KN0796dGTNmUFBQQE5ODm5u6nwe\nNzc3cnJybPL+WjJCT7oiWVkwenQ8HTpAcrI6sHL/fnXHmCaTkN3d4bXX1EUfb291+/PDD8PXX1f4\nJUb+/EHyV0dxaTGJPyWycOdCAt4JoPPKznx58ktG+Izg+OzjJM9I5qWQlwh0D7SqwBj9s9eS3WeX\nFRcXc/DgQd5880169uzJnDlzbtkWq2hRberUqXh6egLg6uqKv7+/5dKoZd8Ier2dkpKiqzzW3m7c\nOJjRo8HHJ4V33oHx4/WVL3jhQpg7l/jnnoMxYwj28YH584lv3BhMJsN//pLfutufffEZSWeSSG+e\nTtzJOJqfbU5gu0DeGP8Gvd1781XCV5CHZdik1p+HLW/Hx8ezZs0aAMvPS63YfazM2bNnefDBB0lP\nTwfgq6++YtGiRfz444/s3r2b1q1bk52dTUhIiLTLdGD9enUL8nvvqQcKuifbn51GZcMmh3oNdchh\nkzWlyzUZW+rXrx/vvfcePj4+vPjii1z5bVtqy5YtmT9/PlFRUeTl5cnCv4ZKS+HFF9WpyJs3Q7du\nWieqprLrBSxeDOnp6j7q8ePBzU1O7jQwPQybNCKnKzLffvstjz32GNeuXaNjx45ER0dTUlLChAkT\n+Omnnyrcwmz0IhMfH285tNWzggJ141Z2Nvz3v+rPZTBO/pvs3w9LlhC/fTvBAD4+cN996t9l/+3t\nDU30e8Y2GPjz/01N8utl2KTRP3stf3Zqcj2Zbt26kZycfNP9O3bs0CCNuN7p0+pmrc6dYedOaNRI\n60R1IDAQPvkE4uPVC6ilpqp/jh9XT+45fhzS0qBFi/KFp+xvT0/1BFFhF5euXmLnjzsthaVR/UYM\n8x7GwqCF9G/fn9sbyAWGjERG/QuLpCQYM0Zdg4mIcLKuUmmpWmGPH/+9AJUVo6wstdBcX3jKipG0\n32qtsmEBrS4QAAAWbElEQVSTZm+zDJusA07XLqspKTK2Y7gFfnsqLFS3Sl9feMr++9o1w7bftGTk\nYZNGJEXGSkYvMnrs61ZngV+P+avDJvlzc28uPDZqvxn98/9oy0ecdztvyGGTRv/snW5NRujD9Qv8\n+/f/vsAvqqFFC+jdW/1zvVu13778Uv07O9sp2m+FxYUkZCZYjlbOHTnH6KGjmdF9BhvGbZBZYE5C\njmSc1PUL/P/+t4Ms8BvFje2369twBm+/VTRs0uxttgybFPYn7TIrSZGpG069wK93dmy/1QVnHDZp\nRFJkrGT0IqOHvm5tFvj1kL82DJ2/tJT4jz8muEWLmwuQndtvNR02aeTP38jZQdZkhB1cv8C/Y4cB\nz+B3di4uasEIDobQ0PKP3dh+S0xUL2NdR+234tJi9p/ebzlvJTMvk9COoYzwGcEK8wrLLDAhbkWO\nZJxARWfwCydQ1n67cft1Fe23X65eUI9W0mKIOxmHx50elvNWerv3pr6L/H5qJNIus5IUmeo7fVpt\ni3XqJAv84jqlpXDqlKXwKMeOcenwAUqPH6PxuYtkNjeRd8/dNPLrinvPQbToFuhwu9+ciS6vJyPq\nXtkobntJSlJ31k6YAGvX1r7A2Dt/XZP813Fx4cLdd7KhTS5T2iXRuv1GHhx/kX+snc7/DsfQYcc3\n9IpcQVe/EFocPALPPQdduoCrK/TsCX/8I/ztb+oi36FDcPmyffPbmZGza02OeR2UnMEvblTZsMkX\n+79487DJrv43v8iN7bfrZ781b37rzQcdOsjsNycm7TIHY/gR/aJOVTRs0uxtrtthkze037Tc/SZu\nJmsyVpIiUzlZ4Be6HDbpwCefGoUUGSsZvcjYcq+9PRb4jX6ugKPmN8qwyVvmr2z3m47ab0b/3pHz\nZEStyBn8zictN81SVK4fNvn5pM91P2yynMpmv93Yfqto9tv1RUjab7ojRzIGJwv8zuHGYZP51/It\nZ9kPuneQcw2btKb9duO5P07efpN2mZWkyPxOFvgdnwybrAGDtN/sTYqMlYxeZOqqr6vVAr/R+9J6\nz1/VsMnDSYd1nb8qmn7+1dn9dov2m96/d6oiazLCatcv8O/cKWfwG11FwyZXjVxV6bBJUU0uLtC+\nvfqnqtlvX38Na9aUb781awYJCdJ+qwE5kjEQWeA3vlsNmxzccTBhXmEM9Roqwyb15sb2W9nfBmu/\nmUwmCgsLGTx4MC+88AL/+te/2Lp1q1VfO3fuXEaPHk1QUFCN3ltfn4SokCzwG9cvBb/cctjkG2Fv\nyLBJvbNm91tZ4dH57rePPvqI4cOHU69e9Y6OZ86cyTPPPFPjIiNHMnZUk76unhb4jd6Xtlf+UqWU\nb7K+sRytHDt3jIEdBmL2NjPUayjud7rX6HXl89dOtbLrcPebyWRi0KBBrFixguzsbF588UVatWrF\n999/zwMPPMCHH37IgQMHmDFjBgDFxcX88MMPlJaWAtC1a1cSEhJwdXWt9ntr9itUSUkJPXr0wN3d\nna1bt5Kbm8vEiRPJzMzE09OTjRs31ugf5EiuX+Dfv1/O4NezC79eIO5kHDFpMcSmxdLy9paYvc0s\nGriIvvf0pWG9hlpHFPbSqJG6aNqp082P3dh+++QTu7Xfvv/+e3x8fMjKyuLQoUMcOXKENm3a8NBD\nD5GYmMhDDz3EoUOHAIiIiMBsNlu+NiAggP/973+EhYVV+301KzLLli3Dz8+P/Px8AKKioggNDSUi\nIoLFixcTFRVFVFSUVvFsojq/xelxgd+ov4WWqcv81R42WQfk89dOnWXXsP3WtGlTy3/36tWLtm3b\nAuDv709GRgYPPfQQABs2bODgwYNs377d8vy2bduSkZFRo3+yJkXm9OnTxMTEsHDhQv75z38CsGXL\nFvbs2QPAlClTCA4OdrgiYy1Z4NenioZNLgxaWLfDJoXzqWr3W1ra7y23st1vx49DUZHV7bfrlxpu\nu+02y3/Xq1eP4uJiQD3aeemll9i7d2+5qRGKotR4ioQmReYvf/kLS5Ys4dKlS5b7cnJycPutH+Tm\n5kZOTo4W0WzKmr7uli0wfbo+F/iN3FOH6ue/1bDJPh59CPMKY95D8+w+bNLZPn890TR7o0bQubP6\n50bnz8OJE1W334DLVVzzJy8vj/DwcD744ANatmxZ7rHs7Owa//vtXmS2bdvG3XffTUBAQIUXAjKZ\nTBX+n3fq1Kl4enoC4Orqir+/v+UfX/Z6er2dkpJS5fPnzIGPPgpm8GDt89Ykv55vW5P/16JfKWlf\nQsyJGP77xX8pVUoZGzaWOYFzqP9TfW5vcDvBvfWbX8+3jZ5f17d791Zvh4YSHBxM/K5drFm5Ei5d\nwvOnnwDo3Lkzx48fv+XPV5PJxJYtW/jpp5947LHHLPcdPHgQgEOHDrF8+XJqwu67yyIjI/nggw+o\nX78+hYWFXLp0iTFjxpCcnEx8fDytW7cmOzubkJAQjh07Vj6swXeXVSUzU73oYHY2VHOXoaiFioZN\nmr3Nxho2KUQFTCYT0dHR5OTkMH/+/Gp9bWpqKs8++yxbtmyp2XtruYV5z549vPbaa2zdupWIiAha\ntmzJ/PnziYqKIi8v76Y1GUcvMm++CQcOqO1WYTsybFI4G5PJxNWrVxk0aBB79uyp1i9Oc+fOZcyY\nMfTt27dm7611kVm6dClbtmwhNzeXCRMm8NNPP1W4hdnoRSa+ir7u0KEwYwaMHWu/TNVRVX49y8zL\nZNmGZaTdmWbYYZNG/vzB2PmNnB2ceHZZ//796d+/PwAtWrRgx44dWsbRVH6+umlk40atkziGWw2b\n9C/0Z1qfaUQ/HE3Lxi2rfhEhRK3JGf868d//wttvQ1yc1kmM68Zhkz4tfQjzCsPsbZZhk8KpOe2R\njPjd1q0wYoTWKYylomGTI+8byQrzChk2KYQO6L8R7UDKthzeqKQEPv9c/0Wmovz29EvBL3zw7QeE\nbwrH7TU3noh5AgWFN8Le4Od5P7N+3Homd5t8ywKjh/y1Ifm1Y+TsWpMjGR1ISlKnQ/x2+o+4TmXD\nJpeELqnxsEkhhH3ImowOLFwIigKvvKJ1En2oaNik2dsswyaFqAG5/LKVHLXIdO2qLvr36aN1Em1U\nNmwyzCvMJsMmhXAmWv7slDUZO7pVXzczE86ehcBA++eprrrsS1+6eolPj37KjC0zcP+XO2M3jiX7\ncjYLgxaS82wO2yZtY1bPWXVaYIzeV5f82jFydq3JmozGtm4Fs9nxx8hUNGzS7GUm4qEIvFt6ax1R\nCGED0i7T2JAh8Pjj+j3LvzYKrhWwO2O35YTIUqWUYd7DMHubCekQQpOGtrsSoBDid7ImYyVHKzL5\n+dC2LWRlwXXXEzI0GTYphP7ImoyTuLGvu307PPigcQrMrfrShcWFxJ2MY07sHHze8CEoOohvz37L\njO4zOP2X0+yespt5D82j092dNC8wRu+rS37tGDm71mRNRkNGPcs/My+TL9K+IOZETLlhkxvGbTDM\nsEkhhH1Iu0wjJSXQpo16IqbeT8K81bDJoV5DMXuZGdxxsAybFELnZHaZE9L7Wf63GjZp9jaz+uHV\nPNDmARk2KYSwivQ17Oj6vq7eWmXFpcUk/pTIwp0LCXgngM4rOxN3Mo6R943k+OzjJM1IIphgerXr\nZdgCY/S+uuTXjpGza02OZDSybRu88462GX4p+EU9WkmLIe5kHB53emD2NvNG2Bv0du9NfRf59hBC\n1I6syWggMxN69oTsbPuehFnZsMmhXkNl2KQQDkrWZJyMPc/yr2jY5KKBi2TYpBDC5mRNxo7K+rq2\nXI9RFIVvz37Lor2LCIoOov3r7fnguw8IbBfIvun7OPLEEV4b/BoDOgyodoExel9a8mvLyPmNnF1r\nciRjZ/n58L//wSef1N1rXrp6iZ0/7rS0wW6vfzvDvIfx16C/0q99P25vcHvdvZkQQlSDrMnY2X//\nqy74f/llzV+jsmGTZm+zDJsUQpQjazJOZOtWGD68+l9X0bDJOYFzZNikEEK3ZE3GjnbujOfzz61f\nj0nLTWP5/uUM/XAorZe2Zun/ltLBtQOfT/qczDmZvDX8LUbcN8JuBcbofWnJry0j5zdydq3Z/Ujm\n1KlTTJ48mZ9//hmTycTjjz/OU089RW5uLhMnTiQzMxNPT082btyIq6urvePZ1LFjlZ/lX1hcSEJm\nguVoJf9aPmYvMzO6z2DDuA00a9TMrnmFEKK27L4mc/bsWc6ePYu/vz+XL1/mgQce4LPPPiM6OppW\nrVoRERHB4sWLuXDhAlFRUeXDGnxNJjJS/fuVV36/r6Jhk2ZvswybFELUCae+nsyoUaOYPXs2s2fP\nZs+ePbi5uXH27FmCg4M5duxYuecavch07Qor3iqipF35YZNhXmGEeYXJsEkhhE04bZHJyMigf//+\nfP/999xzzz1cuHABUHdPtWjRwnK7jMlkYua2mVpErbX8fFi/+jB3DDhsGTZp9jYbathkfHw8wcHB\nWseoMcmvLSPnN3J2cNLdZZcvX2bs2LEsW7aMpjdctctkMlV4gauDbx2kZRv1t/3bm96Ou487Pg/4\nAJD6TSqALm9fvA36tMjn6W5/YUzYGED9xt17Yq/lm7dscVGvt1NSUnSVR/LrK5+j5zfS7fj4eNas\nWQOAp8aj3jU5kikqKmL48OGEhYUxZ84cAHx9fYmPj6d169ZkZ2cTEhLicO0yIYTQglNdfllRFKZP\nn46fn5+lwACMHDmStWvXArB27VpGjRpl72hCCCHqmN2LTGJiIh9++CG7d+8mICCAgIAAYmNjWbBg\nAdu3b8fHx4ddu3axYMECe0ezubLDWaOS/NqS/Noxcnat2X1Npm/fvpSWlt7ysR07dtg5jRBCCFvS\nfAtzdciajBBCVJ9TrckIIYRwHlJk7MjofV3Jry3Jrx0jZ9eaFBkhhBA2I2syQgjh4GRNRgghhEOS\nImNHRu/rSn5tSX7tGDm71qTICCGEsBlZkxFCCAcnazJCCCEckhQZOzJ6X1fya0vya8fI2bUmRUYI\nIYTNyJqMEEI4OFmTEUII4ZCkyNiR0fu6kl9bkl87Rs6uNSkyQgghbEbWZIQQwsHJmowQQgiHJEXG\njoze15X82pL82jFydq1JkRFCCGEzsiYjhBAOTtZkhBBCOCRdFZnY2Fh8fX3x9vZm8eLFWsepc0bv\n60p+bUl+7Rg5u9Z0U2RKSkqYPXs2sbGxHDlyhHXr1nH06FGtY9WplJQUrSPUiuTXluTXjpGza003\nRSYpKQkvLy88PT1p0KABf/jDH9i8ebPWsepUXl6e1hFqRfJrS/Jrx8jZtaabInPmzBk8PDwst93d\n3Tlz5oyGiYQQQtSWboqMyWTSOoLNZWRkaB2hViS/tiS/doycXWu62cK8b98+XnzxRWJjYwFYtGgR\nLi4uzJ8/3/IcLy8vTp48qVVEIYQwpI4dO5KWlqbJe+umyBQXF3Pfffexc+dO2rZtS69evVi3bh33\n33+/1tGEEELUUH2tA5SpX78+b775JkOGDKGkpITp06dLgRFCCIPTzZGMEEIIx6ObhX9rffzxx3Tq\n1Il69epx8OBBreNYzcgnmk6bNg03Nze6dOmidZQaOXXqFCEhIXTq1InOnTuzfPlyrSNZrbCwkMDA\nQPz9/fHz8+O5557TOlKNlJSUEBAQwIgRI7SOUm2enp507dqVgIAAevXqpXWcasvLy2PcuHHcf//9\n+Pn5sW/fPvsGUAzm6NGjyvHjx5Xg4GDlm2++0TqOVYqLi5WOHTsq6enpyrVr15Ru3bopR44c0TqW\n1RISEpSDBw8qnTt31jpKjWRnZyuHDh1SFEVR8vPzFR8fH0N9/gUFBYqiKEpRUZESGBio7N27V+NE\n1bd06VJl0qRJyogRI7SOUm2enp7K+fPntY5RY5MnT1ZWrVqlKIr6PZSXl2fX9zfckYyvry8+Pj5a\nx6gWo59oGhQURPPmzbWOUWOtW7fG398fgCZNmnD//feTlZWlcSrrNW7cGIBr165RUlJCixYtNE5U\nPadPnyYmJobHHnvMsANujZr74sWL7N27l2nTpgHq2nezZs3smsFwRcaI5ERT/cjIyODQoUMEBgZq\nHcVqpaWl+Pv74+bmRkhICH5+flpHqpa//OUvLFmyBBcXY/64MZlMDBo0iB49evDuu+9qHada0tPT\nueuuu3j00Ufp3r07M2bM4MqVK3bNoMv/1UNDQ+nSpctNf7Zu3ap1tBpxhhNNjeDy5cuMGzeOZcuW\n0aRJE63jWM3FxYWUlBROnz5NQkKCoYY1btu2jbvvvpuAgADDHg0kJiZy6NAhvvjiC1asWMHevXu1\njmS14uJiDh48yKxZszh48CB33HEHUVFRds2gmy3M19u+fbvWEepUu3btOHXqlOX2qVOncHd31zCR\n8ykqKmLs2LH88Y9/ZNSoUVrHqZFmzZoxbNgwDhw4QHBwsNZxrPL111+zZcsWYmJiKCws5NKlS0ye\nPJn3339f62hWa9OmDQB33XUXo0ePJikpiaCgII1TWcfd3R13d3d69uwJwLhx4+xeZHR5JGMto/xm\n1KNHD06cOEFGRgbXrl1jw4YNjBw5UutYTkNRFKZPn46fnx9z5szROk61nDt3zjKc8ddff2X79u0E\nBARonMp6r7zyCqdOnSI9PZ3169czYMAAQxWYK1eukJ+fD0BBQQFxcXGG2mXZunVrPDw8SE1NBWDH\njh106tTJrhkMV2Q+/fRTPDw82LdvH8OGDSMsLEzrSFW6/kRTPz8/Jk6caKgTTcPDw+nTpw+pqal4\neHgQHR2tdaRqSUxM5MMPP2T37t0EBAQQEBBgGV+kd9nZ2QwYMAB/f38CAwMZMWIEAwcO1DpWjRmt\ndZyTk0NQUJDl8x8+fDiDBw/WOla1vPHGGzzyyCN069aN7777jsjISLu+v5yMKYQQwmYMdyQjhBDC\nOKTICCGEsBkpMkIIIWxGiowQQgibkSIjhBDCZqTICCGEsBkpMkLUgWeffbZa415ycnIwm822CySE\nTkiREaKW8vPzSUhIqNaoFzc3N5o3b26oayIJURNSZIS4wTvvvGOZDNChQwcGDBhQ6fM3b97MoEGD\nLLc9PT2JjIwkICCAHj16cPDgQQYPHoyXlxfvvPOO5XkjR45k3bp1Nvt3CKEHUmSEuMGf//xnDh06\nRHJyMh4eHjzzzDOVPj8xMZEePXpYbptMJtq3b8+hQ4fo168fU6dO5dNPP2Xfvn288MILluf16tWL\nhIQEm/07hNADXU5hFkIPnnrqKQYOHMiwYcMqfV5mZqZlUm+ZsgGoXbp0oaCggDvuuIM77riD2267\njUuXLnHnnXfSpk0bMjIybBVfCF2QIiPELaxZs4ZTp06xcuVKq55fWlpa7vZtt90GqNeCadiwoeV+\nFxcXiouLAXU6tNEGRgpRXVJkhLjBN998w9KlS62+OFX79u05e/bsLR+rbP5sdnY27du3r1FGIYxC\n1mSEuMGKFSu4cOECISEhBAQE8Pjjj1f6/L59+3LgwAHL7euPTkwm0023yyQlJdGvX786TC6E/sio\nfyFq6fLly4SEhJCcnFytr3vkkUd49tlnDXURMiGqS45khKilJk2aEBISwu7du63+mp9//pm8vDwp\nMMLhyZGMEEIIm5EjGSGEEDYjRUYIIYTNSJERQghhM1JkhBBC2IwUGSGEEDYjRUYIIYTN/H8Uvofb\nuXiDpAAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.4 page No. 313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "kf=0.04 # thermal conductivity in BTU/(hr.ft.\u00b0R) \n", + "cp=0.2139 # specific heat in BTU/(lbm-\u00b0R)\n", + "rou= 1.489*(62.4) # density in lbm/cu.ft\n", + "v=0.272e-5 # viscosity in sq.ft/s\n", + "a=2.04e-3 # diffusivity in sq.ft/hr\n", + "Pr=4.8 # Prandtl Number\n", + "OD=0.5/12.0 # outer diameter in ft\n", + "ID=0.03350 # inner diameter in ft\n", + "A=0.0008814 # cross sectional area in sq.ft\n", + "z=5.0\n", + "Tw=32.0\n", + "Tbo=-4.0\n", + "Tbi=-40.0\n", + "L=5.0\n", + "\n", + "x=2*a*L/((kf*ID/2.0)*(math.log((Tw-Tbo)/(Tw-Tbi)))) #x=V/hl\n", + "V=336.0 #ft/h\n", + "V_final=V/3600.0 #ft/s\n", + "hl_=V_final/(x) #\n", + "\n", + "Re=(V_final/3600.0)*ID/v\n", + "m_Fr=rou*A*V_final\n", + "As=math.pi*ID*L\n", + "q=hl_*As*((Tw-Tbo)-(Tw-Tbi))/(log((Tw-Tbo)/(Tw-Tbi)))\n", + "q_check=m_Fr*cp*(Tbo-Tbi)\n", + "rou_water=1.002*62.4 # density of water in lbm/ft**3 from appendix table C11\n", + "m_water=rou_water*L*(2/12.0)*(3/12.0)\n", + "t=144*m_water/(-q*3600)\n", + "\n", + "print\"The mass flow rate of Freon-12 is \",round(m_Fr*3600,2),\"lbm/hr\"\n", + "print\"The required time is \",round(t,0),\"hr\"\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "z1=[0,5]\n", + "Tw=[32,32]\n", + "z2=[0,0.185,0.74,1.85,2.77,3.70,5.0]\n", + "Tbz=[-40,-34.7,-27.4,-18.5,-13.5,-8.9,-4.1]\n", + "z3=[0.185,1,2,5.0]\n", + "hz=[23,-13,-19,-25]\n", + "\n", + "plt.grid()\n", + "xlabel(\"z (m)\") \n", + "ylabel(\"T (F) \") \n", + "plt.xlim((-2,5))\n", + "plt.ylim((-40,35))\n", + "\n", + "ax.annotate('(Tw=32 F)', xy=(5,30))\n", + "ax.annotate('(Tbz)', xy=(5,-5))\n", + "ax.annotate('(hz)', xy=(5,-25))\n", + "ax.annotate('(hydronamic entry\\n length)', xy=(-2,-40))\n", + "a1=plot(z1,Tw)\n", + "a2=plot(z2,Tbz)\n", + "a3=plot(z3,hz)\n", + "title('$Variation of Constant wall temprature with length$')\n", + "show(a1)\n", + "show(a2)\n", + "show(a3)\n", + "\n", + "x1=[0.001,0.01,0.1,1]\n", + "Nu1=[31,11,5.5,5.2]\n", + "Nu2=[25,10,5.3,5.1]\n", + "Nu3=[22,9,5.1,4.9]\n", + "Nu4=[17,7,4.1,4]\n", + "Nu5=[15,6.5,4,3.9]\n", + "Nu6=[13.8,6,3.9,3.8]\n", + "\n", + "\n", + "plt.grid()\n", + "xlabel(\"1/Gz=z/(DRePr)\") \n", + "ylabel(\"Nu \") \n", + "\n", + "plt.xlim((0.001,1))\n", + "plt.ylim((0,35))\n", + "ax.annotate('(Constant wall temprature)', xy=(0.1,30))\n", + "ax.annotate('(Hydronamically and thermally developing laminar flow)', xy=(0.1,25))\n", + "b1=plot(x1,Nu1,label='Pr=0.7')\n", + "b2=plot(x1,Nu2,label='Pr=2')\n", + "b3=plot(x1,Nu3,label='Pr=5')\n", + "b4=plot(x1,Nu4,label='Pr=0.7')\n", + "b5=plot(x1,Nu5,label='Pr=2')\n", + "b6=plot(x1,Nu6,label='Pr=5')\n", + "plt.legend(loc='upper right')\n", + "title('$Variation of Nusslet number with dimensionless length$')\n", + "show(b1)\n", + "show(b2)\n", + "show(b3)\n", + "show(b4)\n", + "show(b5)\n", + "show(b6)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The mass flow rate of Freon-12 is 27.52 lbm/hr\n", + "The required time is 9.0 hr\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEZCAYAAAD/ttB2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFOf6//H3UuwFS0QFAxIUxAYW7AoCYokl9i4mnhRP\nqonRtKPmRMVoEk39Gn9RjCaKJjFoYohEKXYsqFEUK0gTRUVDLCDM7489bECKoMDs7N6v6+K6mN2Z\n2c8Oy9w7zzPzjE5RFAUhhBBC4yzUDiCEEEKUByloQgghTIIUNCGEECZBCpoQQgiTIAVNCCGESZCC\nJoQQwiRIQRNCCGESpKAJIYQwCVLQKlBSUhKTJ0+mcePGrFmzxvD4mTNnaN26NW+++SbXr18v9fpm\nz57Ntm3bHirLoyxbWp988gnvvPMOy5cvNzy2ZcsW3nvvPb766iuCgoIIDg7m1Vdf5c6dOxWaRW3f\nf/89jz32WLHTorAHfUbj4uLo2bMnq1evLvRcZW3fkjIII6CICnXo0CHFycmpwGOJiYlKcHBwhb5u\n3759lezs7Ap9jfwyMjKUrl27Kvv371eOHz+u5OTkKM8884yyePHiAvNt2rRJ6du3b7m/fnm93/Ja\nz+HDh5WRI0cWO13Zf5+yMJZsReXo06ePEh8fX2je+7dvReYoLoNQn5XaBdXUOTo6kpiYSG5uLhYW\n+gPijRs38tprr1XYayYnJ6MoClZWlffn3b9/P+7u7nh6egIwZ84cAN54440C83Xr1o3Tp0+X62uX\n1/stz+22Y8cO+vbtW+S0Gn+f0jKWbEXluHXrFikpKTg4OBSa//7tXVE5Ssog1Gc5d+7cuWqHMGXV\nq1fn448/Zty4cdjY2PDjjz/i6+tLWloaS5cu5c6dO8ybN48qVarQsmVLDh8+TFRUFC+++CI3btxg\n+vTpDBgwgN9++43333+fUaNGAXD69Okilw8LC2PBggXUqVOHW7du0axZM0JCQgosm5yczLJly8jM\nzOT777+nWbNmxMfHs2nTJkJCQrh58yYnTpxgyZIlDB06tNhl6tevD+iL2YcffkjNmjXJycmhUaNG\njBw5kh9++IG6desW2B41a9akQ4cOXL58ucwZbt68yYoVK0hPT2fLli1069at0Ptt3759sdvm0KFD\n/Pzzz0WuP289devW5datW9StW5cdO3bw8ccfM2TIEGJiYli4cCEDBgzAx8eHrl270rBhw0KvVbVq\nVVq2bMnChQt57rnnaNiwIYBhOiYmplBegBMnTvDRRx+RlZXF+vXradiwIb/88gtr1qzh77//JjY2\n1rBcXFwc77//Pu3ataN+/focPXqUrVu3sn79em7dusXOnTs5ceIEOTk5REZGFvgsDRw4sNjP3v3b\nsn79+mzfvp3333+fkSNHkp2djb+/P5MnTy7yczpw4ECSkpIKvI8+ffoQHx9f4rZs0aIFe/bsMXxG\ni/qbAoSHh7Nv3z7s7e359ddfOXjwoOELVP7tff+27NOnT4l/e4CcnBwWLlzIlStXiIyM5Msvv6Rm\nzZqFcpSUQRgBFY8OzUaHDh2UHTt2KMnJycq6deuUzMxMpX379sr169cVRVEUb29vJS0tTVEURTl2\n7Jhy9OhRxcfHR1EURbl9+7YSFhamXL9+XenUqZOiKEqJyyuKoowbN045ePCgoihKkct27txZSU9P\nVxRFUbZu3ao8//zzym+//aZs375dGTZsmKIoipKbm2toKi1umfxGjBihHD9+XFEUfbOii4tLsdvj\nYTIoiqKsXr1aefPNN5Xr168rzzzzTJHvt6Rt86D151/Ptm3blDNnzigDBw5UFEVRFixYoAQFBSmK\noihfffWVcv78+WJf6969e4qrq6thvfdP538dRVGUtLQ0xcHBQbl8+bKiKIry1ltvKaGhocqhQ4cU\nb29vw3zOzs7KuXPnFEVRlOeff1759ddfFUVRlN9//13ZtWuXMnr0aMM2aNGihfLnn38qR44cMXyW\n7ty5U6bPzrZt25TExESlV69eiqIoys6dOw3b/f7P6Z07d4p8H6XZll9//XWBz2hR20hRFGXWrFnK\nhx9+qCiKouzdu9fQxJh/+xaX4UF/+9mzZxsyrV27Vvn444+LzFFcBmEc5KSQSuDk5MS5c+dYv349\nY8eO5aeffqJt27bY2Nhw584dMjMzadSoEQBt27YlLCzMcDRVrVo1fH19CQoKIiAgAKDE5RVFISYm\nho4dOwIUWjY4OJhOnTrRoEEDAGJjY6lRowb9+/cnLCyMSZMmAbB37146d+5c4jL5nTx5Ejc3NwAs\nLS0NR2/3++6779iwYUOZMwAMGDCA9PR02rZta3h/97/fkrZNSeu/fz1+fn6sXr2aMWPGABAZGYmv\nry8A9erVo3nz5sW+1oEDBwrkPnDgAJ06dSrydUDfBO3g4EBMTAzfffcdL730Ev7+/oSFhTFx4kQA\nzp07h5OTE05OTgDs2rWL7t27A9CvXz+2bdvG4MGDAYiJiaFhw4a0adOGP/74w/BZqlq1apk+O35+\nfgQFBRkybN++3bAN7v+cVq1atcj3UZpt+a9//avAZ7SobQQQERFhmOePP/4wNDHm397FZSjpb3/v\n3j2WL19uyBcREYGfn1+ROYrLIIyDFLRK4OjoyNdff81TTz0FQHp6uqEZ5Y8//qBr166EhoYa5v/j\njz/o169fgXWsW7eOiRMn8uuvv5a4fGxsLK1atQJg/fr1hZbNzs7G2dkZgNu3b/Pjjz8yY8YMQN+k\n4+PjA8C3337Lv/71L0JDQ0tcBiAtLY2GDRui0+kA8PHxIT09nUuXLhnmyc3NZcWKFfj7+5OVlVXm\nDNHR0bzzzjt88803HDp0iMjIyCLf74O2bXHrP3nyZKHtdvjwYUMhSkxMxM7Ojnv37hnWVdxrRUVF\n4eXlxaZNmwDYuXMn3t7ebNq0qcjXqV69OgMGDKBfv35MmDABgKysrAKfg7CwMPz9/QHYs2cP7u7u\nJCcnk5SUZHj9Pn36ALB69WpD3+X9n6Wyfnb27dtHz549DfN7e3vz+++/F7nuot5HdnZ2qbZl/s9o\nUdvoxo0bZGdnG85k3LhxI+PHj+fXX39l586dhu1dUobi/va3bt3Czs6OatWqkZWVxbFjx2jTpk2h\n7VFSBmEcpA+tEiQkJNCuXTvDP3/z5s3ZunUriqJw+fJlLl++bPhGrSgKK1asKHTSyI4dOwDo3bs3\nrVu3Lnb53Nxcdu3axe3bt/H29qZWrVoFlnV3dycsLIzbt2+zadMmZs2axRNPPMGtW7cICQlh2rRp\ngP6fv27dutjZ2eHt7V3kMvmzWVhYGHYW1tbW+Pn5sXDhQs6cOcPp06c5fvw4Q4YMoWHDhob+mrJk\neOyxx7h9+zYpKSlERUXx2muvUadOnQLv18vLi7Zt2xa7bUpaf+PGjQusp3bt2gBERUWRmppKzZo1\nuXHjBvv372fkyJFYW1sX+Xds0KABTZo04cyZM7Rq1QpHR0fS09MN082aNSv0Oq6urmzfvp1bt25x\n8uRJkpOTcXNz45tvvuGVV14B4OuvvyYgIIAGDRqQkpJCfHw8VapUoVu3bty4cYPPPvsMOzs7Dhw4\ngL29PRMmTCjys1TSZ6+oz86tW7eIiYkhNTWVK1eukJ2dTc+ePalZs2ahdRf3PvIUtS1HjRqFtbV1\ngc9otWrVCm2jffv2Ua1aNby8vAyfOZ1OR48ePbhz545h+/bv37/IDMX97e3t7XFyciIlJYWrV6/y\n008/YWVlxVNPPVXos3X8+PFiM+R9XoS6dIoiN/gUD+fQoUOsWLGC+vXrM2bMGMM3f1G5Nm3axL59\n+1i0aJHaUTTp0qVL2NjYUK1aNRYtWkSLFi0YPny42rHEQzC+84aFZlhaWmJvb0+NGjWkmKnk1KlT\nfPzxxzg7O3Pz5k3q1KmjdiTNeffdd+nQoQM2NjZYWlpKMdMwOUITQghhEuSkECGEECZBCpoQQgiT\noMk+NHd3d44ePap2DCGE0JT27dtz5MgRtWNUGE0eoR09ehRFUTT7M2fOHNUzSH71c0h+7f1oObui\nKCZ/IKDJgqZ18fHxakd4JJJfXZJfPVrObg6koAkhhDAJUtBUkDcWnFZJfnVJfvVoObs50OR1aDqd\nDg3GFkIIVZn6vlOO0FQQERGhdoRHIvnVJfnVo+Xs5kAKmhBCmJG7d+/Sp08fjh07hoeHBx4eHjRo\n0AAnJyc8PDwK3emjrKKjow3rbdeuHcHBwYD+bt+DBg2iVatWtGnThrfeeqvI5YOCgnjssccM68hr\n5p0xYwY7d+4s8bWlyVEIIcyETqfjm2++4erVq8ycOdPw+NSpUxk8eHC5jGN5+/ZtqlatioWFBZcu\nXaJNmzakpaWRlZVFdHQ0ffr0ITs7Gx8fH95++2369+9fYPnVq1dz6NAhPv300wKPnzlzhtdff53N\nmzcX+9pyhCbKTKeTH/mRHy3+gP7ec0OHDi30f60oCgcOHGDEiBEAhISEUKNGDe7du8edO3cK3DKq\nJNWrV8fCQl9abt++Td26dbG0tKR69eqGe/ZZW1vToUMHkpOTi1xHUQcsLVq0ID4+noyMjGJfW7WC\ndufOHbp06YK7uztubm6Gw89r167h5+dHy5Yt6devX4nhtUrr7fDh4REoCpr9kfyS3xyzK4r+//f4\n8eO0bNmy0P+1TqejQ4cOhpFEdu7cSdu2bYmOjmb//v107doVgCVLlhiaA/P/vPrqq4Z1RUdH07p1\na1q3bs3HH39c6LUyMjLYsmWL4R6K+SmKQnBwsGG9QUFBhuc8PDzYu3dvsfsm1Ya+qlatGuHh4YZv\nAD179mTXrl1s3rwZPz8/3nzzTRYtWkRgYCCBgYFqxRRCCJNS0s1ILS0teeKJJzh16hQHDhxgxowZ\nREVFkZOTQ69evQB44403DHdEL46npycnTpzg1KlT9O/fHy8vL+rWrQvAvXv3GDduHK+88gqOjo6F\nltXpdIwdO7ZQkyNA06ZNS7y4XdUmxxo1agD6283n5ORQr149Nm/ezJQpUwCYMmUKP//8s5oRK0Te\nHW+1SvKrS/KrR8vZ8zzo/IPevXuzdetWrK2t8fHxYefOnezatctQ0BYvXlzkEVre3dXzc3V15Ykn\nnuDs2bOGx5599llcXFx4+eWXy5xRURR0eW2nRVB1cOLc3Fw6dOjAuXPneOGFF2jdujVpaWnY2toC\nYGtrS1pampoRhRDCpGRmZhb5eF4R6dWrF5MmTSIgIICGDRty9epVrly5QuvWrQGYOXNmgRNK7hcf\nH4+9vT1WVlYkJCRw5swZWrRoAehvpnrz5k2++eabYpcvqeCmpqaW+KVC1YJmYWHBkSNHuHHjBv7+\n/oSHhxd4XqfTFVuNAwICDIerNjY2uLu7G95oXh+VsU4vXbpUU3klv3FNS371pvN+N5Y8pcmb1weV\nt79s06YNcXFxuLi4kF/evtbT05PLly/Tu3dvQD9Cf1kOLHbt2kVgYCDW1tZYW1vz9ddfU6dOHZKS\nkliwYAGtWrWiQ4cOALz00ks8/fTThXIUt9+PiYkpsinSQDES77//vrJ48WLFxcVFSU1NVRRFUVJS\nUhQXF5dC8xpR7IcSHh6udoRHIvnVJfnVo+XsiqLfd65atUoJDAxUO0qZxcXFKYMHDy5xHtWuQ0tP\nT8fKygobGxtu376Nv78/c+bM4ffff6dBgwbMmjWLwMBAMjIyCp0UItehCSFE2el0Ou7evYuvry+R\nkZEl9kcZmxkzZjB8+HB69uxZ7DyqFbQ///yTKVOmkJubS25uLpMmTWLmzJlcu3aN0aNHc/HiRRwd\nHdmwYQM2NjYFQ0tBE0KIMjP1faeMFKKCiIgIQ3u3Fkl+dUl+9Wg5O2h/3/kgMlKIEEIIkyBHaEII\nYSZMfd8pR2hCCCFMghQ0FeS/lkWLJL+6JL96tJzdHEhBE0IIYRKkD00IIcyEqe875QhNCCGESZCC\npgKtt8NLfnVJfvVoObs5kIImhBDCJEgfmhBCmAlT33fKEZoQQgiTIAVNBVpvh5f86pL86tFydnMg\nBU0IIYRJkD40IYQwE6a+75QjNCGEECZBCpoKtN4O/8D86emQmlopWR6GyW9/I6fl/FrObg6koIny\n9+WXsHCh2imEEGZG+tBE+Tt/Hrp1g6QksLZWO40Q4n9Mfd8pR2ii/Dk5QYsW8PvvaicRQpgRKWgq\n0Ho7fKnyT5oE335b4VkehllsfyOm5fxazm4OpKCJijF6tP4ILSND7SRCCDOhWh9aYmIikydP5vLl\ny+h0Op599llefvllrl27xpgxY0hISMDR0ZENGzZgY2NTMLSJtwObjBEjYMAAmDZN7SRCCEx/36na\nEZq1tTWffPIJJ06cYN++fXzxxRecPHmSwMBA/Pz8OH36ND4+PgQGBqoVUTyqSZNgzRq1UwghzIRq\nBa1x48a4u7sDUKtWLVq1akVycjKbN29mypQpAEyZMoWff/5ZrYgVRuvt8KXOP3AgxMZCfHxFxikz\ns9n+RkrL+bWc3RwYRR9afHw8MTExdOnShbS0NGxtbQGwtbUlLS1N5XTioVWpou9L++47tZMIIcyA\nldoBMjMzGTFiBMuWLaN27doFntPpdOh0uiKXCwgIwNHREQAbGxvc3d3x8vIC/vkWZazTeY8ZS54K\nzT9pEhGjR0P37nh5e2svvxFOS371pr28vIwqz4OmIyIiCAoKAjDsL02ZqhdWZ2dn8+STTzJgwABe\nffVVAFxdXYmIiKBx48akpqbi7e3NqVOnCixn6h2bJkVRwMUF1q4FT0+10whh1kx936lak6OiKDzz\nzDO4ubkZihnAkCFDWL16NQCrV69m2LBhakWsMHnfoLSqTPl1Opg40ahODjGr7W+EtJxfy9nNgWoF\nbffu3axdu5bw8HA8PDzw8PAgNDSU2bNnExYWRsuWLdmxYwezZ89WK6IoLxMnQnAwZGernUQIYcJk\nLEdROXr2hFmzYPBgtZMIYbZMfd9pFGc5CjMg16QJISqYFDQVaL0d/qHyjx4N27YZxVBYZrn9jYiW\n82s5uzmQgiYqR7164OsLP/ygdhIhhImSPjRReUJC4KOPICpK7SRCmCVT33dKQROVJysL7OzgwAEw\ng4s8hTA2pr7vlCZHFWi9Hf6h81f531BYa9eWa56yMtvtbyS0nF/L2c2BFDRRufLOdjThb4lCCHVI\nk6OoXDIUlhCqMfV9pxyhicql08k1aUKICiEFTQVab4d/5Px5Q2FlZZVLnrIy++2vMi3n13J2cyAF\nTVS+5s31zY6hoWonEUKYEOlDE+r4+msIC4ONG9VOIoTZMPV9pxQ0oY7r1/XXoiUkgI2N2mmEMAum\nvu+UJkcVaL0dvlzy16sHfn6qHKHJ9leXlvNrObs5kIIm1CNnOwohypE0OQr15A2FFR2tP1FECFGh\nTH3fKUdoQj1VqsCYMaoPhSWEMA1S0FSg9Xb4cs2vwlBYsv3VpeX8Ws5uDqSgCXXlDX8VHa1uDiGE\n5kkfmlDff/8LaWnw+edqJxHCpJn6vlMKmlDfhQv6I7XkZH2/mhCiQpj6vlPVJsenn34aW1tb2rZt\na3js2rVr+Pn50bJlS/r160dGRoaKCSuG1tvhyz1/8+bg6lppQ2HJ9leXlvNrObs5ULWgTZ06ldD7\ndmKBgYH4+flx+vRpfHx8CAwMVCmdqFRyTZoQ4hGp3uQYHx/P4MGD+fPPPwFwdXUlMjISW1tbLl26\nhJeXF6dOnSqwjKkfNpulvKGw4uP1o4gIIcqdqe87je4sx7S0NGxtbQGwtbUlLS1N5USiUtSrB/36\nyWDFQoiHZqV2gJLodDp0Ol2RzwUEBODo6AiAjY0N7u7ueHl5Af+0cxvr9NKlSzWVt9LyT5oEixcT\n0bKlNvNrfftL/gdO5/1uLHlKkzcoKAjAsL80aYrKLly4oLRp08Yw7eLioqSmpiqKoigpKSmKi4tL\noWWMIPYjCQ8PVzvCI6mw/HfvKkrDhopy/nzFrP9/ZPurS8v5tZxdUbS/73wQo+tDe/PNN2nQoAGz\nZs0iMDCQjIyMQieGmHo7sFl78UWwtYX33lM7iRAmx9T3naoWtHHjxhEZGUl6ejq2tra8//77DB06\nlNGjR3Px4kUcHR3ZsGEDNvfdL8vU/yhmbf9+/RmPcXFQTHOzEOLhmPq+U/UjtIeh9T9KRESEob1b\niyo0v6KAi4v+FP4uXSrkJWT7q0vL+bWcHbS/73wQozvLUZg5nQ4mT4Zvv1U7iRBCY+QITRif+Hjo\n3FmGwhKinJn6vlOO0ITxcXSEVq3gt9/UTiKE0BApaCrIfy2LFlVK/gocCku2v7q0nF/L2c2BFDRh\nnEaNgrAw/ZBYQghRCtKHJozXqFHg5wfPPqt2EiFMgqnvO+UITRivSZPkbEchRKlJQVOB1tvhKy1/\n//5w+jScP1+uq5Xtry4t59dydnMgBU0YrypVYMwYWLtW7SRCCA2QPjRh3KKjYcIE/ZGaDIUlxCMx\n9X2nHKEJ49a5M1hY6Md4FEKIEkhBU4HW2+ErNb9OV+7XpMn2V5eW82s5uzmQgiaM38SJsGEDZGWp\nnUQIYcSkD01oQ+/eMGMGDBumdhIhNMvU951yhCa0oQKHwhJCmAYpaCrQeju8KvlHjYI//iiXobBk\n+6tLy/m1nN0cSEET2mBjA/7++r40IYQogvShCe3YsgUWLYJdu9ROIoQmmfq+Uwqa0I7sbLCzg337\nwMlJ7TRCaI6p7zulyVEFWm+HVy2/tXW5DIUl219dWs6v5ezmwCgLWmhoKK6urrRo0YJFixapHUcY\nk7wR+E34W6YQ4uGU2OR4+PBh1q1bR1RUFPHx8eh0OhwcHOjduzfjx4/Hw8Oj3APl5OTg4uLCH3/8\ngZ2dHZ07d2bdunW0atXqn9AmftgsSqAo4OoKQUHQrZvaaYTQFFPfd1oV98TAgQOpV68eQ4YMYfr0\n6TRp0gRFUUhNTSU6OpolS5aQkZHBr7/+Wq6BoqOjcXZ2xtHREYCxY8cSEhJSoKAJM6bTweTJ+mvS\npKAJIfIptslx1apVfPfdd4wZM4bmzZtTrVo1qlevjpOTE2PHjuW7775j1apV5R4oOTmZZs2aGabt\n7e1JTk4u99dRk9bb4VXPP2HCIw2FpXr+RyT51aPl7Oag2IJ24cKFBy7cqFGjcg0D+kNiIUrk6Ait\nW8PWrWonEUIYkWIL2gsvvGD4vVslNu3Y2dmRmJhomE5MTMTe3r7QfAEBAcydO5e5c+eydOnSAt+c\nIiIijHo67zFjyaPJ/J6ehqGwNJlf69vfTPN7eXkZVZ4HTUdERBAQEGDYX5q6Yk8K8fDwICYmptDv\nFe3evXu4uLiwfft2mjZtiqenp5wUIgrLyAAHB7hwAerXVzuNEJpg6vvOYo/QcnJyuHbtGlevXjX8\nnv+nolhZWfH555/j7++Pm5sbY8aMMbkTQu7/tqo1RpH/EYbCMor8j0Dyq0fL2c1BsWc53rx5k44d\nOwKgKIrhd9BX+fPnz1dYqAEDBjBgwIAKW78wEZMmQWAgPP+82kmEEEZAhr4S2pU3FNbevfDEE2qn\nEcLomfq+s9gmx9IcgZ07d65cwwhRJtbWMHbsIw+FJYQwDcUWtLfeeosnn3ySr7/+msOHD5OamkpK\nSgqHDh1i+fLlDBo0iHfeeacys5oMrbfDG1X+vBt/luFbp1HlfwiSXz1azm4Oiu1DCw4O5uzZs6xf\nv5533nmHhIQEABwcHOjZsyefffYZTjLiuVBbp05gZaUfgV9GDhHige7evUvjxo1p1qwZlpaWXLx4\nkbp161K3bl0aNmzIu+++y5IlS9iyZUup1jd69GgWLVpE8+bNKzj5g0kfmtC++fMhKQm++krtJEIY\nNZ1OxzfffMPVq1eZOXMmAFOnTmXw4MEMHz4c0B+FfvTRR6UuaGFhYWzZsoVPP/20wnKXllGOti9E\nmUyYABs3wt27aicRwuitW7eOoUOHFngs/wGCTqfj5s2bPPnkk7i6uvLCCy+gKAqbN2/Gw8MDDw8P\nXFxcDC10Xl5ebDWSUXukoKlA6+3wRpe/jENhGV3+MpL86tFy9jzHjx+nZcuWxT6vKArR0dF8/vnn\nxMbGcu7cOX766SeGDBlCTEwMMTExuLu7G47wrK2tsbOz4+TJk5X1FoolBU2YhryTQ4QQBSiKQlx6\nHKti9IPJ165d+4HLeHp64ujoiIWFBePGjWPXrl2G5z788ENq1KhRYHjEpk2bEh8fX+7Zy6rYk0JE\nxfHy8lI7wiMxyvyjRsHrr8O1aw8cCsso85eB5FePFrLfuXeHgykH2ZO4h92Ju9mTuIca1jXo0awH\nQKnOP8g/SLyiKIbpP/74gx9//JGoqKgC8yuKgoWF+sdHxRa07OxsrK2tKzOLEA+vbl3o318/FJaM\nHCLMyOW/L+uL18Xd7E7czdG0o7Rq2IoezXowvs14vhj4BfZ19AO8r2MdmZmZD1xndHQ08fHxPP74\n42zYsIHnnnuOhIQE/v3vf7Nt2zaqVq1aYP7U1FQcHBwq5P2VRbEltUuXLpWZw6xovR3eaPOXstnR\naPOXkuRXj9rZc5VcYq/EsuLQCgJ+DqDFZy1o+VlL/u/g/1Gnah0+6PsBaW+kcfDZgywbsIwxbcYY\nilmeNm3aEBcXV+Cx/EdkOp2Ozp078+KLL+Lm5oaTkxPDhg0jKCiIa9euMWzYMDw8PHjyyScB/cFP\nUlISrq6uFb8BHqDYIzQ5LV5ojr8/PP00nD0Lzs5qpxHikd3KvsWB5APsTtQffe1N3ItNNRt6PN6D\nHs168Hq313F7zA1LC8tSr3PChAn8/PPPzJo1C6DQjZr79OlDZGRkoeXmzJnDnDlzCj0eHh5uKG5q\nK/Y6NHt7e2bMmFFkYdPpdMyYMaPCwxVHrkMTxXr5ZX0fmhnc+0mYntS/Ug39XrsTd3P88nHaNGpD\nj2b6Ata9WXea1G7y0OvX6XTcvXsXX19fIiMjy+WGyqNHj+bDDz/E0dHxkdf1qIotaE2aNOH5Evoi\niqrUlUUKmijWgQMwbhycOQNy93NhxHJyczhx5YSheO2+uJuMOxl0b9bdULw623WmhnWNcntNU993\nluoGn8Y+WzF6AAAgAElEQVRG63+UiIgITZwtVRyjzq8o0KoVrFwJ3bsXOYtR5y8Fya+eR8memZVJ\ndHK04eSNfUn7aFSzkaGA9Xi8B64NXbHQVdzZglrfdz6InLYvTItOB5Mn608OKaagCVEZkm4mGYrX\n7sTdnEo/RXvb9vRo1oPnOz3Pt099S6OajdSOaVKKPUK7evUqDRo0qOw8pWLq3zLEI0pIgI4dITkZ\n7ju9WIiKcC/3Hn+m/WkoXnsS93Ar+9Y/R1/NetCxaUeqWVVTNaep7ztlcGJhmry89CeI/G/AVSHK\n0827N9mXtM9wBBadHI1dHbsCJ2+0bNCyXE66KE+mvu+UgqYCLfchgEbyf/MN/PILbNpU6ClN5C+B\n5K9ciqKQcCOB3Rd3s/HXjcTXi+fstbN0aNLBULy6N+tOgxrG2aKVn9b3nQ8ifWjCNI0cCTNmwNWr\nYKRN58I4ZedkczTtaIH+r3u59+jRrAdNajdh9pOz6dCkA1Usq6gdVdxHjtCE6RozRt/0mG8QVSHu\nl3Eng72Jew3F62DKQRzqOhjOPOzRrAdO9ZyMrvnwYZj6vlOVgrZx40bmzp3LqVOnOHDgAB06dDA8\nt3DhQlauXImlpSWffvop/fr1K7S8qf9RRDn55RdYsAD27FE7iTAiyTeT2X5hu+EILD4jns52nQ39\nX13tu1Kvej21Y1YIU993qjI8ctu2bdm0aRO9e/cu8HhsbCzBwcHExsYSGhrK9OnTyc3NVSNihVJ7\nPLhHpZn8/v5w7px+KKx8NJO/GJK/bBRF4VjaMT6I+oDOKzrT9qu2bDm9BbfH3Fg1dBXXZ10nfEo4\nH/T9gAEtBpRYzLS+7U2dKn1oxQ1iGRISwrhx47C2tsbR0RFnZ2eio6Pp2rVrJScUJsHaGsaOhbVr\nZSgsM3Mv9x47E3YSEhfC5rjN5Cq5DHUZyiLfRfR6vBfWlnInEVNkVCeFpKSkFChe9vb2JCcnq5io\nYmjpDK+iaCr/pEn6vrQ5cwxDYWkqfxEkf9H+uvsXoWdDCYkL4bezv9HcpjlDXYby89ifaduobbn0\ngWl925u6Citofn5+XLp0qdDjCxYsYPDgwaVejyl0xAoVdewIVaro+9F69FA7jShnyTeT2XJ6CyFx\nIey+uJvuzboz1GUogb6BhW6bIkxfhRW0sLCwMi9jZ2dHYmKiYTopKQk7O7si5w0ICDCM7mxjY4O7\nu7vh21NeO7exTi9dulRTeTWdX6cjokcPWLQIr82btZe/iGlzzq8oCqs2rWJ34m6O1TjGuWvn6HBX\nfz1Y8Ixg6lStQ0REBGcPn8Xey77c8+fvQzOW7fmgvEFBQQBGMRp+hVNU5OXlpRw8eNAwfeLECaV9\n+/bK3bt3lfPnzytOTk5Kbm5uoeVUjv3IwsPD1Y7wSDSXPz5eUerXV5Q7dxRF0WD++5hb/uycbGXH\n+R3KK7+9ojRf2lxx+MRBeXnry8r289uVrHtZFROyGFrf9lrfdz6IKqftb9q0iZdffpn09HTq1q2L\nh4cHv/32G6Bvkly5ciVWVlYsW7YMf3//Qsub+qmnogLIUFia8tfdv/j93O+ExIWw9cxWQ3/YUNeh\n5dYfZo5Mfd8pF1YL81DCUFjCOKT8lcLmuM0F+sOGuAxhiMsQ6Q8rJ6a+71TlOjRzl78dXos0mX/k\nSNixA65e1Wb+fEwlv6Io/Jn2Jx9EfYDnCk/afNmGnRd3MtV9KkkzkgidGMr0ztONqphpfdubOqM6\nbV+IClO3LgwYAMHB4OamdhqzdS/3HkcuHSEkNISQuBDD9WGBvoFyfZh4ZNLkKMzHr7/CBx/A3r1q\nJzErxfWHDXEZQjvbdtIfVolMfd8pBU2Yj+xssLeHXbugRQu105i0vP6wzXGb2XVxF92adTMUMWNq\nQjQ3pr7vlD40FWi9HV6z+a2t4dln9delvfdeoTEetcIYt7+iKBy/fJz5UfML9IcFuAeQNCOJ3yf+\nbugPM8b8paXl7OZA+tCEefnvf8HBAY4fh+7doWVLCAiAUaP0/Wyi1BRFYX/yfjac2EBIXAg5uTnS\nHyZUJU2OwnxlZcFvv8Hq1fozIAcN0he3vn3B0lLtdEZJURQOphxkw4kNbIjdQE3rmoxuPZqnXJ+S\n/jANMPV9pxQ0IQDS02HdOggKgrQ0mDwZpkwBFxe1k6lOURSOXDpC8IlgNpzYgJWFFWNaj2FMmzG0\nfqy1FDENMfV9p/ShqUDr7fAmmb9hQ3jpJTh0SH/UlpUFffpAt26wfDlkZFR6zuJUxvbPu0bs3R3v\n4vK5CyM3jkSHjp/G/ETci3H8t+9/adOozUMVMy1/frSc3RxIH5oQ92vbFpYsgcBA+P13/VHbm2/q\nr2ObMgX8/MDKNP91Tl45SfCJYIJPBHM7+zajW4/m+xHf07FJRzkSE0ZPmhyFKI1r12D9en1xS0rS\n32dtyhSTuEj79NXTbDixgeATwVy/fZ3RrUczuvVouth1kSJmYkx93ykFTYiyio3Vn0iydi3Y2ekL\n27hxUL++2slK7fz18wQfD2ZD7AbSMtMY6TaSMa3H0K1ZNyx00hNhqkx93ymfXBVovR3e7PO7ucGi\nRZCQAO+/r79Qu3lz/an/v/wC9+6VS87iPGz+hIwEFu9eTOcVnen2TTcSbyay1H8pia8l8umAT+nx\neI9KKWZa/vxoObs5MM2OACEqg5UV9O+v/8nIgA0bYMECmDYNJkzQXwLQtq2qEZNuJrHxxEaCTwRz\n7vo5hrsOJ9AnkD6OfbCykH9/YVqkyVGI8hYXB99+q/9p1EjfJDl+vP5MykqQ+lcqP8T+QPCJYE6m\nn2SYyzDGtBmDt6O3XOxs5kx93ykFTYiKkpMD4eH6E0l++QW8vfVHbQMH6ofhKkdpmWn8ePJHNpzY\nwLG0Ywx2GcyY1mPwdfKlimWVcn0toV2mvu+UPjQVaL0dXvKXkqUl+PrqTx65eBGefFJ/OYCdHbz6\nKhw58lCrzcuffiudrw99je+3vrh+4cqexD3M6DaD1NdTWT1sNQNbDDTKYqblz4+Ws5sDaUQXojLU\nqQPPPKP/OXtW3xw5dCjY2OiP2iZM0DdPPsC129fYemYrC5MWsj9pP/2d+zO983QGOA+gunX1in8f\nQhgxaXIUQi25uRAZqW+SDAmB3r31xW3QIKha1TDbjTs3CIkLIfhEMLsu7sLPyY8xrccwsMVAalap\nqVp8oT2mvu+UgiaEMfjrL/jxR/31bcePkzVqONt7N+P/lGgiEiLp27wvo91GM9hlMLWq1FI7rdAo\nU993Sh+aCrTeDi/5K0Dt2hAQwKHvlvDvuZ4sPrMaj5cXsvq9w6Qxk029v2Rc23HUqlLLOPOXgZbz\nazm7OVCloM2cOZNWrVrRvn17hg8fzo0bNwzPLVy4kBYtWuDq6sq2bdvUiCdEpTuUcogh64YwdP1Q\nXDr5M31zKo0v/YXNyu+pduaC/mLuQYP017pduaI/g1IIUYAqTY5hYWH4+PhgYWHB7NmzAQgMDCQ2\nNpbx48dz4MABkpOT8fX15fTp01hYFKy7pn7YLMzHwZSDzIucR0xqDLN7zmZah2lUs6pWeMa//4ZN\nm/RnTP75J1y9qj9b0tGx6J+mTeWebqIQU993qnKWo5+fn+H3Ll268OOPPwIQEhLCuHHjsLa2xtHR\nEWdnZ6Kjo+natasaMYWoMPkL2Vs932LjqI1FF7I8NWvCxIn6H4A7dyAxEeLj//kJDdUPxxUfrz+K\nK67gOTjonzPROwYI86X6J3rlypWMGzcOgJSUlALFy97enuTkZLWiVZiIiAi8vLzUjvHQJP/DO5B8\ngHmR8zhy6UjpClkRDPlbtND/FOXu3cIFLyzsn98vX9YfxRVV7Bwdwd6+wgqelj8/Ws5uDiqsoPn5\n+XHp0qVCjy9YsIDBgwcDMH/+fKpUqcL48eOLXU9xt68ICAjA0dERABsbG9zd3Q0ftLyOW2OdPvK/\nC2qNJY/kr/jXP3nlJL9k/8KxtGOMqD6Cl9u/TD/PfhWf39lZP+3sXPD57Gy8nJwgPp6I0FA4dw6v\nc+f006dOwfXreP3vCC+iWjVo3BivPn3005cuwWOP4eXrW/H5ZfqRpiMiIggKCgIw7C9NmWqn7QcF\nBbFixQq2b99OtWr6b6iBgYEAhn61/v37M2/ePLp06VJgWVNvBxamIzo5mnmR8ziWdoy3er7FMx7P\nUNWq6oMXVFtWlv6+b/Hx/zRj5v+5dAkaNy58ZJf306xZuQ/vJR6dqe87VSlooaGhvP7660RGRtIw\n34CteSeFREdHG04KOXv2bKGjNFP/owjt25+0n3mR8/jz8p+83fNtnvZ4WhuFrLSys/UFr6hiFx8P\nqalga1t0scsreFWMb1guU2fq+05VClqLFi3Iysqi/v9uiNitWze+/PJLQN8kuXLlSqysrFi2bBn+\n/v6Fltf6HyVC4+3wkr94eYXs+OXjvN3rbaa6Ty33QqaJ7X/vHiQnF1nsIk6dwuvaNf1QX0UVu7yC\nV9X4vgBoYtuXQOv7zgdR5aSQM2fOFPvc22+/zdtvv12JaYR4dPuS9jEvch4nLp/g7V5vs2nMJtM6\nIisrKyt9sXJwgD59Cj4XEQE9e0JKSsFit2cPrFun/z0pSX+7neIuS3j8caMseEJdMvSVEI8gr5DF\nXonl7Z5vE+AeYN6FrLzk5BQuePmbNxMToUGD4i9LcHCAamU7e9QcmPq+UwqaEA9hb+Je5kXO42T6\nSSlkasjJ0ffTFVXs8gpevXrFX5bg4ADVze/uBKa+75SCpgKtt8Obc/78heydXu8Q4B5Q6fccM+ft\nX2q5uf8UvKJOXLl4UX/rnpIKXo0a6mSvQFrfdz6I6hdWC6EFexP3MjdyLqfST6lWyEQZWFjoR0Ox\ns4MePQo/n5sLaWkFi1xMjH54sbyCV6dO4WJ38+Y/J7PU1Oate+7evUu/fv2YM2cOn3zyCVu2bCnV\ncjNmzOCpp56iV69eFZzw4ckRmhAl2JO4h7kRczl99TTv9HqHKe5TpJCZg9xc/WgqRV2SkJCg/6lV\nq/jr8Bwc9M8bGZ1OxzfffMPVq1fx9PRkyZIlpS5oZ86c4fXXX2fz5s0VnPLhSUETogi7L+5mXuQ8\nKWSiaIpSdMHL37xZs2bx1+E5OOhvGVTJdDodvr6+fPHFF6SmpjJ37lwaNmzI8ePH6dixI2vXruXg\nwYP861//AuDevXucOHGC3NxcANq1a0dUVBQ2NjaVnr00pMlRBVpvhzfl/Lsv7mZu5FzOXjvLO73e\nYXL7yUZXyEx5+xs7Q3adTn/huK0t3DeSEaAveFeuFCx2J0/Cb7/9M12tWvGXJTg46Js8K8Dx48dp\n2bIlKSkpxMTEEBsbS5MmTejRowe7d++mR48exMTEAPDmm28ycOBAw7IeHh7s3buXAQMGVEi2RyUF\nTQhg18VdzIucZ9SFTGiITqfva2vUCDw9Cz+vKJCeXvDILi4Ofv/9n8eqVCm54NWt+1DRauc7MvT0\n9KRp06YAuLu7Ex8fT4//9TkGBwdz+PBhwsLCDPM3bdqU+Pj4h3rdyiAFTQVa/Xaax5Ty77q4i7kR\nczl3/Rzv9nqXye0nY21p3GMQmtL215pyy67TwWOP6X86dy78vKLo73mXvwnzzJmCd0ywsiq+2Dk6\n6s/iLEL+7pqq+S5Ot7S05N69e4D+KG7evHns3LmzwNCDiqIUO2C8MZCCJszSzoSdzIucp6lCJsyI\nTqcfKaVhQ+jYsfDzigLXrxds0jx3DrZv/2fawqJwsQMyMzNLfOmMjAzGjRvHmjVraNCgQYHnUlNT\njfoLiRQ0FWi5DwG0nX9nwk5e+b9XyGicwbu932VSu0maK2Ra3v6g7fxGk12ng/r19T8dOhR+XlEg\nI6NgwbtwAYA2bdoQFxeHTqcrcuD3zZs3c/HiRaZNm2Z47PDhwwDExMTw6aefVuAbezRS0IRZiEqI\nYl7kPC5cv8BIp5HMf3q+5gqZEKWm0+lHSqlXDzw8/nn800+ZMGECP//8M7NmzaJPvnE2P/vsM8Pv\nkydPLrTK06dP4+joSN2H7LurDHLavjBpUQlRzI2YS8KNBN7t9S4T202UQibMlk6n4+7du/j6+hIZ\nGVmm/rAZM2YwfPhwevbsWYEJH40UNGGSIuMjmRc5TwqZEPmY+r7TQu0A5ijvFulaZcz5I+Mj8V7t\nzTObn2Fy+8mc+vcppnpMLVDMjDl/aUh+9Wg5uzmQPjRhEiLiI5gbMZekm0m81/s9JrSbgJWFfLyF\nMCfS5Cg0LTI+kjkRc6SQCVEKpr7vlP98oUm5Si7/Cf8P3x79lv96/1cKmRBC+tDUoPV2eLXz37x7\nk6eCnyIqIYqDzx5kivuUMhUztfM/KsmvHi1nNwdS0ISmnLt2jm7fdKNxzcb8MfkPGtVspHYkIYSR\nkD40oRnbz29n/E/jmdNnDi90esGox5QTwhiZ+r5TlSO09957j/bt2+Pu7o6Pjw+JiYmG5xYuXEiL\nFi1wdXVl27ZtasQTRkZRFD7b/xkTfprA+hHrmd55uhQzIUQhqhS0N998k6NHj3LkyBGGDRvGvHnz\nAIiNjSU4OJjY2FhCQ0OZPn264cZypkTr7fCVmT8rJ4tntzzL14e/Zs8ze/Bu7v3I65Ttry4t59dy\ndnOgSkHLfz+ezMxMGjZsCEBISAjjxo3D2toaR0dHnJ2diY6OViOiMAJpmWn0Xd2X9Nvp7Hl6D071\nnNSOJIQwYqqd5/zOO++wZs0aqlevbihaKSkpdO3a1TCPvb09ycnJakWsMEYxWvcjqIz8MakxDAse\nxpT2U5jrNRcLXfl995Ltry4t59dydnNQYQXNz8+PS5cuFXp8wYIFDB48mPnz5zN//nwCAwN59dVX\nWbVqVZHrKa6vJCAgAMf/3d/HxsYGd3d3w4ctr1lAprU5PWfVHJbuX8r/e+n/Mar1KNXzyLRMa3U6\nIiKCoKAgAMP+0qQpKktISFBat26tKIqiLFy4UFm4cKHhOX9/f2Xfvn2FljGC2I8kPDxc7QiPpKLy\n5+TmKO9sf0dx+MRBiUmNqZDXUBTZ/mrTcn4tZ1cU7e87H0SVPrQzZ84Yfg8JCcHjf/frGTJkCOvX\nrycrK4sLFy5w5swZPD091YgoKtlfd/9iePBwIhMiif5XNO6N3dWOJITQGFWuQxs5ciRxcXFYWlry\nxBNP8NVXX9Gokf4C2QULFrBy5UqsrKxYtmwZ/v7+hUOb+LUU5ub89fMMWTeE7s268/nAz6liWUXt\nSEKYJFPfd8qF1UJVOy7sYPyP43mv93tyfZkQFczU950y9JUK8jpttao88iuKwufRnzP+x/F8P+J7\n/u3570orZrL91aXl/FrObg5keHJR6bJysvj3r/9mX/I+9jwj15cJIcqHNDmKSnX578uM2DCCBtUb\nsOapNdSuWvvBCwkhyoWp7zulyVFUmiOXjuC5whMvBy9+GvOTFDMhRLmSgqYCrbfDP0z+jSc24rfG\nj8V+i/lv3/+W68gfZWWO29+YaDm/lrObA+lDExUqV8llTvgc1hxbw7aJ2/Bo4qF2JCGEidJsH9qd\nO3fo168f4eHhREVF8dFHH7Fly5aHWl9QUBCHDh3is88+K+ekZbd8+XJq1KjBpEmTKmT9ISEhtGzZ\nklatWlXI+vP76+5fTNo0iau3r/Lj6B/lZpxCqEz60IzUd999x5NPPomFRcW9hZycnApbd3Gee+65\nCitmAJs2bSI2NrbI58rz/Z6/fp7uK7vzWI3H2D55uxQzIUSF02xBW7duHUOHDjVMZ2ZmMmrUKFq1\nasXEiRMB2LFjB0899ZRhnrCwMIYPHw7AqlWrcHFxoUuXLuzZs8cwT0BAAM8//zxdu3Zl1qxZHDly\nhK5du9K+fXuGDx9ORkYGoB/4c/bs2XTp0gUXFxd27doFQHx8PL1796Zjx4507NiRvXv3Avq29z59\n+jBs2DDs7OyYPXs2a9aswdPTk3bt2nH+/HkA5s6dy0cffQTA2bNn8fX1xd3dnY4dOxrmyW/t2rV0\n6dIFDw8Pnn/+ecP942rVqsW7776Lu7s73bp14/Lly+zZs4ctW7Ywc+ZMOnTowPnz5/Hy8uK1116j\nc+fOzJ8/HycnJ+7duwfAzZs3cXJyKlToHtSPsDdxL92/6c5zHZ/j68FfG93IH1rvB5H86tFydnOg\n2YJ2/PhxWrZsaZiOiYlh2bJlxMbGcv78efbs2UPfvn05deoUV69eBfRF7JlnniE1NZW5c+eyZ88e\ndu3aRWxsbIGLelNSUti7dy9Llixh8uTJLF68mKNHj9K2bVvDzUh1Oh05OTns37+fpUuXGh63tbUl\nLCyMQ4cOsX79el5++WXDeo8dO8by5csJCgpizZo1nDt3jujoaKZNm2Zo7tTpdIYsEyZM4KWXXuLI\nkSPs3buXJk2aFNgGJ0+eZMOGDezZs4eYmBgsLCz47rvvALh16xbdunXjyJEj9O7dmxUrVtC9e3eG\nDBnCkiVLOHz4ME5OTuh0OrKzszlw4AD/+c9/8PLy4tdffwVg/fr1jBgxAktLy1L/XbJyspjy8xS+\nHPQlL3q+KCN/CCEqjWYLWv6bhAJ4enrStGlTdDod7u7uXLhwAYBJkyaxZs0aMjIy2LdvHwMGDGD/\n/v14e3vToEEDrK2tGTNmjKFdWafTMWrUKHQ6HTdu3ODGjRv06tULgClTphAVFWV4zbyjvQ4dOhAf\nHw9AVlYW06ZNo127dowePZqTJ08a5u/cuTO2trb4+fnh7OxsGKeyTZs2huXzZGZmkpKSYjgKrVKl\nCtWrVy8wz/bt2zl06BCdOnXCw8ODHTt2GN53lSpVGDRoEAAdO3YssP7729DHjBlj+H3atGmGW/kE\nBQUxderUQts+7zYVRfnqwFc8Uf8JhrcaXuw8aispvxZIfvVoObs50OxZjvfvlKtWrWr43dLS0tBs\nNnXqVAYPHky1atUYPXo0FhYWhTpG719XjRo1yvSa+V/vk08+oUmTJqxZs4acnByqVatWZEYLCwvD\ntIWFhWH5spoyZQoLFiwo9Li1tXWB18q//vuPmmrWrGn4vXv37sTHxxMREUFOTg5ubm6lznLt9jXm\n75xP+JTwsrwFIYQoF5o9QsvMzCzVfE2aNKFp06Z88MEHhqMNT09PIiMjuXbtGtnZ2WzcuLHIprG6\ndetSr149Q//YmjVrHvgN7ebNmzRu3BiAb7/9tsgTLUpqh1cUBUVRqFWrFvb29oSEhABw9+5dbt++\nXWBeHx8ffvjhB65cuQLAtWvXuHjxYon5ateuzc2bN0ucZ/LkyUyYMIGnn366yOeLy/9B1AcMbzWc\n1o1al7h+tWm9H0Tyq0fL2c2BZgtamzZtiIuLAwr2O+XJPz1+/Hgef/xxXFxcAH2Rmzt3Lt26daNn\nz560bt262GVXr17NzJkzad++PceOHeM///lPkXnylpk+fTqrV6/G3d2duLg4atWqVeR6718277n8\nv69Zs4ZPP/2U9u3b06NHD9LS0gos16pVKz744AP69etH+/bt6devn+Eu4flfK/86x44dy+LFi4s9\nySRve12/fp1x48YV+XxRzl47y7dHv2We17xSLyOEEOVJs9ehrVq1irS0NGbNmvXA+V988UU6duxY\nZH+QKOyHH35gy5YtrF69utTLjNgwgk5NOvFWr7cqMJkQ4lGY+nVomi1od+/exdfXl8jIyBLPpOvY\nsSO1a9cmLCysQL+SKNpLL73E77//ztatW3F2di7VMlEJUUzaNIlT/z5FdevqD15ACKEKUy9omm1y\nrFKlClFRUQ88LfzQoUNEREQYVTEz5nb4zz77jNOnT5dYzPLnz1VyeX3b6yz0WaiZYmbM2780JL96\ntJzdHGi2oOXn6OjItWvXynWdCQkJrFu3zjAdFBTESy+9VOS8Pj4+/PXXX+X6+lrx/Z/fY6GzYGyb\nsWpHEUKYOZMoaBVx8e6FCxf4/vvvS/UaY8eOZcWKFaVet9avZcnLfyv7Fm9vf5uP+32s6uj5ZWUq\n21+rtJxfy9nNgXb2QqVUlqGgAM6dO0fXrl1p164d7777ruGC7dmzZ7Nz5048PDxYunQpoB9BZMCA\nAbRs2bLAyShDhgxh/fr1lfxO1ffJ3k/oYt+FHo/3UDuKEEKoW9A++ugjLCwsCjQXLly4kBYtWuDq\n6sq2bdvKtL6yDgUF8Morr/Daa69x7NgxmjVrZljXokWL6NWrFzExMbz66qsoisKRI0fYsGEDf/75\nJ8HBwSQlJQH64a7S09P5+++/S5VT6+3wERERXMq8xCf7PiHQJ1DtOGVmCttfy7ScX8vZzYFqBS0x\nMZGwsDAcHBwMj8XGxhIcHExsbCyhoaFMnz7dcIT1IIqiPNRQUPv27WPUqFEABa67uv9MIJ1Oh4+P\nD7Vr16Zq1aq4ubmRkJBgeN7W1pbExMRSZT1y5Eip5jNWR44c4T/h/2Gq+1SeqP+E2nHKzBS2v5Zp\nOb+Ws5sD1Ya+mjFjBh9++GGBEfNDQkIYN24c1tbWODo64uzsTHR0NF27di31eh9mKKjSun94rfyj\ngCiKUuq+vLwR+7UqLimOkHshxL0Yp3aUh6L17S/51aPl7OZAlSO0kJAQ7O3tadeuXYHHU1JSsLe3\nN0zb29uTnJxcqnXmHUGVdSiorl278sMPPwAU6AerXbt2gTMXi7p2I/9jaWlpBbKbKkVR2HZuG+/1\nfg+bajZqxxFCCIMKO0Lz8/MzDMOU3/z581m4cGGB/rGSLvQrzVFP3jz5h4LKzc3F2tqaL7/8kscf\nf7zYoaCWLl3KxIkTWbBgAf7+/tStWxeA9u3bY2lpibu7OwEBAdSrV6/Y4bUuXbpEgwYNCgzyW5L7\nR9bXktCzoaSnpPNcx+fUjvLQtLz9QfKrScvZzUGljxRy/PhxfHx8DCPaJyUlYWdnx/79+w23LZk9\nezYA/fv3Z968eXTp0qXAOpydnTl37lxlxhZCCM174oknOHv2rNoxKozqQ181b96cQ4cOUb9+fWJj\nYz3NXVUAAAaoSURBVBk/fjzR0dEkJyfj6+vL2bNnK/Qmkbt27eLFF19EURTq1avHypUrcXJyKtM6\nfHx8CAkJKTAQsRBCiMql+v3Q8hcrNzc3Ro8ejZubG1ZWVnz55ZcVfsfjnj17PvKZS9u3by+nNEII\nIR6W6kdoQgghRHnQ7EghM2fOpFWrVrRv357hw4dz48YNtSOVycaNG2ndujWWlpYcPnxY7TilFhoa\niqurKy1atGDRokVqxymTp59+GltbW9q2bat2lDJLTEzE29ub1q1b06ZNGz799FO1I5XJnTt36NKl\nC+7u7ri5ufHWW9q8zVBOTg4eHh4MHjxY7Shl5ujoSLt27fDw8MDT01PtOBVCswWtX79+nDhxgqNH\nj9KyZUsWLlyodqQyadu2LZs2baJ3795qRym1nJwcXnzxRUJDQ4mNjWXdunWcPHlS7VilNnXqVEJD\nQ9WO8VCsra355JNPOHHiBPv27eOLL77Q1LavVq0a4eHhHDlyhGPHjhEeHm64E7yWLFu2DDc3twrv\nCqkIOp2OiIgIYmJiiI6OVjtOhdBsQfPz88PCQh+/S5cuhmGotMLV1ZWWLVuqHaNMoqOjcXZ2xtHR\nEWtra8aOHUtISIjasUqtV69e1KtXT+0YD6Vx48a4u7sD+nFJW7VqRUpKisqpyibvzOasrCxycnKo\nX7++yonKJikpia1btzJt2jTN3lNMq7lLS7MFLb+VK1cycOBAtWOYvOTk5ALjXZblwndRfuLj44mJ\niSl0OYuxy83Nxd3dHVtbW7y9vXFzc1M7Upm89tprLF682PBFWmt0Oh2+vr506tSpTHcH0RLVz3Is\nSXEXZy9YsMDQhj1//nyqVKnC+PHjKzveA5Umv5ZosZnF1GRmZjJy5EiWLVumuctELCwsOHLkCDdu\n3MDf35+IiAjN3I7ll19+oVGjRnh4eGh2gOLdu3fTpEkTrly5gp+fH66urvTq1UvtWOXKqAtaWFhY\nic8HBQWxdetWoz1t/kH5tcbOzq7AAMyJiYlmMdyXscjOzmbEiBFMnDiRYcOGqR3nodWtW5dBgwZx\n8OBBzRS0PXv2sHnzZrZu3cqdO3e4efMmkydP5ttvv1U7Wqk1adIEgMcee4ynnnqK6Ohokyto2jx2\nRn+23eLFiwkJCaFatWpqx3kkWmnX7tSpE2fOnCE+Pp6srCyCg4MZMmSI2rHMgqIoPPPMM7i5ufHq\nq6+qHafM0tPTDQP73r59m7CwMDw8PFROVXoLFiwgMTGRCxcusH79evr27aupYnbr1i3D2LR///03\n27Zt0+TZvg+i2YL20ksvkZmZiZ+fHx4eHkyfPl3tSGWyadMmmjVrxr59+xg0aBADBgxQO9IDWVlZ\n8fnnn+Pv74+bmxtjxoyhVatWascqtXHjxtG9e3dOnz5Ns2bNDEOtacHu3btZu3Yt4eHheHh44OHh\noakzNlNTU+nbty/u7u506dKFwYMH4+Pjo3ash6a15ve0tDR69epl2P5PPvkk/fr1UztWuZMLq4UQ\nQpgEzR6hCSGEEPlJQRNCCGESpKAJIYQwCVLQhBBCmAQpaEIIIUyCFDQhhBAmQQqaEOXojTfeKNPQ\nSGlpaTIOqRDlRAqaEOXkr7/+IioqqkzDOdna2lKvXj1N3RNPCGMlBU2IYixfvtwwKkfz5s3p27dv\nifOHhITg6+trmHZ0dOTtt9/Gw8ODTp06cfjwYfr164ezszPLly83zDdkyBDWrVtXYe9DCHMhBU2I\nYjz33HPExMRw4MABmjVrxuuvv17i/Lt376ZTp06GaZ1Oh4ODAzExMfTu3ZuAgAA2bdrEvn37mDNn\njmE+T09PoqKiKux9CGEujHq0fSGMwcsvv4yPjw+DBg0qcb6EhATDiOZ58gZvbtu2LX///Tc1a9ak\nZs2aVK1alZs3b1KnTh2aNGlCfHx8RcUXwmxIQROiBEFBQSQmJvLll1+Wav7c3NwC01WrVgX09wKr\nUqWK4XELCwvu3bsH6EfS19pgt0IYIyloQhTj0KFDfPTRR+zcubNU8zs4OBR5Q1co+RZBqampODg4\nPFRGIcQ/pA9NiGJ88cUXXL9+HW9vbzw8PHj22WdLnL9nz54cPHjQMJ3/qEun0xWazhMdHU3v3r3L\nMbkQ5kluHyNEOcnMzMTb25sDBw6UabkJEybwxhtvaOqGl0IYIzlCE6Kc1KpVC29vb8LDw0u9zOXL\nl8nIyJBiJkQ5kCM0IYQQJkGO0IQQQpgEKWhCCCFMghQ0IYQQJkEKmhBCCJMgBU0IIYRJkIImhBDC\nJPx/NycoLOaJwxIAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFOf6N/DvLL0XC0REARULCItd0QgaC7HEKDF6kliP\nqcYYzbEkJ7GkqIknJjEnv1cTI5ZYYuxGOaKCvYRmTdSoKCKiCEhnd9nn/WNgZhcWWGDLAPfnuvZi\nn6n33LvsPfvMzgzHGGMghBDSZMnMHQAhhBDzokJACCFNHBUCQghp4qgQEEJIE0eFgBBCmjgqBIQQ\n0sRRISCEkCaOCgEhhDRxVAjK3L9/H5MmTYKnpyc2bdokDL958yYCAgIwb948ZGdn6728BQsW4PDh\nw3WKpT7z6mvVqlX46KOPsGbNGgDA+fPn8eKLL6J169ZQqVQAgIyMDEyYMAEjR47EmTNnDLbuLVu2\noEWLFgZbniGo1Wp88MEHCA8PN+p6anptr1+/jv79+2PDhg3VLic2NhatWrVCamqqXss1hfrGYIz3\nhanea/q+bpLFiCAhIYH5+flpDUtNTWXbt2836noHDRrElEqlUdehKScnh/Xp04edP3+eXblyRRj+\n//7f/2Ph4eFs27ZtwrBNmzaxwsJCg64/MTGRRUZG1jidqfOybt06tnTpUpOtr1zF7Rw4cCBLSUmp\ndh6lUsnkcrmxQzMpfd8X5l5mubq8blJF3wg0+Pj4IDU1FWq1Whi2Y8cOjB8/3mjrTEtLA2MMlpaW\nRltHRefPn4dcLkevXr0QEBAAgN8jtrKywqxZs/Ddd98J0xYUFMDOzs6g6z927BgGDRpU7TTmyEts\nbCwGDhxosvUBlbezsLAQDx48QNu2baudLyEhAT179jRFiCajz/tCCssE6v66SZXF4sWLF5s7CKmw\ns7PD119/jYkTJ8LV1RU7d+7Ec889h4yMDHzzzTcoLi7GkiVLYG1tDX9/fyQmJuLEiROYOXMmnj59\nirfffhsRERE4dOgQli5dipdeegkAcOPGDZ3zx8TE4IsvvoCzszMKCwvh7e2NvXv3as2blpaGb7/9\nFvn5+diyZQu8vb2RkpKC3bt3Y+/evcjNzcXVq1excuVKvPDCC1XO4+7uDoAvAl9++SUcHBxQWlqK\nzp07A+A/WLy9vTFgwAB88cUXGDBgAJ555hkkJiaiZcuWOHr0KJYuXYrIyEgolUoMGzYMkyZNAgDk\n5ubixx9/RGZmJvbv34++fftWO3zZsmV444030Lx5c1y9ehX/+c9/oFAosG3bNgwcOFDIi4uLCwoL\nC1FaWlrl9qamplYZ25UrV3DgwAFs2rQJBQUFuHbtmpDv69evY+nSpQgKChJyM3v2bPTo0QOXL1/G\nsWPH0KdPn0rxOTk54fjx45Ve8+zsbBw7dgxff/01Ro8ejaSkJCxbtgwREREYPHgwOnTogDNnzmi9\nthVf/+DgYMTGxuLcuXNo3bo1fv/9d8THx6NXr15a7yOFQoFvvvkGo0ePRqtWrbTeM7XdZl3bV917\nS9drmpWVhX379tX7fav5vtAV28CBAw3+XktISMCePXuqjKm0tBTLli3D48ePcfz4cfzwww9wcHCo\n1evWIJj3C4n0dOvWjR07doylpaWxrVu3svz8fBYcHMyys7MZY4yFh4ezjIwMxhhjly5dYhcvXmSD\nBw9mjDFWVFTEYmJiWHZ2NuvRowdjjFU7P2OMTZw4kcXHxzPGmM55e/bsyTIzMxljjB08eJC9+eab\n7NChQ+zo0aNszJgxjDHG1Gq10KVV1Tyaxo0bp9UlxBjfLVLuq6++YlOmTGF//fUXi4uLY4cPH2ap\nqalswIABjDHGTp48yaZNmyZMv2HDBjZv3jyWnZ3Npk+fXu1wlUrFOnXqxBhjLCMjg7Vt25Y9evSI\nMcbYwoULdealuu3VFVv5ug4dOsQSEhJYeHi4sNz27duzW7duMcYYe/PNN9nvv//OGGPsxo0bLCws\nTJiudevW7NGjR5Xiu3z5MktOThZe8+LiYiGOmzdvsueff54xxtgXX3zBoqKiGGOM/d///R9bu3at\n1murazsZY2z+/Pnsyy+/ZIwxdvbsWaFbQ9f76NGjR5XeM7XZZl35ry7XVb2mhnjfar4vqoqtqvVX\nNVyf91pN27tgwQLhddy8eTP7+uuva/W6NRTUNVSBn58fbt26hW3btmHChAnYtWsXunbtCldXVxQX\nFyM/Px8tW7YEAHTt2hUxMTHCXpCtrS2ee+45REVFYcqUKQBQ7fyMMSQlJaF79+4AUGne7du3o0eP\nHmjWrBkA4Nq1a7C3t8fw4cMRExOD1157DQBw9uxZoZugqnk0/fnnn+jSpYvWMM3usH/+85/Yv38/\n9u3bh759+2LIkCGIiorCq6++CgA4evQohgwZIkwfERGBzMxMdO3aVdiWisN79OgBAPjjjz+EWHfs\n2IG2bdsiKSkJv/zyC959912dealue3XF9txzz2nNVz7u1q1b8PPzg5+fHwDg1KlT6Nevn/B8xIgR\nAPgDf87OztixYwfatGmjFV9gYCCOHDkivOY2NjZCHBs2bMDLL78MADh+/LgQh5ubG2bMmKH12ura\nTgCIi4sTpjly5IjQraHrfdSiRYtK75nabLOu/FeX66pea0O8bzXfF9W9Nwz9XqsuJpVKhTVr1giv\naVxcHIYMGVKr162hoEJQgY+PD9auXYsXX3wRAJCZmYng4GAA/Avcp08fREdHC9MfOXIEQ4cO1VrG\n1q1b8eqrr+L333+vdv5r164JXTPbtm2rNK9SqUT79u0BAEVFRdi5cyfmzJkDgO/PHjx4MABg48aN\nmDFjBqKjo6udB+B/CdS8eXNwHCcMUyqVsLa2Ftqurq6IjIxEbGysMPzcuXPo37+/sB3h4eH43//+\nhwsXLuCjjz7CunXrkJCQgOPHjwPgu6A0h8fFxQEATp48ibCwMOzevRt2dnaIiIjA0KFD8corrwix\n6MpLVdtbXWwVX5+YmBgMGzYMAHDmzBnI5XKkpaXh/v37yM7ORmBgIABg8+bN+Ne//gVbW1s8//zz\nWvEpFAqdrzkAJCYmCh9Cqamp8PLyEn6BVfG11fX6P336FEqlUviVy44dO/CPf/yj0vsoJiZG631U\ncbn6brOu/CsUiipzXdVrXTGGurxvNd8XAHTGVvE9ZYj3WnUxFRYWwsvLC7a2tlAoFLh06RICAwNr\n9bo1FHSMoIK7d+8iKChI+Efy9fXFwYMHwRjDo0eP8OjRIzRv3hyBgYFgjOHHH3/E+++/r7WMY8eO\nAQCeffZZBAQEVDm/Wq3GqVOnUFRUhPDwcDg6OmrNK5fLERMTg6KiIuzevRvz589Hu3btUFhYiL17\n9+Kf//wnAP6N7OLiAi8vL4SHh+ucRzM2mUwmvPH/+OMPvPfee7h37x569+4NZ2dnAPw3o6KiIgwY\nMAAAfzAsKSkJ6enpePz4MZRKJUJDQ2FjY4OioiI8ePAAJ06cwPvvvw9nZ2colUqdwzMzM3Hz5k10\n7twZw4cPx9GjR1FYWIg///wTaWlp6NKlS6W8yGSyKrfXy8tLZ2z9+/eHvb091q9fj1mzZgEA1q5d\niylTpqBZs2Z48OABUlJSYG1tjb59+6JNmzbYv38/UlJSYGNjg9dffx2dOnWqFF9AQADWrl2rVVw1\nnThxAunp6XBwcMDTp09x/vx5vPTSS7CystJ6bR0cHLS2MywsDFeuXIGtrS3CwsKE14rjOISGhqJr\n165a76MnT56gZcuWCAgIEJY7cOBA2Nra6r3NurbPz8+vyly3aNFC52ta8T1fl/etjY2N8L7w8fGp\nMjZDv9eqiql169bw8/PDgwcP8OTJE+zatQuWlpZ48cUXa/W6OTk51fyhIwEcY8a5MU1xcTEGDhyI\nkpISKBQKvPDCC1i2bBkWL16Mn376Saiey5Ytw/Dhw40RAtGQkJCAH3/8Ee7u7nj55ZeFvUtCiG4P\nHz6Eq6srbG1tsWLFCnTo0AFjx441d1hGYbTf5tna2iI2Nhb29vZQqVTo378/Tp06BY7jMGfOnCr3\nqIhxWFhYoHXr1rC3t6ciQIge/v3vf6Nbt25wdXWFhYVFoy0CgBELAQDhIKVCoUBpaSnc3NwA8AfJ\niGnJ5XLI5XJzh0FIg/HTTz+ZOwSTMerBYrVaDblcDg8PD4SHhwsnL61evRrBwcGYPn06cnJyjBkC\nIYSQGhjtGIGmp0+fYtiwYVi+fDm6dOkiHB/4+OOPkZ6ejnXr1hk7BEIIIVUwyfn7Li4uGDFiBOLj\n44Uj6wD/e/VRo0ZVmr59+/a4deuWKUIjhJBGo127dvj7779rPZ/RuoYyMzOFbp+ioiLExMQgJCQE\nDx8+FKbZvXs3unbtWmneW7dugTFGD8awaNEis8cglQflgnJBuaj+UdcdaKN9I0hPT8fkyZOhVquh\nVqvx2muvYfDgwZg0aRKSk5PBcRx8fX2FyyAT3VJSUswdgmRQLkSUCxHlov6MVgi6du2KxMTESsM3\nbtxorFUSQgipA7rEhMRpXpumqaNciCgXIspF/ZnkV0O1xXEcJBgWIYRIWl0/O+kbgcSVX0CLUC40\nNdRcuLu7g+M4etTzUX4/CUMx3e2fCCFNXnZ2Nn3bNwDNqwcbZHnUNUQIMRX63zaMqvJIXUOEEELq\nhAqBxDXUvmBjoFyIKBfEkKgQEEJIE0eFQOI0r83U1FEuRJQLw/Px8YG9vT2cnJzg6emJqVOnoqCg\noF7LTElJQXh4OBwcHNC5c2ccPXq0ymkjIiLg5OQkPGxsbBAUFFSv9euLCgEhhIA/0HrgwAHk5eUh\nMTER8fHx+Oyzz7Sm0bwHtT4mTpyI7t27IysrC59//jkiIyORmZmpc9pDhw4hLy9PePTr1w/jx4+v\n8/bUBhUCiaO+YBHlQkS5MK5WrVohIiICV65cgUwmww8//IAOHTqgY8eOei/jxo0bSEpKwpIlS2Bj\nY4OxY8ciKCgIO3furHHelJQUnDx5EpMmTarPZuiNCgEhhJQp/+llamoqDh48iJCQEADA3r178ccf\nf+DatWsAgKCgILi5uel8zJw5EwBw9epV+Pn5wcHBQVh+cHAwrl69WmMcGzduxLPPPos2bdoYehN1\nohPKJI76gkWUC1FjzoWhzpWq7c/pGWMYM2YMLC0t4eLigpEjR+LDDz/EZ599hoULF8LV1VWY9tKl\nSzUuLz8/Hy4uLlrDnJ2dkZaWVuO8GzduxCeffFK7DagHKgSEEEkx1/lmHMdh7969GDRoUKVx3t7e\ntV6eo6MjcnNztYbl5OTA2dm52vlOnTqFjIwMREZG1nqddUVdQxJHfcEiyoWIcmFaFS/pEBAQoPUL\nH83H22+/LUxz+/Zt5OfnC/NdvHhRuHd7VTZs2IBx48bB3t7e8BtSBfpGQAghtaRPP7+/vz/kcjmW\nLFmCTz/9FAcPHsSVK1cwbty4KucpKirCjh07sGfPHkOGWyP6RiBxjbkvuLYoFyLKhenU5wJv27Zt\nQ3x8PNzd3fHRRx9h586daNasGQDg5MmTcHJy0pp+z549cHNzM/nrSxedI4SYDP1vGwZddK6Job5g\nEeVCRLkghkSFgBBCmjjqGiKEmAz9bxsGdQ0RQggxKMkWAtpp4FFfsIhyIaJcEEMyWiEoLi5G7969\nIZfL0aVLFyxcuBAAkJWVhSFDhsDf3x9Dhw5FTk6OzvlreZE/QgghdWTUYwSFhYWwt7eHSqVC//79\nsXLlSuzbtw/NmzfHvHnzsGLFCmRnZ2P58uXaQXEc8vMZNK7VRAhpBOgYgWE0qGME5adIKxQKlJaW\nws3NDfv27cPkyZMBAJMnT67yDDqFwpiREUIIKWfUQqBWqyGXy+Hh4YHw8HAEBAQgIyMDHh4eAAAP\nDw9kZGTonJcKAY/6gkWUCxHlghiSUa81JJPJkJycjKdPn2LYsGGIjY3VGs9xXJWnb8+cOQUBAT4A\nAFdXV8jlcuG06/J/Amo3rXY5qcRjznZycrKk4qlNW6p8fHzw6NEjWFhYwMHBAREREfj++++17idQ\nG48fP8asWbNw4sQJFBQUIDAwEF9//TV69eplsJjj4uIQFRUlxF9nzESWLl3KvvrqK9axY0eWnp7O\nGGPswYMHrGPHjpWmBcD+/ttUkRFCTMWEHzm15uPjw44ePcoYYywtLY0FBgayBQsWaE2jVCr1Xt7t\n27fZqlWr2MOHD5larWZr165lzZs3Z/n5+fWOtao81jW/RusayszMFH4RVFRUhJiYGISEhGD06NHY\nsGEDAP5yq2PGjNE5P3UNEULMxRC3qvT19cXs2bPh4eEBjuMwY8YMKBQK3Lhxw4iR143RCkF6ejoG\nDRoEuVyO3r17Y9SoURg8eDAWLFiAmJgY+Pv749ixY1iwYIHO+akQ8KgvWES5EFEujIMZ8FaVFSUn\nJ0OhUKB9+/am2ZhaMNoxgq5duyIxMbHScHd3dxw5cqTG+UtKjBEVIUTquCWGuVclW1S7n1EyA9+q\nUlNubi5ee+01LF68uNKlp6VAstcaOnmSoX9/c0dCCDEkKZ9H4Ovri3Xr1lW6VaVMJsPNmzfRrl27\nOi23qKgIw4cPR6dOnbBmzRpDhNqwziOoD+oaIoRIRV1uVQkAJSUlGDNmDNq0aWOwImAMVAgkjvqC\nRZQLEeXCvK5evYq8vDydjx9++AEAoFQqERkZCXt7e+EnnlIl2XsWUyEghEhBXW9VeebMGfz++++w\nt7fXOr4QHR2N0NBQQ4VnEJI9RrBjB0NkpLkjIYQYkpSPETQkdIyAEEKIQVEhkDjqCxZRLkSUC2JI\nVAgIIaSJk+wxgtWrGao4QY8Q0kDRMQLDoGMEhBBCDIoKgcRRX7CIciGiXBBDokJACCFNnGSPEXz0\nEcNnn5k7EkKIIdExAsOgYwSEEEIMigqBxFFfsIhyIaJcGJ6Pjw/s7e3h5OQET09PTJ06FQUFBQZb\nppOTE4YPH26gaA2LCgEhhIDvVjlw4ADy8vKQmJiI+Ph4fFahf1qlUtV5mXl5eYiOjjZkyAZDhUDi\npH7Db1OiXIgoF8ZliFtVlmsIx0SoEBBCSBlj3KrylVdeQcuWLTFs2LBa39nMZOp0y3sjA8DGjzd3\nFNIQGxtr7hAkg3Ihaqi50OsjBzDMo5batm3LHB0dmaurK2vbti175513WFFREeM4rs75PnPmDCsu\nLmaFhYVs2bJlzNPTk+Xk5NRpWZqqymNdP9LpGwEhRFoMVQpqieM47N27F9nZ2UhJScH3338PW1tb\nAIC3t3edNqVv376wsbGBnZ0dFixYAFdXV5w8ebJOyzImKgQSR33BIsqFiHJhWnW9VWVNy5EKukMZ\nIYTU0tWrV2ucJjU1Fffu3UPPnj2hVquxevVqPHnyRHJ3JwPoG4Hk0e/FRZQLEeXCdOq6F5+Xl4e3\n334b7u7uaN26NQ4fPoxDhw7Bzc3NwBHWn9G+EaSmpmLSpEl49OgROI7D66+/jlmzZmHx4sX46aef\n0KJFCwDAsmXLdJ5kQYWAEGJKd+7c0Tm8tLS0Tsvr0qULLl68WJ+QTMZo1xp6+PAhHj58CLlcjvz8\nfHTv3h179uzBr7/+CicnJ8yZM6fqoDgO3boxJCQYIzJCiLnQtYYMw9DXGjLaNwJPT094enoCABwd\nHdG5c2ekpaUB0O8EC/pGQAghpmGSYwQpKSlISkpCnz59AACrV69GcHAwpk+fjpycHJ3zUCHgUV+w\niHIholwQQzL6r4by8/MRGRmJb7/9Fo6OjnjrrbfwySefAAA+/vhjzJ07F+vWras0X1raFCxe7AMA\ncHV1hVwuF34yV/5PQO2m1S4nlXjM2U5OTpZUPLVpE8OJi4tDVFQUAP4Cd3Vl1PsRKJVKjBw5EhER\nEZg9e3al8SkpKRg1ahQuX76sHRTH4ZlWajxIk+ZvbgkhdUPHCAyjwdyPgDGG6dOno0uXLlpFID09\nXXi+e/dudO3aVef8itISY4VGCCFEg9EKwenTp7F582bExsYiJCQEISEhOHToEObPn4+goCAEBwfj\n+PHjWLVqlc75FepiY4XWoFBfsIhyIaJcEEMy2jGC/v37Q61WVxoeERGh1/xUCAghxDQke89izu0O\n1Fk+5g6FEGJAdIzAMBrMMYJ6syxGHU/oI4SQWjPGrSpTUlIQHh4OBwcHdO7cGUePHq1y2oiICK2L\n19nY2CAoKKhe69eXZAuBlV0xnUsA6gvWRLkQUS4Mzxi3qpw4cSK6d++OrKwsfP7554iMjERmZqbO\naQ8dOiTc0jIvLw/9+vXD+PHj67w9tSHZQmBJhYAQYiaGuFXljRs3kJSUhCVLlsDGxgZjx45FUFAQ\ndu7cWeO8KSkpOHnyJCZNmlSfzdCbdAuBLRUCgE7C0US5EFEujKO8f90Qt6q8evUq/Pz84ODgICw/\nODhYr0tYb9y4Ec8++yzatGlj6E3USbL3I7C0LUIJnUpASJPDGajbi9WyWDLGMGbMGFhaWsLFxQUj\nR47Ehx9+iM8++wwLFy6Eq6urMK0+9x7Oz8+Hi4uL1jBnZ2fhmmvV2bhxo3AFBlOQcCGgbwQA3xdM\ne388yoWoMeeith/ghlJ+q8pBgwZVGleXW1U6OjoiNzdXa1hOTg6cnZ2rne/UqVPIyMhAZGRkrddZ\nV5LtGrKwoUJACJGGutyqMiAgALdv30Z+fr4w38WLFxEQEFDtujZs2IBx48bB3t7e8BtSBcl+I5BZ\nUyEAqC9YE+VCRLkwL336+f39/SGXy7FkyRJ8+umnOHjwIK5cuYJx48ZVOU9RURF27NiBPXv2GDLc\nGkn3GwEVAkKIBNTnhvPbtm1DfHw83N3d8dFHH2Hnzp1o1qwZAODkyZNwcnLSmn7Pnj1wc3MzeaGX\n7JnFbSd8jS3vvo9+/cwdjXk15r7g2qJciBpqLujMYsNoMmcWy6zoGwEhhJiCZAsBR4UAAPUFa6Jc\niCgXxJAkWwhAhYAQQkxCsoWAs6RCANA1ZTRRLkSUC2JIki0EzKKICgEhhJiAZAuBDQqoEID6gjVR\nLkSUC2JIki0EtowKASGEmIJkC4G1mgoBQH3BmigXIsoFMSTJFgIbdSEVAkIIMQHpFgIVHSwGqC9Y\nE+VCRLkwPEPfqvLx48eYOHEivLy84Orqiv79++PChQsGjNhwJFsIrEvp56OEENMx9K0q8/Pz0bt3\nbyQmJiI7OxuTJ0/GiBEj6n0fZGOQbCGwoUIAgPqCNVEuRJQL4zLErSp9fX0xe/ZseHh4gOM4zJgx\nAwqFAjdu3DBi5HVjtEKQmpqK8PBwBAQEIDAwEN999x0AICsrC0OGDIG/vz+GDh2KnJwcnfNbq0ro\nDmWEEJMy5K0qK0pOToZCoUD79u1NszG1YLSrjz58+BAPHz6EXC5Hfn4+unfvjj179mD9+vVo3rw5\n5s2bhxUrViA7OxvLly/XDorjMGl8M7i3ysSqVcaIjhBiDvpcHTOOizPIusJYWK2m9/HxwZMnT7Ru\nVbly5UrY29vj2LFj9Touk5ubi9DQULz66quYP39+nZdTztBXHzXajWk8PT3h6ekJgL9lW+fOnZGW\nloZ9+/bh+PHjAIDJkycjLCysUiEAAGuVgrqGCGmCavsBbiiGvlVluaKiIowaNQr9+vUzSBEwBpMc\nI0hJSUFSUhJ69+6NjIwMeHh4AAA8PDyQkZGhcx5rJRUCgPqCNVEuRJQL06rLrSoBoKSkBGPGjEGb\nNm2wZs0aU4etN6PfqjI/Px/jxo3Dt99+W+luPBzHVXn3n9iEElg1X4zFiwFXV1fI5XLhq1n5PwG1\nm1a7nFTiMWc7OTlZUvHUpt0Y6HOrSqVSicjISNjb2yMqKsooccTFxQnL9vHxqfNyjHqHMqVSiZEj\nRyIiIgKzZ88GAHTq1AlxcXHw9PREeno6wsPD8ddff2kHxXFYOBi41UKF7VstjBUeIcTEpHyHMl9f\nX6xbt65S15CFhQVu3rwJPz+/Wi3v+PHjCA8Ph729vdYOb3R0NEJDQ+sVa4M5RsAYw/Tp09GlSxeh\nCADA6NGjsWHDBsyfPx8bNmzAmDFjdM7voLJEsbIEgL2xQiSEEMGdO3d0Di8tLa3T8gYOHAi1Wl2f\nkEzGaMcITp8+jc2bNyM2NhYhISEICQlBdHQ0FixYgJiYGPj7++PYsWNYsGCBzvmdVBYoVhUbK7wG\ng/qCRZQLEeWCGJLRvhH079+/ymp45MiRGud3oEJACCEmYdRjBHXFcRy2dnfENy2Sce5QO3OHQwgx\nECkfI2hIDH2MQLKXmHBQyVBSSt8ICCHE2CRbCOxVHErUVAioL1hEuRBRLoghSbgQAAr6RkAIIUYn\n2WMEye1cMKr1TtyLG2zucAghBkLHCAyjyRwjsFUyKKlriBBCjK7GQuDo6ChcQ8PGxgYymQzOzs5G\nD8xOxaBgVAioL1hEuRBRLogh1VgI8vPzkZeXh7y8PBQVFWHXrl1aF1UyFluFGioqBIQQEzH0rSor\nLtPJyQnDhw83ULSGVauuIZlMhjFjxiA6OtpY8QhslKVQggpBY7pQV31RLkSUC8Mz9K0qKy4zLy/P\nJJ+ddVHjmcU7d+4UnqvVaiQkJMDOzs6oQQGAtaIUKioEhBAzqHiryu+//x6rVq2CWq3GrVu3arWs\nhnBwvMZvBPv378eBAwdw4MABHD58GE5OTti7d6/RA7MuUVEhAPUFa6JciCgXxmGMW1W+8soraNmy\nJYYNG4ZLly6ZdoP0VOM3AmNdR1sfFihAaSlgQVeiJqTJiIvTfY+S2goLq92eOGMMY8aM0bpV5Ycf\nfojPPvsMCxcuhKurqzCtvh/oW7ZsQbdu3aBWq/Htt99i2LBh+Ouvv+Di4lKr2IytyvMIlixZonuG\nsutqf/LJJ8YLiuNQbGcNj97v4eGhL2Fra7RVEUJMSMrnEVR1PwKZTIabN2+iXbv6X/esc+fO+Oqr\nrzBy5Mh6Lcdk5xE4ODjA0dFR68FxHNatW4cVK1bUekW1pbK1hqNlHt2ukhBidnW9VWVNy5GKKruG\nPvjgA+F5bm4uvvvuO6xfvx4TJkzA3LlzjR5YqY01HC0KmnwhiIuLo1+IlKFciCgX5qXPrSpTU1Nx\n79499Oy+W6gJAAAgAElEQVTZE2q1GqtXr8aTJ0/qfXcyY6j2GMGTJ0+watUq/PLLL5g0aRISExPh\n5uZmksCKHexgz1EhIISYV1334vPy8vD222/j1q1bsLW1RUhICA4dOmSyz9DaqPIYwQcffIDdu3fj\n9ddfx9tvv13pxvNGDYrjcKtbZ0zybIvN/z2EetyTmRAiIVI+RtCQGPoYQZWFQCaTwdraGlZWVjpX\nlpubW+uV6R0UxyE5vA/m2dlg9ao4+PsbbVWEEBOiQmAYJjtYrFarUVxcLJwRp/kwZhEol+/sDFsU\nNfmuIfq9uIhyIaJcEEOS7NVH852cYceKm3whIIQQY5NsISh0doKdmgoB/TJERLkQUS6IIUm3EDg4\nwY6VNPlCQAghxibZQlDg6ATbUioE1BcsolyIKBfEkIxaCKZNmwYPDw907dpVGLZ48WK0bt0aISEh\nCAkJqfKyrIUOjrBTK5p8ISCkMXFzcwPHcfSo58PQ5yLUeNG5+pg6dSreffddTJo0SRjGcRzmzJmD\nOXPmVDtvkZ09bFTKJl8IqC9YRLkQNdRcZGVlmTsEooNRvxEMGDBAZ+XS53euhXYOsC2lQkAIIcZm\nlmMEq1evRnBwMKZPn46cnByd0xTa2cFWpWryhYD6gkWUCxHlQkS5qD+jdg3p8tZbbwmXsP74448x\nd+5crFu3rtJ0B9b8CP97KnC/LkJmphvkcrnwdbj8had202qXk0o85mwnJydLKh5ztpOTkyUVjynb\ncXFxwj1jfOpxLZ4qLzFhKCkpKRg1ahQuX76s9ziO4zDltwMYtHQUct8swTtvVb7MBSGEEG0Gv8SE\nsaSnpwvPd+/erfWLIk3KEks4KmXIL6HbVRJCiDEZtRBMnDgR/fr1w/Xr1+Ht7Y2ff/4Z8+fPR1BQ\nEIKDg3H8+HGsWrVK57wqhSXslDIUKpp2IajYLdKUUS5ElAsR5aL+jHqMYOvWrZWGTZs2Ta95S4tk\nsFdxTb4QEEKIsUn2zGJWxMFByaFI2bQLQfkBIkK50ES5EFEu6k+yhQCFHOxUaPKFgBBCjE2yhYAr\nAOyUQHETLwTU/ymiXIgoFyLKRf1JthBYFqhgq2IoVjXtQkAIIcYm2ULgoCyEVSlQXNq0CwH1f4oo\nFyLKhYhyUX+SLQTNS/NRamGDEvpGQAghRiXZQuDGCqGwsYFCVWjuUMyK+j9FlAsR5UJEuag/yRYC\nZ1aAHEcHMGWuuUMhhJBGTbKFwAH5yHJyBFeSZ+5QzIr6P0WUCxHlQkS5qD/JFgJ7WT6eOjpCpso3\ndyiEENKoSbYQ2Mry8dTJEZbKpv2NgPo/RZQLEeVCRLmoP8kWAkvLfOQ6OsJSWWDuUAghpFEz+v0I\n6oLjOMTMfgnx2dY49dACB6I3mDskQgiRvAZzPwJ9WVjnI8/BEdal9I2AEEKMSbKFAE4FKLZ2hpWq\nyNyRmBX1f4ooFyLKhYhyUX+SLQTMuQAKS2dYlzbtQkAIIcYm2WMER9d3xG/X3oTy9Hb8ePqsuUMi\nhBDJa3THCOBQADXsYaOmaw0RQogxSbYQcPb5YGp72DTxq49S/6eIciGiXIgoF/Un2UIA23yg1Aa2\npSXmjoQQQho1yRYCjlnASg3YqRVITTV3NOZD11ERUS5ElAsR5aL+JFsIoHSCDVOgub0CI0YAuXQR\nUkIIMQrJFgJZqRNsWRGcLZQIDQVefhlQqcwdlelR/6eIciGiXIgoF/Vn1EIwbdo0eHh4oGvXrsKw\nrKwsDBkyBP7+/hg6dChycnJ0B8ZcYMuKYFWiwurV/LCZMwHp/diVEEIaNqMWgqlTpyI6Olpr2PLl\nyzFkyBDcuHEDgwcPxvLly3XOa8k5wxaFsFKoYGkJbN8OnDkDfP21MSOWHur/FFEuRJQLEeWi/oxa\nCAYMGAA3NzetYfv27cPkyZMBAJMnT8aePXt0zmtl4Qo7FMBCoQYAODsDv/8OrFoF7NplzKgJIaRp\nMfkxgoyMDHh4eAAAPDw8kJGRoXM6S0sXOMryAVhCpeYPDnh7A3v3Am+8AVy4YKqIzYv6P0WUCxHl\nQkS5qD9Lc66c4zhwHKdz3KL//AGrHHs4ZFvjk2k9sXLSSgweNBjduwPvvx+HiAggISEMPj7iG6H8\nKyK1G2e7nFTiMWc7OTlZUvGYs52cnCypeEzZjouLQ1RUFADAx8cHdWX0aw2lpKRg1KhRuHz5MgCg\nU6dOiIuLg6enJ9LT0xEeHo6//vpLOyiOw/Vzn+Cv3/5Gx4uP8d4kGVxsXfDL2F9gKeNr13ffAWvW\nAKdPA66uxtwCQghpGBrMtYZGjx6NDRv4G81s2LABY8aM0TmdlZ0rrK0KUMgY9kzYg9ySXPxj5z+g\nLFUCAGbNAgYPBl56CVAqTRY+IYQ0OkYtBBMnTkS/fv1w/fp1eHt7Y/369ViwYAFiYmLg7++PY8eO\nYcGCBTrntXZwh6V1PvI5DraWttj98m4UKAswcedEoRisWgXY2gJvvdV4f1ZasVukKaNciCgXIspF\n/Rn1GMHWrVt1Dj9y5EiN81o7ucHCtgB5cAYA2FraYtf4XRj36zhM2DkB28Ztg5WFFbZuBZ59Flix\nAqiiphBCCKmGZO9HkJ19Eom/vIXMPb4YH7NPGFeiKkHkjkhYyaywLXIbrC2skZYG9O0LrFwJjB9v\nxsAJIcSMGswxAn1ZWroATgUosmvGHxUuY2Npg99e+g0qtQov//YyFKUKeHkB+/fzZx6fpXvYEEJI\nrUi4ELgCjgUonvIO8M03/Kd82VFhG0sb/Db+NzDGMH7HeChKFQgOBjZsAMaOBW7fNnPwBkT9nyLK\nhYhyIaJc1J+EC4ELOPs8lFg4A+fO8Z/uw4cDWVkAAGsLa/z60q/gOA6Rv0aiRFWCiAjgk0+A558X\nJiOEEFIDyR4jUKtLEXfMGgkPEvHBa0FAaSl/NHj3br4fqHNnAICyVImXf3sZSrUSv730G2wsbTB3\nLpCQABw+DFhbm3ljCCHERBrdMQKOk4Ep7cHyn/IDLCyAr74CPv4YGDgQOHgQAGBlYYXtkdthY2GD\ncb+OQ4mqBF9+Cbi5ATNmNN6flRJCiKFIthAAABRO4AorXKZ68mT+gkP//Cf/MyHG+J+RjtsKOys7\njP11LJSsGJs3A9euAZ99Zp7QDYX6P0WUCxHlQkS5qD9pFwKVEyyKn1Ye3rcvcP48sGULMGUKUFwM\nKwsrbBm7BQ5WDnhx+4uwsCnG/v3AunXAL7+YPHJCCGkwpF0ImBMslFXco9LbGzh5EigqAsLDgYcP\n+WIwbgtcbFwwZtsYuDYvxoEDwPvv85M2ROUXmiKUC02UCxHlov4kXQhkzBmWqmpuVuzgwN+xJiIC\n6NULSEyEpcwSm8duhpudG17Y9gLadSzCL7/w1yS6ccN0sRNCSEMh7UIgc4G1Oq/6iTiO/83oqlXA\nsGHAr7/CUmaJTS9uQjO7Znhh2wvoH1aETz8FRowAMjNNE7uhUP+niHIholyIKBf1J+lCYGXpAivU\nUAjKjRsHxMQA//oX8MknsIQMG1/ciJYOLTF622i8MqUQ48YBY8YAxcXGjZsQQhoSyZ5HwBhDfPQc\n3DyZg4mf/6z/zBkZ/OnFHh7Axo0otbfDlL1T8CDvAfa+vB/TXrOHpSV/ALmKe+IQQkiD1OjOIwAA\nO1s3WFnmobQ2G+bhARw7xt+tJjQUFqn3EfVCFLycvDB620j88GMB7twBFi0yXtyEENKQSLsQ2LvD\nwaoQfRITEZ9bzUHjimxs+N+NTpkC9OkDizNnsf6F9Wjj0gYv7RmJLb8V4Jdf+GsTSR31f4ooFyLK\nhYhyUX+SLgQ2ju5wsCnETC8vjLx8GTNv3ECOvrcj4zj+d6NRUcDYsbBYH4V1o9fB19UXU2NG4Nc9\nBZg3D4iNNeomEEKI5En6GMHje9G4tvvfGPhePLKUSiy8fRv7nzzBynbtMLFlyypvfF/J9evAqFHA\n889D/dWXmHHwLfyd/Tfmt/4dU19xRFyccOkiQghpsBrlMQIb52aASwGujL0Cm5sKrOnYEbsCAvDl\nvXt47uJFXC8s1G9BHTvyZyJfuwbZyFH4ccCX6ODeActTn8eSZfkYMQJ49Mi420IIIVIl6UJgae0K\nm44quIS6IDksGX9N/QvyHBvEd++OUc2aITQxER/fuYOi0tKaF+bmxl+ornNnyPr2w1r/uejYrCN+\n4SIQ+UoeXniBP0lZaqj/U0S5EFEuRJSL+pN2IbB0Rak6B95zvdH7Zm/YeNsgvls87rx/C2/beOBi\nz564XliIgD/+wMEnT/RZIH+Tm3/9C7JnB2KN9Vh0ad4FZ3wj4N0uD5MnA2q18beLEEKkRNLHCNRq\nJc6caQlPzynw8poFOztfKB4pcPfzu8jYnAGvd7zgPdcbR1RPMfPmTQQ7OuLb9u3R2ta25pWcPAmM\nHw/1vHl4p/11JGdcBjYfQlhfZyxbZvxtJIQQQ2uUxwhkMiv06HEJHGeNhISeuHIlEkU28Wj/TXv0\nSOyBktQSnPc/jy7rC3AxsBsCHRwgj4/Hf1JToaxp137AAODsWciiovDDbgV6Ng+EasIwbN/7FD/9\nZJrtI4QQKZB0IQAAW1tvtGu3An36pMDVNQx//jkJiYl9kGu3F/7r2kMeK0fumVxc6pyAN47Y4HRQ\nCKKzstA9IQFnnuq4hLUmHx/g9Glw2dn4duVVDHbuDOe3h+HDpU8RE2OSzasR9X+KKBciyoWIclF/\nZusa8vHxgbOzMywsLGBlZYULFy6IQVXz9YaxUmRm7sf9+6tQXJwCL6938cwz/0RRogy3P7yNktQS\n+Hzqg7iBwJzbtxDh7o4V7dqhmZVV1cGo1cCiRWCbNmHF3D7YqLqDh1/9D518XCGTATIZf1qC5t+q\nnht6/IMHcWjTJsxs69dnvKnWeeFCHPr2DTPK8huauLg4uvxyGcqFqK5dQ2YrBL6+vkhISIC7u3ul\ncfpuTG5uPO7fX4WsrEPw8JiE1q1noei0K+4svANWyuDxaVus7JCNbY8fY5mfH6Z4ekJW3X/99u1g\nM2fi5zd6YZXHQ/R2HQ0wDgDH/y17zhgHruwvGAcOMuG55rSswjzieJn2eI3nDBygFudhanH5rHy4\nxnioxXmYsJyy5as1lsvE5WkNU/PTs7LlMHX5MH68uvy5WnMZ/PLVGtOqNf4K06o5qBkHqGXawyo8\n15pPzUFdvvxSMYby+dWlFZ6Xjy+VCcPUFceXissQl8XX//K3mRQKnZTGSzGmxjbeGDsgDbIQxMfH\no1mzZpXG1XZjiovvIy3te6Sn/wRX14Fo3fp9KI76I+XfKbBqaQXlx5541+0BrDgO/+fvj66OjlUv\nLCEBbMwYJEXIkRDUgv+cBqDmGBjjP7fVABjHoAYrew6owcRpwcR5ysaXMjU/TAaoGdOaR2iXTc8v\nl4njy5ala77yeUqZWnxeYTkVp2VgUDM1GGNgYDX+rc20jJVNr+e0xl5+xWmF9xg4cBxX/V+tYbJK\n46A5Xdk4oML00BhW/pzTHs7/lekYVvVfDjJhx6J8ePmDYxrPIe6sCNMwHdNqDBOmrziuwjQVd4zK\nd0Aq7/hw4k4O03zItKct35HRNaxselZpWOWdHWGYWlbluIo7RCjbwRGfa+886d4xkmktR+eOkeay\nSrWnF98rGg9wZTurHGSQCcNlFceXDZNpvGdlnAzpF0IbViHw8/ODi4sLLCws8MYbb2DGjBliUHWs\naipVPjIyNuD+/W9gaekOr1bvQX2oP+4uSYNDsCMSZjlgvl06Jnt6YlHbtnC0tNS9oPR04J13gAcP\n+F3Gqh7lu5T6PuowfZxCgTBLS8OsQ1P5LknFXRR9HmaaPi4/H2HOzvVePpPJ+M8zcGDCcPDPgcrD\nOACcTHiuPZ3GX2i0ZZx2u2w842fVGIaymMrHcWU7FJz4Oaq1Ln7c6QcP0a/1M0IbXNkXSZRPoxkn\n+OWXPy9fvrDzwmmsp/zBaSyn5r9qjgPT2PHhdzjE52oOGusT4xOGQ3vHSXteJk4v7ByJ0167+QAd\nOzwjxqKxAyXsSEFdaUdNe1pWFovGDhS0d84qttUyCDthOnfsKixH2KEDv1NXviNZysTpSjWHl+/Y\nqcWdGTUr26kRdqLEthoMSe+cbViFID09Hc888wweP36MIUOGYPXq1RgwYAAfFMdh8uTJ8PHxAQC4\nurpCLpcL/YDlB4eqasfGHkVu7lm0aXMExcW3cffOcOBcX3j/6g+7wa5YKj+PM/ZFWDN+PMY0b47j\nx49XuzxztjUPhBlk+YwhLjYWYAxhAwfyxaZ8/IAB/PjyfPTvz7dPnODboaH89KdO8fP368ePP32a\nb/fty7fPnOHbffrw0589y7d79+bHnzvHt3v14tvnz/Ptnj212z168O0//hAKWVi3boiLj+fHd+vG\nj4+P58fJ5Xw7MZFvBwfz7aQkvh0UxLeTk/n5u3bl25cu8e3AQL59+TLfDgjQbnfpwrevXuXbnTvz\n7WvX+HanTtrtjh359l9/8W1/f759/Trf7tCBb9+4wbfbtePbN2/y8fr58e2//+bbvr58+9YtJD94\ngNnl+b5zh5+/bVu+nZLCt9u04dt37wJqNcK8vfn2vXv8+Nat+XZqKt/28uLb9+/z07dqxbfT0vjx\nzzzDt8t2kMI8Pfl2ejrfbtmSbz98yMfbogXfzsjg282b8+2y0/jD3N35dmYmP395+8kTvu3mxrez\nsvi2iwvfzs7Wan+Tlga5vT2/k8AY4p4+5cc7OvLt3Fztdl4e33Zw4Nv5+Xzb3p5/vxYU8PHZ2vLj\ny65gEGZjw7fLzjwNs7bmpy8p4ee3suLHKxR8u2wHLk6p5NsWFvz0KhXflsn48aWlfJvj+HbZzlxY\n2f99+SdAWNkOTxxjAMchzMICcYwhquyEWh8LCyxRKhtWIdC0ZMkSODo6Yu7cuQDq/o1Al7y8BKSm\nrkJW1kG0cH8Fsv0vIeMrGVQvumDB2EI097LD6g4d4GtnZ5D1EUKIwejbE1D24Jyc6vTZKTNC6DUq\nLCxEXh5/57GCggIcPnwYXbt2Ncq6nJy6o0uXzejZ8zKsbB2REToWzv9biRZtr+KrVxWYsKYUA+Pi\n8cXdu1DQacWEECkp7/q0sOCvjGBlBVhb85fat7UF7OwAe3v+/u3VHfusgVkKQUZGBgYMGAC5XI7e\nvXtj5MiRGDp0qFHXaWPjBT+/Zejb9y6aeQ5F/pCPYXtgNgKeOYZNU0uh+iYDPU79gdjsbKPGUVv0\nG2kR5UJEuRBRLuqviqOlxuXr64vk5GRzrBoWFg7w8nobrVq9iSdPDuC+3SpYPrsKw0+9jP5Tn8OG\ncVex/lV3fNWpPTysrc0SIyGEmJIkjhFUZMhjBPrIy0vE/furkJlxABZ/DEfOr2Pw07BnkN+u7CQ0\nToxLs635V/hNcBXTaI2vNE7/ebhK6+YqDReey8qf6J6Xk1VYLyrPW2ke8L+24H/WVlUMNcdUcZN1\nxSRMIyyP0950jb/Vjatq3urGVZy3NsttLDHVZrl1iak2y20sMRn7PdHHxaXhHiyuyNSFoFxJSRrS\n0v6LtLtrgb8DwB568j/vKw9F/O1f2V9dw7jK87AK8wi/G6zQ1loW025rrVPHMipMyyrOrzMmaM2j\nNa5SbGXDyk5mq7xNOtrq6uLXFbfY5qrIrebidf+7lJOVTVthOKs8D6swT+VlcRXm01hc1f+WOsZV\nPw/TGlax11ZzudrLrLi8ym3NZci0h5X/xLTC9pX/lLX65Wuvn/+5qvg6l/80Vnue8vUzcVu4yq8V\nY7rmLfu5L9OOXzMfusarNednmiFqxl2WA047Z0wjhvKYND+ZGFd+foQ4rTANp5l7Jvwsl59PM39M\nnFbXv19V/2Y6hv/71/5UCAyltLQAjx/vgkqVjfI0i/FofYpVMw4Vxlc3Tve8jDGcO5eCPn3a1mJe\n48dU83K1YzFUTBcuZKBXz5YVhqvFacuWzyq2NddbxTSVl6HWGFzFuGrXW/0264pJGFdFbJrDExKf\nons35xrXU/vXrPyvfq+ZXq+dzuEVcwcd01TYjirGJSUrECK3qrA+PePWWm9t4q8wDycuqRIdOx8V\n/3KalUBrvI5hTJyHlc9bNmTgc7l1+uw0yzECqbOwcICn52vmDgMAcPduHHx9w8wdhiQ8ehSHLgFh\n5g5DEgqUcegZGmbuMCShlIvDgLJzZqRCVwE1ZkEWC3HlS/bog74REEJII9Eo70dACCHE+KgQSBz9\nRlpEuRBRLkSUi/qjQkAIIU0cHSMghJBGgo4REEIIqRMqBBJH/Z8iyoWIciGiXNQfFQJCCGni6BgB\nIYQ0EnSMgBBCSJ1QIZA46v8UUS5ElAsR5aL+qBAQQkgTR8cICCGkkaBjBIQQQuqECoHEUf+niHIh\nolyIKBf1R4WAEEKaODpGQAghjQQdIyCEEFInZikE0dHR6NSpEzp06IAVK1aYI4QGg/o/RZQLEeVC\nRLmoP5MXgtLSUsycORPR0dG4du0atm7dij///NPUYTQYycnJ5g5BMigXIsqFiHJRfyYvBBcuXED7\n9u3h4+MDKysrTJgwAXv37jV1GA1GTk6OuUOQDMqFiHIholzUn8kLQVpaGry9vYV269atkZaWZuow\nCCGElDF5IeA4ztSrbNBSUlLMHYJkUC5ElAsR5aL+LE29Qi8vL6Smpgrt1NRUtG7dWmua4OBgKhga\nNmzYYO4QJINyIaJciCgXvHbt2tVpPpOfR6BSqdCxY0ccPXoUrVq1Qq9evbB161Z07tzZlGEQQggp\nY/JvBJaWlvj+++8xbNgwlJaWYvr06VQECCHEjCR5ZjEhhBDTMeuZxfqcWDZr1ix06NABwcHBSEpK\nMnGEplNTLn755RcEBwcjKCgIoaGhuHTpkhmiNA19Tzj8448/YGlpiV27dpkwOtPSJxdxcXEICQlB\nYGAgwsLCTBugCdWUi8zMTAwfPhxyuRyBgYGIiooyfZAmMG3aNHh4eKBr165VTlPrz01mJiqVirVr\n147duXOHKRQKFhwczK5du6Y1ze+//84iIiIYY4ydO3eO9e7d2xyhGp0+uThz5gzLyclhjDF26NCh\nJp2L8unCw8PZiBEj2G+//WaGSI1Pn1xkZ2ezLl26sNTUVMYYY48fPzZHqEanTy4WLVrEFixYwBjj\n8+Du7s6USqU5wjWqEydOsMTERBYYGKhzfF0+N832jUCfE8v27duHyZMnAwB69+6NnJwcZGRkmCNc\no9InF3379oWLiwsAPhf37983R6hGp+8Jh6tXr0ZkZCRatGhhhihNQ59cbNmyBePGjRN+ede8eXNz\nhGp0+uTimWeeQW5uLgAgNzcXzZo1g6WlyQ+DGt2AAQPg5uZW5fi6fG6arRDoc2KZrmka4wdgbU+y\nW7duHZ5//nlThGZy+r4v9u7di7feegtA4z03RZ9c3Lx5E1lZWQgPD0ePHj2wadMmU4dpEvrkYsaM\nGbh69SpatWqF4OBgfPvtt6YOUxLq8rlptnKp7z8vq3AsuzH+09dmm2JjY/Hzzz/j9OnTRozIfPTJ\nxezZs7F8+XLhkrsV3yONhT65UCqVSExMxNGjR1FYWIi+ffuiT58+6NChgwkiNB19cvHFF19ALpcj\nLi4Ot27dwpAhQ3Dx4kU4OTmZIEJpqe3nptkKgT4nllWc5v79+/Dy8jJZjKaiTy4A4NKlS5gxYwai\no6Or/WrYkOmTi4SEBEyYMAEAf4Dw0KFDsLKywujRo00aq7Hpkwtvb280b94cdnZ2sLOzw7PPPouL\nFy82ukKgTy7OnDmDjz76CAB/YpWvry+uX7+OHj16mDRWc6vT56bBjmDUklKpZH5+fuzOnTuspKSk\nxoPFZ8+ebbQHSPXJxd27d1m7du3Y2bNnzRSlaeiTC01TpkxhO3fuNGGEpqNPLv788082ePBgplKp\nWEFBAQsMDGRXr141U8TGo08u3n//fbZ48WLGGGMPHz5kXl5e7MmTJ+YI1+ju3Lmj18FifT83zfaN\noKoTy9asWQMAeOONN/D888/j4MGDaN++PRwcHLB+/XpzhWtU+uRi6dKlyM7OFvrFrayscOHCBXOG\nbRT65KKp0CcXnTp1wvDhwxEUFASZTIYZM2agS5cuZo7c8PTJxYcffoipU6ciODgYarUaX375Jdzd\n3c0cueFNnDgRx48fR2ZmJry9vbFkyRIolUoAdf/cpBPKCCGkiaNbVRJCSBNHhYAQQpo4KgSEENLE\nUSEghJAmjgoBIYQ0cVQICCGkiaNCQCSrqsvtnjt3Dq+//joA/mJkYWFh8Pf3R/fu3TFy5EhcuXLF\nKPEsX74cW7ZsAQB8//33wmWOp0yZAj8/P8jlcnTs2BGTJ0/Wug6Oj48PgoKCIJfL8dxzz+HBgwfV\nricqKgotWrRASEgIAgIC8NNPP+mcbt++ffj0008Ns3GkaTPgyW6EGFRVl9v95JNP2K5du9jDhw+Z\nj4+P1tnWp06dYnv27DFKPOHh4SwzM5Op1Woml8uFSxxXPLt51apVzN/fXxjv4+MjnOG6aNEiNnPm\nzGrXExUVxd59913GGGOPHj1iLVq0YI8ePdKaRqVSMbVazYKDg5lCoTDYNpKmib4REMmq6nK7x44d\nw+DBg/H9999jypQp6NOnjzAuNDQUL7zwAgAgJCREeNjb2+PkyZM1rnPNmjXCPL6+vhg0aBAA/rLG\nCoUCzZo1w+nTp9GpUyetSxwzjfMyZ8+eDU9PTxw8eLDS8vv06YNbt24BAB4/fozIyEj06tULvXr1\nwpkzZyotr0WLFmjXrh1SUlIwZcoUvPnmm+jTpw/mz58PjuPQt29fHD58uMbtIqQ6je9i3aRRy8zM\nhJWVFZydnXHt2jVMmTKlymnL78y0f/9+rFy5Ev369UNsbCzmzJlTaVoHBwecOnUKb7zxBt544w2o\nVCoMGjQIc+fOBQAcOXIEzz33HADg1KlT6NmzZ7VxduvWDdevXxfa5R/s0dHRCAwMBAC89957eP/9\n9wPNYKUAAANISURBVBEaGop79+5h+PDhuHbtmlZRuX37Nm7fvo327dsDAB48eICzZ88KV5Ps1asX\nTpw4gREjRlQbDyHVoUJAGpTDhw9j2LBhQlvzQ7N3797Iy8vD0KFD8c033wDgr9c/b948xMXFwcLC\nAuHh4Xrdum/WrFkYPHiw8AH7v//9D9OmTQMA3Lt3D/379692fs24GGMIDw9HVlYWLC0thWMYR44c\nwZ9//ilMl5eXh4KCAgDA9u3bcerUKdjY2GDt2rVwc3MDx3F46aWXtC4p3KpVK0RHR9e4PYRUh7qG\nSIMSHR2N4cOHAwACAgKQmJgojDt//jw+/fRTPH36FACQn5+Pl19+GT/99BM8PDwA8Pdz0OwyKn+E\nhoYKy4mKikJqaioWLVokDLtw4QJ69eoltFkN13tPTExE586dhXFxcXG4e/cu+vTpgx9//FFYxvnz\n55GUlISkpCSkpqbCwcEBHMdhwoQJSEpKwrlz54SuLgCwt7fXWo9arW6U9+ggpkXfCEiDwRjDpUuX\nEBwcDAB455130Lt3bwwbNgx9+/YFABQUFAgfjNOmTcPUqVO1PuRr+kaQkJCA//znP1rHE65evYpO\nnToJy23bti0ePnxYKbbyv6tXr0ZGRoZQsMpZWFjgm2++QY8ePTBjxgwMHToU3333HT744AMAQHJy\nMuRyea1utpOeno62bdvqNS0hVaFvBESyJk6ciH79+uH69evw9vbGV199hW7dugnjPTw8sH37dixc\nuBAdOnRAaGgodu3ahZkzZ+Lu3bvYuXMnfv75Z2GvX/PbQ1X++9//Ijs7G+Hh4QgJCRFuBBQRESFM\n079/f8THx2vN969//Uv4+WhCQgJiY2OFg8mae+yenp4YO3Ys/vvf/+K7775DfHw8goODERAQgLVr\n1wrTV7WXX3H4hQsX8Oyzz9a4XYRUhy5DTRqMzz//HB06dMD48eNNut6hQ4di06ZNQvcSYwzdunXD\n+fPnYW1tbdJYNKnVanTr1g3x8fGN8ibtxHSoEBBSBz/88APs7OwwdepUs8Wwb98+XLp0Cf/+97/N\nFgNpHKgQEEJIE0fHCAghpImjQkAIIU0cFQJCCGniqBAQQkgTR4WAEEKaOCoEhBDSxP1/o1tSnXUj\nCSwAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.5 page No.320" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "OD = 2.858/100.0 # outer diameter in m \n", + "ID = 2.528/100.0 # inner diameter in m \n", + "A = 5.019e-4 # cross sectional area in sq.m\n", + "Q=80*2.957e-5/120 # The volume flow rate of water (at 20\u00b0C) in cu.m/s\n", + "p_20= 1.000*1000 # density of water at 20\u00b0C in kg/cu.m\n", + "p_50= 0.990*(1000) # density in kg/m3 \n", + "cp= 4181 # specific heat in J/(kg*K) \n", + "v = 0.586e-6 # viscosity in sq.m/s \n", + "kf = 0.640 # thermal conductivity in W/(m.K) \n", + "a = 1.533e-7 # diffusivity in sq.m/s \n", + "Pr = 3.68 # Prandtl number\n", + "\n", + "import math\n", + "mass_flow=p_20*Q # mass flow rate through the tube in kg/s\n", + "L=3 # length of tube in m\n", + "As=math.pi*ID*L\n", + "Tbo=80 # final temperature in \u00b0C\n", + "Tbi=20 # initial temperature in \u00b0C\n", + "qw=mass_flow*cp*(Tbo-Tbi)/(As)\n", + "q=qw*As\n", + "A=math.pi*(ID/2)**2\n", + "print\"The power required is\",round(q,0),\"W\"\n", + "V=mass_flow/(p_50*A) # average velocity at 50 \u00b0C\n", + "Re=(V*ID)/v # Reynold's Number\n", + "inv_Gz=L/(Re*ID*Pr) # The inverse Graetz number at tube end, based on 50\u00b0C conditions\n", + "Nu=6.9 #value of corresponding Nusselts Number from figure 6.12\n", + "hz=(Nu*kf)/ID\n", + "Two=(qw/hz)+Tbo # The outlet wall temperature in \u00b0C\n", + "print\"\\nThe outlet wall temperature is\",round(Two,0),\"C\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The power required is 4945.0 W\n", + "\n", + "The outlet wall temperature is 199.0 C\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.6 page No.325" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "p = 0.077 # density in lbm/ft^3 \n", + "cp = 0.240 # specific heat in BTU/(lbm.degree Rankine) \n", + "v = 15.28e-5 # viscosity in ft^2/s \n", + "kf = 0.0146 # thermal conductivity in BTU/(hr.ft.\"R) \n", + "a = 0.776 # diffusivity in ft^2/hr \n", + "Pr = 0.711 # prandtl number \n", + "D=7/12.0 # diameter in ft\n", + "L=40 # length in ft\n", + "Tbo=72 # outlet temperature in degree Fahrenheit\n", + "Tbi=45 # inlet temperature in degree Fahrenheit\n", + "A=math.pi*(D**2)/4 # cross sectional area of duct in ft^2\n", + "rou_o=.0748\n", + "V=10 # average velocity in ft/s\n", + "mass_flow=rou_o*A*V\n", + "\n", + "V_avg=mass_flow/(p*A)\n", + "Re=(V_avg*D)/v\n", + "q=mass_flow*cp*(Tbo-Tbi)\n", + "hc=1 # convection coefficient between the outside duct wall \n", + "T_inf=105 # The temperature of attic air surrounding the duct in degree Fahrenheit\n", + "hz=(0.023*Re**(0.8)*Pr**0.4)*kf/D \n", + "qw=(T_inf-Tbo)/((1/hc)+(1/hz)) \n", + "Two=qw*(1/hz)+Tbo # The wall temperature at exit in degree Fahrenheit\n", + "\n", + "print\"The heat gained by air is\",round(q,3),\"BTU\"\n", + "print\"The wall temperature at exit is \",round(Two,1),\"F\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat gained by air is 1.295 BTU\n", + "The wall temperature at exit is 82.1 F\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER7.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER7.ipynb new file mode 100755 index 00000000..1e2b1047 --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER7.ipynb @@ -0,0 +1,646 @@ +{ + "metadata": { + "name": "CHAPTER7" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter7 : Convection Heat Transfer in Flow Past immersed Bodies" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.1 page NO.353" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou=1.177 # density in kg/cu.m\n", + "v=15.68e-6 # viscosity in sq.m/s\n", + "L=0.5 # length in m\n", + "V_inf=1; # air velocity in m/s\n", + "Re= (V_inf*L)/v # Reynolds Number\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "x=[0,0.065,0.125,0.5]\n", + "t=[0,0.004,0.006,0.013]\n", + "xlabel(\"x (m)\") \n", + "ylabel(\"t (m)\") \n", + "plt.xlim((0,0.6))\n", + "plt.ylim((0,0.015))\n", + "a1=plot(x,t)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "x=[0,0.75,0.9,1]\n", + "t=[0,0.005,0.0075,0.010]\n", + "xlabel(\"V (m/s)\") \n", + "ylabel(\"y (m)\") \n", + "plt.xlim((0,1))\n", + "plt.ylim((0,0.010))\n", + "a1=plot(x,t)\n", + "\n", + "gc=1\n", + "mu=rou*v/gc\n", + "b=1 # width in m\n", + "Df=0.664*V_inf*mu*b*(Re)**0.5\n", + "\n", + "\n", + "print\"(a)plot between boundary layer growth with distance\"\n", + "print\"(b)velocity distribution with distance\"\n", + "print\"(c)The skin-drag including both sides of plate is \",round(2*Df,4),\"n\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)plot between boundary layer growth with distance\n", + "(b)velocity distribution with distance\n", + "(c)The skin-drag including both sides of plate is 0.0044 n\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEICAYAAACuxNj9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9c1fXd//EHDHRlNq0ZFoevJKBgKmYYZdloqVyydTKv\nVpjXxtJ1eVnqurpq2aolWU5abSu5NG1J0pZjyyaUeNI0VpmIGuUKSzTYdYDQ+QPTsg4/3t8/PoW/\ngHNEDp9z4Hm/3bp1Drzf57zeN/A8+Xzen/f7E2KMMYiIiLQh1O4CREQk8CksRETEK4WFiIh4pbAQ\nERGvFBYiIuKVwkJERLwKs7sAfwkJCbG7BBGRoNTSiooufWRhjOmy/z388MO216CxaXwaX9f7rzVd\nOixERKRjKCxERMQrhUWQSklJsbsEv+nKYwONL9h19fG1JsS0dZIqiIWEhLR5/k1ERE7V2menjixE\nRMQrhYWIiHilsBAREa8UFiIi4pXCQkREvPJrWLhcLuLj44mLiyMrK6vFNrNnzyYuLo7ExERKS0ub\nvz516lQiIiIYNmxYi/2efPJJQkNDOXDggF9qFxGRY/wWFo2NjcycOROXy0VZWRkrVqxgx44dJ7Qp\nLCxk165dlJeXs3TpUmbMmNH8vdtuuw2Xy9Xia7vdbtatW8eAAQP8Vb6IiBzHb2FRUlJCbGws0dHR\nhIeHk56eTn5+/gltCgoKyMjIACA5OZm6ujpqa2sBGDNmDH379m3xte+++24ef/xxf5UuIiIn8duu\ns9XV1URFRTU/dzgcbN682Wub6upq+vfv3+rr5ufn43A4GD58uNca5s6d2/w4JSWl2668FBFpTVFR\nEUVFRV7b+S0sfN0i/OSVgm31++KLL5g/fz7r1q1rtf/xjg8LERE51cl/SGdmZrbYzm+noSIjI3G7\n3c3P3W43DoejzTZVVVVERka2+pq7d++msrKSxMRELr74YqqqqrjsssvYu3dvxw9ARESa+S0skpKS\nKC8vp7KyEo/HQ15eHk6n84Q2TqeT3NxcAIqLi+nTpw8RERGtvuawYcPYs2cPFRUVVFRU4HA4ePfd\nd7ngggv8NQwREcGPYREWFkZ2djapqakMGTKEW265hYSEBJYsWcKSJUsASEtLY+DAgcTGxjJ9+nQW\nLVrU3H/y5MmMHj2anTt3EhUVRU5OzinvobvhiYh0Du06KyIizbTrrIiItJvCQkREvFJYiIiIVwoL\nERHxSmEhIiJeKSxERMQrhYWIiHilsBAREa8UFiIiPnK7oanJ7irsobAQEfGishL+8z9hxAg46R5u\n3YbCQkSkFRUVcPvtcNllcMEFsHMnXHKJ3VXZQ2EhInKSTz6BadNg1Cjo3x/Ky+HRR+H88+2uzD4K\nCxGRr+3eDVOnwuWXQ2SkdSQxbx6cd57dldnPb3fKExEJFrt2wWOPwSuvwJ13WkcSffvaXVVgUViI\nSLe1a5d1eunVV2HWLOt5nz52VxWYFBYi0u18MwexejXMnq2Q8IXCQkS6jZ07rZBYs8YKid274Tvf\nsbuq4KAJbhHp8j7+GP7jP+Cqq2DQIOtI4qGHFBSnQ2EhIl3WRx/BlCkwZgwkJFhHEg8+qJBoD4WF\niHQ5O3bArbfCNddYi+h27YIHHoBzz7W7suClsBCRLqOsDCZPhu99D4YNs44kfvlLhURH8HtYuFwu\n4uPjiYuLIysrq8U2s2fPJi4ujsTEREpLS5u/PnXqVCIiIhg2bNgJ7e+9914SEhJITExk0qRJHDp0\nyK9jEJHA9uGHkJ4O115r7d+0ezfcfz/07m13ZV2HX8OisbGRmTNn4nK5KCsrY8WKFew4aReuwsJC\ndu3aRXl5OUuXLmXGjBnN37vttttwuVynvO748eP58MMPef/99xk0aBC//vWv/TkMEQlQH3wAt9wC\n3/8+jBxphcR99ykk/MGvYVFSUkJsbCzR0dGEh4eTnp5Ofn7+CW0KCgrIyMgAIDk5mbq6OmprawEY\nM2YMfVtYRjlu3DhCQ0Ob+1RVVflzGCISYP7xD7j5Zhg7FpKSrJD4xS/gnHPsrqzr8us6i+rqaqKi\nopqfOxwONm/e7LVNdXU1/fv39+k9li1bxuTJk1v83ty5c5sfp6SkkJKS4nvxIhJwtm+HRx6Bt9+G\ne+6BnBzo1cvuqoJbUVERRUVFXtv5NSxCQkJ8ameMaVe/xx57jB49enDrrbe2+P3jw0JEgtf771sh\n8c47VkgsX66Q6Cgn/yGdmZnZYju/hkVkZCRut7v5udvtxuFwtNmmqqqKyMhIr6/9/PPPU1hYyPr1\n6zuuYBEJKO+9Z4XEpk1w773wwgtw9tl2V9U9+XXOIikpifLyciorK/F4POTl5eF0Ok9o43Q6yc3N\nBaC4uJg+ffoQERHR5uu6XC5+85vfkJ+fz7e//W2/1S8i9igthRtvhLQ0a63E7t1w990KCjv5NSzC\nwsLIzs4mNTWVIUOGcMstt5CQkMCSJUtYsmQJAGlpaQwcOJDY2FimT5/OokWLmvtPnjyZ0aNHs3Pn\nTqKiosjJyQFg1qxZHDlyhHHjxnHppZdyxx13+HMYItJJSkth4kT4wQ8gJcUKibvuUkgEghBz8oRB\nFxESEnLKXIiIBKZ334XMTNi61br09fbb4ayz7K6qe2rts1MruEXENtu2gdNp/Td2rLUtx+zZCopA\npLAQkU63ZQv88Idwww0wfrwVErNmKSQCmcJCRDpNSYk1HzFpEkyYYIXEzJmg61QCn25+JCJ+t3mz\nNSfxwQcwZw68/DL07Gl3VXI6FBYi4jfFxVZIfPihtfvr3/6mkAhWCgsR6XCbNlkhsWOHFRKrVikk\ngp3mLESkw7zzDqSmWveUmDQJysth+nQFRVegIwsROWMbN1pHEuXl1pFERgb06GF3VdKRFBYi0m5v\nvw1z51orrR94AH7yE4VEV6WwEJHT9tZbVkhUVBwLifBwu6sSf1JYiIjP3nzTCol//tMKiR//WCHR\nXSgsRMSroiJrTsLthgcfhClTFBLdjcJCRFpVVGQdSVRVwUMPWSERpk+Nbkk/dhE5gTHHQqKmxgqJ\nW29VSHR3+vGLCGCFxIYN1umm2lorJCZPVkiIRb8GIt2cMbB+vRUSe/daIZGerpCQE+nXQaSbMgZe\nf90KiX37joXEt75ld2USiBQWIt2MMbBunTUncfAg/OpXcPPNCglpm8JCpJswBtautULi0CErJH70\nI4WE+EZhIdLFGQOvvWaFxOHDVkjcdJNCQk6PwkKkizIGXC4rJD7//FhIhGqvaWkHv/7auFwu4uPj\niYuLIysrq8U2s2fPJi4ujsTEREpLS5u/PnXqVCIiIhg2bNgJ7Q8cOMC4ceMYNGgQ48ePp66uzp9D\nEAk6xsDq1ZCcDL/4BdxzD2zfbs1LKCikvfz2q9PY2MjMmTNxuVyUlZWxYsUKduzYcUKbwsJCdu3a\nRXl5OUuXLmXGjBnN37vttttwuVynvO6CBQsYN24cO3fu5LrrrmPBggX+GoJIUDEGXn0VLr8c7r/f\nCor337fmJRQScqb89itUUlJCbGws0dHRhIeHk56eTn5+/gltCgoKyMjIACA5OZm6ujpqa2sBGDNm\nDH379j3ldY/vk5GRwapVq/w1BJGgYAy88gqMGmVt7jdnDrz3nk45Scfy25xFdXU1UVFRzc8dDgeb\nN2/22qa6upr+/fu3+rp79uwhIiICgIiICPbs2dNq27lz5zY/TklJISUl5TRHIRK4vgmJzExobISH\nH4YbblBAyOkpKiqiqKjIazu/hUVISIhP7Ywx7er3Tdu22h8fFiJdhTFQUGCFhDFWSDidCglpn5P/\nkM7MzGyxnd/CIjIyErfb3fzc7XbjcDjabFNVVUVkZGSbrxsREUFtbS39+/fn008/5YILLujYwkUC\nlDGQn2+FREjIsZA4jb+vRNrNb3+LJCUlUV5eTmVlJR6Ph7y8PJxO5wltnE4nubm5ABQXF9OnT5/m\nU0ytcTqdLF++HIDly5czceJE/wxAJEA0NcHf/gaXXgrz5llhsW2bdcpJQSGdxvhRYWGhGTRokImJ\niTHz5883xhjzzDPPmGeeeaa5zZ133mliYmLM8OHDzbZt25q/np6ebi688ELTo0cP43A4zLJly4wx\nxuzfv99cd911Ji4uzowbN84cPHiwxff289BE/K6x0ZiXXjJm+HBjLrvMmIICY5qa7K5KurrWPjtD\nvv5mlxMSEnLKfIhIMGhqgpdfhkcegZ49rdNNP/iBjiKkc7T22akV3CIBoqkJVq60QuKss+DXv4a0\nNIWEBAaFhYjNmprgpZeskOjVCx5/HP7t3xQSElgUFiI2aWw8FhK9e8MTT0BqqkJCApPCQqSTNTbC\nX/9qhcR3vgO//S2MH6+QkMCmsBDpJI2N8Je/WCHRty/8/vcwbpxCQoKDwkLEzxob4c9/hkcfhfPO\ng6efhrFjFRISXBQWIn7S0HAsJPr1g4UL4brrFBISnBQWIh2soQFWrLBCIiICFi2Ca69VSEhwU1iI\ndJCGBnjxRSskLrwQnnkGUlIUEtI1KCxEzlBDA/zpT1ZIREbC0qVWSIh0JQoLkXZqaIA//tEKiago\nePZZhYR0XQoLkdNUX38sJAYMgOeeg+99z+6qRPxLYSHio/p6yM2Fxx6Diy+GnBy45hq7qxLpHAoL\nES/q62H5cpg/H2JirMC4+mq7qxLpXAoLkVZ4PMdCIi4OXngBrrrK7qpE7KGwEDmJxwPPP2+FxODB\n1pVOo0fbXZWIvRQWIl/zeKx5iPnzISHBWlh35ZV2VyUSGBQW0u199dWxkLjkEsjLgyuusLsqkcCi\nsJBu66uvYNky6450Q4da24YnJ9tdlUhgajMs6uvrWbt2LW+++SaVlZWEhIQwYMAArrnmGlJTUwkL\nU9ZI8PnyS2ttxIIFMHy4dQOiyy+3uyqRwBba2jfmzZvHqFGjePXVV4mPj2fq1KlkZGQwePBgXnnl\nFZKSknj00UfbfHGXy0V8fDxxcXFkZWW12Gb27NnExcWRmJhIaWmp174lJSVcfvnlXHrppYwaNYot\nW7ac7pilm/ryS8jOtq5scrng5Zdh9WoFhYhPTCvy8/NNU1NTa982jY2NJj8/v9XvNzQ0mJiYGFNR\nUWE8Ho9JTEw0ZWVlJ7RZvXq1mTBhgjHGmOLiYpOcnOy17/e+9z3jcrmMMcYUFhaalJSUFt+/jaFJ\nN3P0qDFPP21MZKQx119vzJYtdlckErha++xs9cjC6XQS0sZ2maGhoTidzla/X1JSQmxsLNHR0YSH\nh5Oenk5+fv4JbQoKCsjIyAAgOTmZuro6amtr2+x74YUXcujQIQDq6uqIjIz0NRelmzl61LrRUEwM\nvP465OdDQQEkJdldmUjw8TrpsGXLFubPn09lZSUNDQ0AhISEsH379jb7VVdXExUV1fzc4XCwefNm\nr22qq6upqalpte+CBQu4+uqrueeee2hqamLTpk0+DFO6k6NHrZ1fH38cRo2CV16BkSPtrkokuHkN\niylTpvDEE08wdOhQQkNbPRA5RVtHJcezjnp8N23aNJ5++mluvPFG/vrXvzJ16lTWrVvXYtu5c+c2\nP05JSSFFW4J2aUePwpIlVkgkJ8Orr8Kll9pdlUhgKyoqoqioyGs7r2HRr1+/Nk83tSYyMhK32938\n3O1243A42mxTVVWFw+Ggvr6+1b4lJSW8/vrrANx000387Gc/a7WG48NCuq4vvrBuNPTEE9b6iMJC\nGDHC7qpEgsPJf0hnZma22M7rocLDDz/MtGnTWLFiBStXrmTlypW8/PLLXgtISkqivLycyspKPB4P\neXl5p4SO0+kkNzcXgOLiYvr06UNERESbfWNjY/n73/8OwIYNGxg0aJDXWqRr+vxzePJJa07inXdg\nzRrrCicFhUjH83pksXz5cj7++GMaGhpOOA01adKktl84LIzs7GxSU1NpbGxk2rRpJCQksGTJEgCm\nT59OWloahYWFxMbG0qtXL3JyctrsC7B06VLuvPNOvvrqK8466yyWLl3a7sFLcPr8c1i82AqKq6+G\n116z1kuIiP+EGC+TBoMHD+ajjz7yeQ4iUISEhJz2fIgEts8/h0WLrJC45hp46CEYNszuqkS6ltY+\nO72ehho9ejRlZWV+KUrEF0eOWJPWMTGwdat1Gexf/qKgEOlMXk9Dbdq0iREjRnDxxRfTs2dPwLdL\nZ0XO1JEj8L//C7/9LVx7Laxfb230JyKdz2tYuFyuzqhDpNnhw1ZI/O538P3vwxtvwJAhdlcl0r21\nGhaHDx+md+/eREdHt9r5mzYiHeGzz6y9m37/exg7FoqKrPtKiIj9Wg2LG2+8kcGDB3PDDTeQlJTE\neeedB8D+/fvZunUrq1atory8vHnNg0h7ffYZLFwITz0F48fDm29CfLzdVYnI8dq8GmrDhg28+OKL\nbNy4kZqaGgAuuugirr76aqZMmRLQK6J1NVTg++wza++mp5+G1FR48EHrNqYiYp/WPju9XjobrBQW\ngevQoWMhMWGCFRJaWykSGNp96axIR6mrg0cegdhY2LULNm6E3FwFhUgwUFiI39XVQWamFRKffGJt\nzbF8uUJCJJgoLMRv6upg7lwrJCorobgYnn/eulOdiAQXhYV0uIMH4Ve/skLi//4PNm+GnBzruYgE\nJ4WFdJgDB6z9muLioKYGSkpg2TJrmw4RCW4KCzljBw4cu6Kptha2bIE//AEGDrS7MhHpKF7D4r77\n7vPpa9L97N8PDzxgHUns3Wtt8vfss3DxxXZXJiIdzWtYrF279pSvFRYW+qUYCQ779sEvf2kdSezb\nB9u2Wfe8bmNnGBEJcq1u97F48WIWLVrE7t27GXbcXtCHDx/mqquu6pTiJLDs22fdS2LpUvjRj+Dd\nd2HAALurEpHO0OoK7kOHDnHw4EHmzJlDVlZW84q+3r17c/7553dqke2hFdwd51//skLi2Wfh5pvh\n/vvh//0/u6sSEX/Qdh9y2vbuhSeegOeeg/R0mDMHoqLsrkpE/EnbfYjP9u6Fe++1tgf/4gt4/33r\n/hIKCpHuS2EhzfbsgXvusbYH//JLKySys8HhsLsyEbGbwkKorYX/+R/rSMLjgX/8w7q/hEJCRL7h\n17BwuVzEx8cTFxdHVlZWi21mz55NXFwciYmJlJaW+tR34cKFJCQkMHToUK35OAO1tXD33dZ9rRsa\n4IMPrG3DIyPtrkxEAo7xk4aGBhMTE2MqKiqMx+MxiYmJpqys7IQ2q1evNhMmTDDGGFNcXGySk5O9\n9t2wYYMZO3as8Xg8xhhj9u7d2+L7+3FoQa+mxpi77jKmb19jfv5zY6qr7a5IRAJFa5+dfjuyKCkp\nITY2lujoaMLDw0lPTyc/P/+ENgUFBWRkZACQnJxMXV0dtbW1bfZdvHgx999/P+Hh4QD069fPX0Po\ncj79FO66yzqSAPjwQ+t+1xddZG9dIhL4/BYW1dXVRB13+YzD4aC6utqnNjU1Na32LS8v58033+SK\nK64gJSWFrVu3+msIXcrLL8PQoRAaCmVl8LvfwYUX2l2ViASLVldwn6mQkBCf2pnTXAvR0NDAwYMH\nKS4uZsuWLdx888188sknLbadO3du8+OUlJSAvme4P2Vnw69/DevWwciRdlcjIoGkqKiIoqIir+38\nFhaRkZG43e7m5263G8dJl9ec3KaqqgqHw0F9fX2rfR0OB5MmTQJg1KhRhIaGsn///hZXlR8fFt1R\nU5O12nrVKnj7bW3wJyKnOvkP6czMzBbb+e00VFJSEuXl5VRWVuLxeMjLy8PpdJ7Qxul0kpubC0Bx\ncTF9+vQhIiKizb4TJ05kw4YNAOzcuROPxxMU2490No8HfvITeOst617XCgoRORN+O7IICwsjOzub\n1NRUGhsbmTZtGgkJCSxZsgSA6dOnk5aWRmFhIbGxsfTq1YucnJw2+wJMnTqVqVOnMmzYMHr06NEc\nNnLMZ5/BpElwzjnw+utw9tl2VyQiwU57Q3UxNTWQlgajR1sL6771LbsrEpFgor2huoEdO6yQuPlm\nay8nBYWIdBS/nYaSzvX22/Dv/w6PPw5fL10REekwCosu4OWXYfp0+NOfYPx4u6sRka5IYRHkvllD\n8dprWkMhIv6jsAhSWkMhIp1JYRGEPB6YOhU++cRaQ/Hd79pdkYh0dQqLIKM1FCJiB106G0RqauCa\na2DQIFi5UkEhIp1HYREktIZCROyk01BBQGsoRMRuCosApzUUIhIIFBYBTGsoRCRQKCwCkNZQiEig\nUVgEGK2hEJFApLAIIFpDISKBSpfOBgitoRCRQKawCABaQyEigU6noWz2zRqKrCz46U/trkZEpGUK\nCxt9s4bij3+E1FS7qxERaZ3CwibZ2TB/PrhccNlldlcjItI2hUUnO34NxcaNWkMhIsHBrxPcLpeL\n+Ph44uLiyMrKarHN7NmziYuLIzExkdLSUp/7Pvnkk4SGhnLgwAG/1d/RPB74yU/gzTcVFCISXPwW\nFo2NjcycOROXy0VZWRkrVqxgx44dJ7QpLCxk165dlJeXs3TpUmbMmOFTX7fbzbp16xgwYIC/yu9w\nn30GaWlw+DCsX6/FdiISXPwWFiUlJcTGxhIdHU14eDjp6enk5+ef0KagoICMr7dRTU5Opq6ujtra\nWq997777bh5//HF/ld7hPv3UWkMRF6c1FCISnPw2Z1FdXU1UVFTzc4fDwebNm722qa6upqamptW+\n+fn5OBwOhg8f7rWGuXPnNj9OSUkhJSWlnaNpP2Ng8mT44Q9h3jwICen0EkREWlVUVERRUZHXdn4L\nixAfPxWNMT6/5tGjR5k/fz7r1q3zqf/xYWGXP/3JOgWVmamgEJHAc/If0pmZmS2281tYREZG4na7\nm5+73W4cDkebbaqqqnA4HNTX17fYd/fu3VRWVpKYmNjc/rLLLqOkpIQLLrjAX0Npt7o6uPde68on\nrcoWkWDmtzmLpKQkysvLqaysxOPxkJeXh9PpPKGN0+kkNzcXgOLiYvr06UNERESrfYcOHcqePXuo\nqKigoqICh8PBu+++G5BBAfDgg3DDDZCcbHclIiJnxm9HFmFhYWRnZ5OamkpjYyPTpk0jISGBJUuW\nADB9+nTS0tIoLCwkNjaWXr16kZOT02bfk/l6qssO27bBSy9BWZndlYiInLkQczqTBkEkJCTktOZD\nOlJjI1x5Jdxxh/Z7EpHg0tpnp3ad9YNnn4WePa0FeCIiXYGOLDrY3r0wdKi18G7YsE5/exGRM9La\nZ6fCooP99KfW6uwnnuj0txYROWOtfXZqI8EO9Oab1hGFJrVFpKvRnEUHqa+3JrR/9zvo3dvuakRE\nOpbCooM89RQ4HNZd70REuhrNWXQAtxsuvRSKiyE2tlPeUkTEL3TprB/993/DzJkKChHpujTBfYbW\nrIH33oMXXrC7EhER/1FYnIGjR60jiuxsOOssu6sREfEfnYY6A1lZ1lzFhAl2VyIi4l+a4G6n8nJr\n/6fSUjjuPk0iIkFNE9wdyBiYNQvmzFFQiEj3oLBoh5UroaoKfv5zuysREekcOg11mg4fhiFD4MUX\nYcyYDn95ERFbaSPBDnLPPbBvHzz/fIe/tIiI7bSRYAf4xz8gNxc++MDuSkREOpfmLHzU1AQzZsAj\nj0CA3vJbRMRvFBY+ys0Fjwduv93uSkREOp/mLHxw4IA1qb16NVx2WYe8pIhIQNIE9xn4r/+CsDBr\nWw8Rka7MtkV5LpeL+Ph44uLiyMrKarHN7NmziYuLIzExkdLSUq997733XhISEkhMTGTSpEkcOnTI\nb/Vv3gz5+fDoo357CxGRwGf8qKGhwcTExJiKigrj8XhMYmKiKSsrO6HN6tWrzYQJE4wxxhQXF5vk\n5GSvfdeuXWsaGxuNMcbcd9995r777jvlvTtiaA0Nxlx6qTEvvHDGLyUiEhRa++z065FFSUkJsbGx\nREdHEx4eTnp6Ovn5+Se0KSgoICMjA4Dk5GTq6uqora1ts++4ceMIDQ1t7lNVVeWX+hcvhnPPhSlT\n/PLyIiJBw6/rLKqrq4k6bvMkh8PB5s2bvbaprq6mpqbGa1+AZcuWMXny5Bbff+7cuc2PU1JSSElJ\n8bn22lrIzIS//x1CQnzuJiISVIqKiigqKvLazq9hEeLjp6xp50T0Y489Ro8ePbj11ltb/P7xYXG6\n7rkHpk2zroISEemqTv5DOjMzs8V2fg2LyMhI3G5383O3243D4WizTVVVFQ6Hg/r6+jb7Pv/88xQW\nFrJ+/foOr/uNN+Ctt6CsrMNfWkQkKPl1ziIpKYny8nIqKyvxeDzk5eXhdDpPaON0OsnNzQWguLiY\nPn36EBER0WZfl8vFb37zG/Lz8/n2t7/doTV7PHDHHfDUU9CrV4e+tIhI0PLrkUVYWBjZ2dmkpqbS\n2NjItGnTSEhIYMmSJQBMnz6dtLQ0CgsLiY2NpVevXuTk5LTZF2DWrFl4PB7GjRsHwJVXXsmiRYs6\npObf/hZiYuCGGzrk5UREugQtyjvOP/9prdAuKYGBA/1UmIhIANOd8nzw85/DXXcpKERETqYtyr/2\nyivWhHZent2ViIgEHoUF8MUXMHs2LF0KPXvaXY2ISODRaShg/nxIToav58tFROQk3X6C++OP4aqr\nYPt2uOiiTihMRCSAaYK7BcbAnXfCgw8qKERE2tKtwyIvD/71L5g50+5KREQCW7c9DXXokLXv01//\nCqNHd2JhIiIBTHfKO8ldd8GRI/CHP3RiUSIiAa61z85ueense+/BihXw4Yd2VyIiEhy63ZxFUxPM\nmAGPPQbf/a7d1YiIBIduFxbLlln/nzrV3jpERIJJt5qz2LcPLrkEXnsNRoywqTARkQCmCW7gZz+D\nc86B3//epqJERAJct5/gfucdWLMGduywuxIRkeDTLeYsGhqsSe0nn4Rzz7W7GhGR4NMtwiI7G/r1\ng1tusbsSEZHg1OXnLKqrITERNm6EwYPtrkpEJLB12wnu9HSIjYVHH7W7IhGRwNctJ7jXrYPNm4+t\nrRARkfbx65yFy+UiPj6euLg4srKyWmwze/Zs4uLiSExMpLS01GvfAwcOMG7cOAYNGsT48eOpq6tr\n9f3vvBNsqlPkAAAHzElEQVQWLoSzz+64MQWKoqIiu0vwm648NtD4gl1XH19r/BYWjY2NzJw5E5fL\nRVlZGStWrGDHSdetFhYWsmvXLsrLy1m6dCkzZszw2nfBggWMGzeOnTt3ct1117FgwYJWaxgyBH74\nQ3+N0F5d+Re2K48NNL5g19XH1xq/hUVJSQmxsbFER0cTHh5Oeno6+fn5J7QpKCggIyMDgOTkZOrq\n6qitrW2z7/F9MjIyWLVqVas1PPWUnwYnItLN+C0sqquriYqKan7ucDiorq72qU1NTU2rfffs2UNE\nRAQAERER7Nmzp9UaBgzokKGIiHR7fpvgDgkJ8amdLxdjGWNafL2QkJA238fXGoJVZmam3SX4TVce\nG2h8wa6rj68lfguLyMhI3G5383O3243D4WizTVVVFQ6Hg/r6+lO+HhkZCVhHE7W1tfTv359PP/2U\nCy64oMX376JXBIuI2MJvp6GSkpIoLy+nsrISj8dDXl4eTqfzhDZOp5Pc3FwAiouL6dOnDxEREW32\ndTqdLF++HIDly5czceJEfw1BRES+5rcji7CwMLKzs0lNTaWxsZFp06aRkJDAkiVLAJg+fTppaWkU\nFhYSGxtLr169yMnJabMvwJw5c7j55pt57rnniI6O5i9/+Yu/hiAiIt8wQWzNmjVm8ODBJjY21ixY\nsKDFNrNmzTKxsbFm+PDh5t133+3kCs+Mt/Ht2LHDXHHFFaZnz57miSeesKHCM+NtfH/84x/N8OHD\nzbBhw8zo0aPN+++/b0OV7edtfKtWrTLDhw83I0aMMCNHjjTr16+3ocr28+XfnzHGlJSUmG9961tm\n5cqVnVjdmfE2tjfeeMOce+65ZsSIEWbEiBFm3rx5NlTZuYI2LBoaGkxMTIypqKgwHo/HJCYmmrKy\nshParF692kyYMMEYY0xxcbFJTk62o9R28WV8e/fuNVu2bDEPPPBA0IWFL+N75513TF1dnTHG+sfb\n1X5+R44caX68fft2ExMT09lltpsv4/um3bXXXmt+8IMfmJdeesmGSk+fL2N74403zPXXX29ThfYI\n2l1n27uOo61LbQOJL+Pr168fSUlJhIeH21Rl+/kyviuvvJLvfOc7gPXzq6qqsqPUdvFlfL169Wp+\nfOTIEb4bRDeF92V8AAsXLuSmm26iX79+NlTZPr6OzXSzi2iCNizau44jWD5wfBlfMDvd8T333HOk\npaV1RmkdwtfxrVq1ioSEBCZMmMDTTz/dmSWeEV///eXn5zfvzBAsl7L7MraQkBDeeecdEhMTSUtL\no6ysrLPL7HRBu5Fge9dxBMsvbLDU2V6nM7433niDZcuWsXHjRj9W1LF8Hd/EiROZOHEib731Fj/+\n8Y/5+OOP/VxZx/BlfHfddRcLFixo3sU0WP4S92VsI0eOxO12c/bZZ7NmzRomTpzIzp07O6E6+wRt\nWLR3Hcc36zUCnS/jC2a+jm/79u3cfvvtuFwu+vbt25klnpHT/fmNGTOGhoYG9u/fz/nnn98ZJZ4R\nX8a3bds20tPTAdi3bx9r1qwhPDz8lEvoA40vY+vdu3fz4wkTJnDHHXdw4MABzjvvvE6rs9PZO2XS\nfvX19WbgwIGmoqLCfPXVV14nuDdt2hRUE6S+jO8bDz/8cNBNcPsyvn/+858mJibGbNq0yaYq28+X\n8e3atcs0NTUZY4zZtm2bGThwoB2ltsvp/H4aY8xPf/rToLkaypex1dbWNv/sNm/ebAYMGGBDpZ0r\naI8szmQdRzDwZXy1tbWMGjWKzz77jNDQUJ566inKyso455xzbK7eO1/G98gjj3Dw4MHmc97h4eGU\nlJTYWbbPfBnfypUryc3NJTw8nHPOOYc///nPNlftO1/GF6x8GdtLL73E4sWLCQsL4+yzzw6qn117\nddk75YmISMcJ2quhRESk8ygsRETEK4WFiIh4pbAQERGvFBYinWzs2LEcPnzY5/YFBQXMmzfPjxWJ\neKewEOlEGzZsYPDgwScs6vLm+uuvZ+XKldTX1/uxMpG2KSxE2mnLli0kJiby1Vdf8fnnnzN06FCv\newS9+OKL3HDDDQBUVlYSHx/PbbfdxuDBg5kyZQpr167lqquuYtCgQWzZsgWwtp+48sorWbt2rd/H\nJNIarbMQOQMPPfQQX375JUePHiUqKor77ruvzfYJCQls3LiR8847j8rKSuLi4njvvfcYMmQIo0aN\nIjExkeeee46CggJycnL429/+BkBOTg4fffQRWVlZnTEskVME7QpukUDwq1/9iqSkJM466ywWLlzo\ntX1NTc0J+wddfPHFXHLJJQBccskljB07FoChQ4dSWVnZ3O6iiy7C5XJ1bPEip0GnoUTOwL59+/j8\n8885cuQIR48ePe3+PXv2bH4cGhpKjx49mh83NDQ0f6+pqanL70QsgU1hIXIGpk+fzqOPPsqtt97q\n9RQUWEcI+/fvP+33+fTTTxkwYEB7ShTpEAoLkXbKzc2lZ8+epKenM2fOHLZs2UJRUVGbfa6++mq2\nbt3a/Pzko4Xjnx//uKSkhGuuuaZjChdpB01wi3SioqIi8vLyWLx4sc99mpqaGDlyJFu3biUsTNOM\nYg8dWYh0opSUFMrLy09rUd6rr77KTTfdpKAQW+nIQkREvNKRhYiIeKWwEBERrxQWIiLilcJCRES8\nUliIiIhXCgsREfHq/wNpvB1fWm+96gAAAABJRU5ErkJggg==\n" + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEMCAYAAADu7jDJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH8RJREFUeJzt3X1wk1W+B/BvSosy6CyCEKXpUGiCLRaCbiGCKHWhllaN\nKAwUuXsrFKfXVVjxDdzduVJ3likKCsLoLV4tLytQRYfWpWR5qUVFQkQ6smtZKNhomtLu8lJA3SFJ\ne+4fuYS0tM2TlydPXr6fGWdJe05ynrP6/Dj55pyohBACREREAUpQegBERBTdWEiIiCgoLCRERBQU\nFhIiIgoKCwkREQWFhYSIiIIiayExmUxIT0+HTqfDihUrum2zaNEi6HQ66PV61NXVeX4+f/58qNVq\njB49ulP7c+fOIScnByNHjsT999+PtrY2OS+BiIh8kK2QtLe34+mnn4bJZEJ9fT22bt2KY8eOdWpT\nXV2NkydPoqGhAevXr8eTTz7p+d28efNgMpmued7S0lLk5OTgxIkTmDJlCkpLS+W6BCIikkC2QmKx\nWKDVapGamoqkpCQUFBSgsrKyU5uqqioUFhYCAAwGA9ra2tDS0gIAuOeee3DTTTdd87zefQoLC7Fj\nxw65LoGIiCSQrZDY7XakpKR4Hms0Gtjtdr/bdNXa2gq1Wg0AUKvVaG1tDeGoiYjIX4lyPbFKpZLU\nrusJLVL7XWnbU3t/noeIiK7y9+Qs2VYkycnJsNlsnsc2mw0ajabXNk1NTUhOTu71edVqteftr9On\nT2PIkCE9thVC8B8h8PLLLys+hkj5h3PBueBcXPvP558LJCcLXLwY2NGLshWSrKwsNDQ0wGq1wuFw\noKKiAkajsVMbo9GITZs2AQDMZjMGDBjgeduqJ0ajERs3bgQAbNy4EdOnT5fnAoiI4oDLBTz1FLBy\nJXDjjYE9h2yFJDExEevWrUNubi5GjRqF2bNnIyMjA2VlZSgrKwMA5OfnY8SIEdBqtSguLsZbb73l\n6T9nzhxMnDgRJ06cQEpKCsrLywEAS5cuxZ49ezBy5EjU1NRg6dKlcl0CEVHMe/ttYNAgYPbswJ9D\nJYSIyWPkVSoVYvTS/FZbW4vs7GylhxEROBdXcS6uite5aG0FMjOB/fuBUaPcPwvk3slCQkQUpx5/\nHBg8GHjttas/C+TeKduntoiIKHJ98QWwdy/QZZ94QHjWFhFRnAlFwO6NhYSIKM6EImD3xoyEiCiO\ndBewe2PY7oWFhIjoWt0F7N4YthMRUY9CGbB7Y0ZCRBQHQh2we2MhISKKA6EO2L0xIyEiinG+AnZv\nDNu9sJAQEbn5Cti9MWwnIqJO5ArYvTEjISKKUXIG7N5YSIiIYpScAbs3ZiRERDHIn4DdG8N2Lywk\nRBTP/AnYvTFsJyIiHDggf8DujRkJEVEMCVfA7o2FhIgohrz9NjBwoPwBuzdmJEREMSLQgN0bw3Yv\nLCREFG8CDdi9MWwnIopT4Q7YvTEjISKKckoE7N5YSIiIopwSAbs3ZiRERFEsFAG7N4btXlhIiCge\nhCJg98awnYgojigZsHtjRkJEFIWUDti9sZAQEUUhpQN2b8xIiIiiTKgDdm8M272wkBBRrAp1wO6N\nYTsRUYyLlIDdGzMSIqIoEUkBuzcWEiKiKBFJAbs3ZiRERFFAzoDdG8N2LywkRBRL5AzYvQVy75T1\nrS2TyYT09HTodDqsWLGi2zaLFi2CTqeDXq9HXV2dz74WiwXjx4/HHXfcgXHjxuGrr76S8xKIiBR3\nJWD/7/9WeiQ9EDJxuVwiLS1NNDY2CofDIfR6vaivr+/UZufOnSIvL08IIYTZbBYGg8Fn38mTJwuT\nySSEEKK6ulpkZ2d3+/oyXhoRUdg4nULo9UJs3Rqe1wvk3inbisRisUCr1SI1NRVJSUkoKChAZWVl\npzZVVVUoLCwEABgMBrS1taGlpaXXvrfeeisuXLgAAGhra0NycrJcl0BEpLhIDdi9ybaPxG63IyUl\nxfNYo9Hg0KFDPtvY7XY0Nzf32Le0tBSTJk3C888/j46ODhw8eLDHMSxbtszz5+zsbGRnZwd5VURE\n4dPaCrzyijtgV6nkeY3a2lrU1tYG9RyyFRKVxKsWfoY6RUVFePPNN/HII4/gww8/xPz587Fnz55u\n23oXEiKiaLNkiTtkl/NTWl3/kl1SUuL3c8hWSJKTk2Gz2TyPbTYbNBpNr22ampqg0WjgdDp77Gux\nWLB3714AwMyZM7FgwQK5LoGISDGRuIO9J7JlJFlZWWhoaIDVaoXD4UBFRQWMRmOnNkajEZs2bQIA\nmM1mDBgwAGq1ute+Wq0W+/fvBwDU1NRg5MiRcl0CEZEiInUHe09kW5EkJiZi3bp1yM3NRXt7O4qK\nipCRkYGysjIAQHFxMfLz81FdXQ2tVov+/fujvLy8174AsH79ejz11FO4fPky+vXrh/Xr18t1CURE\nioiGgN0bNyQSEUWQcO1g7wl3tnthISGiaBSuHew94THyRERRLJoCdm88/ZeIKAJEW8DujYWEiCgC\nRFvA7o0ZCRGRwpQO2L1F3Om/RETUO4cD+PWvgaIi5YtIoLgiISJSSEcH8J//Cfz4I7B9O5AYAR9/\n4qe2iIiiyJIlQGOj+5NakVBEAhXFQyciil6vvw5UVwOffw7066f0aILDQkJEFGZbtgCrV7v3jQwc\nqPRogsdCQkQURnv2AIsXAzU1gNfXLkU1FhIiojD5+mtg7lzg44+B229XejShw4//EhGFwalTwEMP\nAevXA5MmKT2a0GIhISKSWWsrkJsLvPwyMH260qMJPRYSIiIZXboEPPAA8B//ARQXKz0aeXBDIhGR\nTBwO4MEHgeHDgf/5H0ClUnpEvvH7SLywkBCRkiJx17oU3NlORBQhYmXXuhQxfnlEROEXS7vWpWAh\nISIKoVjbtS4FCwkRUYjE4q51KVhIiIhCIFZ3rUvBfSREREGK5V3rUrCQEBEFIdZ3rUvBQkJEFKB4\n2LUuBTckEhEFIBp3rUvBne1eWEiISC7RumtdCu5sJyIKgxdfjJ9d61JwCoiI/LBqFbBrV/zsWpeC\nhYSISKItW4A1a+Jr17oULCRERBLE6651KVhIiIh8+Ppr4LHH4nPXuhTcR0JE1Isru9bfeQe45x6l\nRxOZWEiIiHrAXevSsJAQEXWDu9alk7WQmEwmpKenQ6fTYcWKFd22WbRoEXQ6HfR6Perq6iT1Xbt2\nLTIyMpCZmYklS5bIeQlEFIccDmDGDODOO92rEfJByMTlcom0tDTR2NgoHA6H0Ov1or6+vlObnTt3\niry8PCGEEGazWRgMBp99a2pqxNSpU4XD4RBCCPHPf/6z29eX8dKIKIa1twsxd64QRqMQTqfSowm/\nQO6dsq1ILBYLtFotUlNTkZSUhIKCAlRWVnZqU1VVhcLCQgCAwWBAW1sbWlpaeu379ttv46WXXkJS\nUhIAYPDgwXJdAhHFoSu71rdt4651qWQrJHa7HSleH7bWaDSw2+2S2jQ3N/fYt6GhAZ999hnuuusu\nZGdn4/Dhw3JdAhHFmSu71j/5hLvW/SFbvVVJPApT+Hk4mMvlwvnz52E2m/HVV19h1qxZ+O6777pt\nu2zZMs+fs7OzkZ2d7ddrEVH8iNdd67W1taitrQ3qOWQrJMnJybDZbJ7HNpsNGo2m1zZNTU3QaDRw\nOp099tVoNHj00UcBAOPGjUNCQgLOnj2LQYMGXTMG70JCRNSTeN613vUv2SUlJX4/h2xvbWVlZaGh\noQFWqxUOhwMVFRUwGo2d2hiNRmzatAkAYDabMWDAAKjV6l77Tp8+HTU1NQCAEydOwOFwdFtEiIik\nuLJrfft27loPlGwrksTERKxbtw65ublob29HUVERMjIyUFZWBgAoLi5Gfn4+qqurodVq0b9/f5SX\nl/faFwDmz5+P+fPnY/To0ejbt6+nEBER+Yu71kODX2xFRHGptRW4+27ghRe44dBbIPdO7mwnorjD\nXeuhxRUJEcWVK9+1npoKlJXFznethwq/s90LCwkRdXXlu9YvXQI++ogbDrvD72wnIuoFv2tdHr1O\npdPpxO7du/HZZ5/BarVCpVJh2LBhuPfee5Gbm4tE/j9BRFGC37Uunx7f2vrjH/+Ijz76CBMmTMD4\n8eMxdOhQdHR04PTp07BYLDCbzZg5cyb+8Ic/hHvMkvCtLSK64v33gZdecu9aj7cNh/4KaUZSVVWF\nhx56qMejTjo6OvCXv/zlmk2GkYKFhIgAYPdu4Ne/du9a54ZD3xi2e2EhIaKvvwamTXN/1zo3HEoj\nS9j+1VdfYfny5bBarXC5XJ4XOnr0aGCjJCIKA+5aDx+fK5KRI0di5cqVyMzMRELC1f2Lqampco8t\nKFyREMWvK7vWn38e+K//Uno00UWWFcngwYMjNgchIurq0iUgPx+YO5dFJFx8rkh2796NiooKTJ06\nFX379nV3Uqk8R7lHKq5IiOIPd60HT5YVycaNG3H8+HG4XK5Ob21FeiEhovjS0QHMn+/eI/LWWywi\n4eSzkBw+fBj/+Mc/JH/jIRGRErhrXTk+T/+dOHEi6uvrwzEWIqKArFoFVFfzu9aV4jMjSU9Px6lT\npzB8+HBcd9117k5R8PFfZiRE8YG71kNLlg2JVqu125/z479EpLRPPgEWLOCu9VAKaSG5dOkSbrzx\nxl47S2mjFBYSotjkcgE7dgCvvw6cPg1s3gxMmqT0qGJHSAvJ1KlTcdttt+Hhhx9GVlYWBg4cCAA4\ne/YsDh8+jB07dqChoQF79+4NfuQyYCEhii0XLwLvvgu8+SYwdCjw7LPA9OlAnz5Kjyy2hPytrZqa\nGmzZsgUHDhxAc3MzAGDo0KGYNGkS5s6di+zs7KAGLCcWEqLY8P337uKxYQOQkwMsXgwYDEqPKnbx\n0EYvLCRE0c1sBt54w/1x3nnzgIULgWHDlB5V7OM3JBJRVOuafzzzDPC//wtEaBRL/4+FhIgU1zX/\neO455h/RhIWEiBTTNf/Yto35RzTyubOdiCjUzGZg9mzgzjvdZ2IdOcIiEs24IiGisGD+EbtYSIhI\nVsw/Yp/Pt7befPNNnD9/PhxjIaIY8v337qIxfDhw6JD7rasDB4AZM1hEYo3PQtLa2opx48Zh1qxZ\nMJlM3JtBRL1i/hF/JG1I7OjowO7du7FhwwYcPnwYs2bNQlFREdLS0sIxxoBwQyJR+HSXf8yfz/wj\nGsm2ITEhIQG33HIL1Go1+vTpg/Pnz2PmzJmYOnUqXnvttYAGS0TRj/kHARJWJGvWrMGmTZswaNAg\nLFiwAI888giSkpLQ0dEBnU6HU6dOhWusfuGKhEg+PP8qdsmyIjl37hw+/vhjDOtyyE1CQgI++eQT\n/0ZIRFGt6/lXR47w/CvioY1E5APzj/jCQxuJKGSYf5BULCRE1AnPvyJ/yXrWlslkQnp6OnQ6HVas\nWNFtm0WLFkGn00Gv16Ourk5y31WrViEhIQHnzp2TbfxE8YT7PyhgQiYul0ukpaWJxsZG4XA4hF6v\nF/X19Z3a7Ny5U+Tl5QkhhDCbzcJgMEjq+8MPP4jc3FyRmpoqzp492+3ry3hpRDHD6RTiww+FmDBB\niNRUIVavFuLiRaVHRUoK5N4p24rEYrFAq9UiNTUVSUlJKCgoQGVlZac2VVVVKCwsBAAYDAa0tbWh\npaXFZ99nn30Wr776qlxDJ4p5Fy+6P32l07n/97nngJMngd/+liE6+U+2QmK325GSkuJ5rNFoYLfb\nJbVpbm7usW9lZSU0Gg3GjBkj19CJYhbPvyI5yBa2q1QqSe2EHx8z+/e//43ly5djz549kvovW7bM\n8+fs7GxkZ2dLfi2iWML9H9ST2tpa1NbWBvUcshWS5ORk2Gw2z2ObzQaNRtNrm6amJmg0Gjidzm77\nnjp1ClarFXq93tP+l7/8JSwWC4YMGXLNGLwLCVG84fd/kBRd/5JdUlLi/5OEPKn5f06nU4wYMUI0\nNjaKy5cv+wzbDx486AnbpfQVQjBsJ+rGhQtCvP66OzyfOFGI7duFcLmUHhVFi0DunbKtSBITE7Fu\n3Trk5uaivb0dRUVFyMjIQFlZGQCguLgY+fn5qK6uhlarRf/+/VFeXt5r366kvn1GFA+4/4OUwiNS\niKJc1/xj4ULmHxQ4HpFCFCeYf1AkYSEhiiI8/4oiEQsJURRg/kGRTNaztogoODz/iqIBVyREEYb5\nB0UbFhKiCMH8g6IVCwmRwph/ULRjRkKkEOYfFCu4IiEKI+YfFItYSIjCgPkHxTIWEiIZMf+geMCM\nhEgGzD8onnBFQhQizD8oXrGQEAWJ+QfFOxYSogAx/yByY0ZC5CfmH0SdcUVCJAHzD6KesZAQ9YL5\nB5FvLCRE3WD+QSQdMxIiL8w/iPzHFQnFPeYfRMFhIaG4xfyDKDRYSCjuMP8gCi1mJBQ3mH8QyYMr\nEoppzD+I5MdCQjGJ+QdR+LCQUExh/kEUfsxIKCYcOsT8g0gpXJFQ1LqSf7zxBtDczPyDSCksJBR1\nLl4E3nsPWLPGnX88+yzzDyIlsZBQ1GD+QRSZmJFQxGP+QRTZuCKhiMT8gyh6sJBQRGH+QRR9WEgo\nIjD/IIpezEhIUcw/iKKf7IXEZDIhPT0dOp0OK1as6LbNokWLoNPpoNfrUVdX57PvCy+8gIyMDOj1\nejz66KO4cOGC3JdBIeRyAdu3A3ffDRQUABMnAlYrsHIlMGyY0qMjIr8JGblcLpGWliYaGxuFw+EQ\ner1e1NfXd2qzc+dOkZeXJ4QQwmw2C4PB4LPv7t27RXt7uxBCiCVLloglS5Zc89oyXxoF4MIFId54\nQ4jUVCEmThRi+3YhXC6lR0VE3gK5d8q6IrFYLNBqtUhNTUVSUhIKCgpQWVnZqU1VVRUKCwsBAAaD\nAW1tbWhpaem1b05ODhISEjx9mpqa5LwMCtL337sPTRw+3H2U+7ZtwIEDwIwZDNGJYoGsYbvdbkdK\nSornsUajwaFDh3y2sdvtaG5u9tkXAN577z3MmTOn29dftmyZ58/Z2dnIzs4O8EooEIcOuY9v37sX\nmDfPnX/wrSuiyFJbW4va2tqgnkPWQqJSqSS1c6+m/PenP/0Jffv2xWOPPdbt770LCYUH938QRZeu\nf8kuKSnx+zlkLSTJycmw2WyexzabDRqNptc2TU1N0Gg0cDqdvfbdsGEDqqursW/fPhmvgKTi/g+i\n+CVrRpKVlYWGhgZYrVY4HA5UVFTAaDR2amM0GrFp0yYAgNlsxoABA6BWq3vtazKZ8Nprr6GyshLX\nX3+9nJdAPjD/ICJZVySJiYlYt24dcnNz0d7ejqKiImRkZKCsrAwAUFxcjPz8fFRXV0Or1aJ///4o\nLy/vtS8ALFy4EA6HAzk5OQCACRMm4K233pLzUqgL5h9EdIVKBBpQRDiVShVw9kLd6y7/mD+f+QdR\nLAnk3skjUsgn5h9E1BsWEuoRz78iIil41hZdg+dfEZE/uCIhANz/QUSBYyGJc8w/iChYLCRxivkH\nEYUKM5I4w/yDiEKNK5I4wPyDiOTEQhLDmH8QUTiwkMQg5h9EFE7MSGII8w8iUgJXJFGO+QcRKY2F\nJEox/yCiSMFCEmWYfxBRpGFGEiWYfxBRpOKKJIIx/yCiaMBCEoGYfxBRNGEhiSDMP4goGjEjiQDM\nP4gomnFFohDmH0QUK1hIwoz5BxHFGhaSMGH+QUSxihmJzJh/EFGs44pEBsw/iCiesJCEEPMPIopH\nLCQhwPyDiOIZM5IgMP8gIuKKxG/MP4iIOmMhkYj5BxFR91hIfGD+QUTUO2YkPWD+QUQkDVckXph/\nEBH5j4UEzD+IiIIR14WE+QcRUfDiMiNh/kFEFDqyFhKTyYT09HTodDqsWLGi2zaLFi2CTqeDXq9H\nXV2dz77nzp1DTk4ORo4cifvvvx9tbW2SxuJyAdu3A3ffDRQUABMnAlYrsHIlMGxYUJcZ8Wpra5Ue\nQsTgXFzFubiKcxEc2QpJe3s7nn76aZhMJtTX12Pr1q04duxYpzbV1dU4efIkGhoasH79ejz55JM+\n+5aWliInJwcnTpzAlClTUFpa2us4Ll4EVq8GdDp3iP7ss8DJk8Bvfxs/ITr/I7mKc3EV5+IqzkVw\nZCskFosFWq0WqampSEpKQkFBASorKzu1qaqqQmFhIQDAYDCgra0NLS0tvfb17lNYWIgdO3b0OIbn\nngOGDwfMZvdbVwcOADNmMEQnIgol2cJ2u92OlJQUz2ONRoNDhw75bGO329Hc3Nxj39bWVqjVagCA\nWq1Ga2trj2O4kn/E+ltXRERKkq2QqFQqSe2EEJLadPd8KpWq19dZtUqFVaskDSPmlZSUKD2EiMG5\nuIpzcRXnInCyFZLk5GTYbDbPY5vNBo1G02ubpqYmaDQaOJ3Oa36enJwMwL0KaWlpwS233ILTp09j\nyJAh3b6+lAJFRETBky0jycrKQkNDA6xWKxwOByoqKmA0Gju1MRqN2LRpEwDAbDZjwIABUKvVvfY1\nGo3YuHEjAGDjxo2YPn26XJdAREQSyLYiSUxMxLp165Cbm4v29nYUFRUhIyMDZWVlAIDi4mLk5+ej\nuroaWq0W/fv3R3l5ea99AWDp0qWYNWsW3n33XaSmpuKDDz6Q6xKIiEgKEcV27dolbrvtNqHVakVp\naWm3bRYuXCi0Wq0YM2aMOHLkSJhHGD6+5uLPf/6zGDNmjBg9erSYOHGi+OabbxQYZXhI+fdCCCEs\nFovo06eP+Oijj8I4uvCSMheffvqpGDt2rLj99tvF5MmTwzvAMPI1F//6179Ebm6u0Ov14vbbbxfl\n5eXhH2QYzJs3TwwZMkRkZmb22Mbf+2bUFhKXyyXS0tJEY2OjcDgcQq/Xi/r6+k5tdu7cKfLy8oQQ\nQpjNZmEwGJQYquykzMWXX34p2trahBDu/6DieS6utLvvvvvEAw88ILZv367ASOUnZS7Onz8vRo0a\nJWw2mxDCfTONRVLm4uWXXxZLly4VQrjnYeDAgcLpdCoxXFl99tln4siRIz0WkkDum1F7REqg+1R6\n+7hwtJIyFxMmTMAvfvELAO65aGpqUmKospMyFwCwdu1azJw5E4MHD1ZglOEhZS62bNmCGTNmeD4I\nc/PNNysxVNlJmYtbb70VFy9eBABcvHgRgwYNQmJi7B1HeM899+Cmm27q8feB3DejtpD0tAfFV5tY\nvIFKmQtv7777LvLz88MxtLCT+u9FZWWl5yQFqR9VjzZS5qKhoQHnzp3Dfffdh6ysLGzevDncwwwL\nKXPxxBNP4Ntvv8XQoUOh1+uxZs2acA8zIgRy34zachvoPpVYvGn4c02ffvop3nvvPRw4cEDGESlH\nylw888wzKC0thUqlgnC/vRuGkYWflLlwOp04cuQI9u3bh59//hkTJkzAXXfdBZ1OF4YRho+UuVi+\nfDnGjh2L2tpanDp1Cjk5Ofjmm29wY7ycpeTF3/tm1BaSQPepXNmPEkukzAUAHD16FE888QRMJlOv\nS9toJmUuvv76axQUFAAAzpw5g127diEpKemaj6dHOylzkZKSgptvvhn9+vVDv379cO+99+Kbb76J\nuUIiZS6+/PJL/P73vwcApKWlYfjw4Th+/DiysrLCOlalBXTfDFmCE2ZOp1OMGDFCNDY2isuXL/sM\n2w8ePBizAbOUufj+++9FWlqaOHjwoEKjDA8pc+Ht8ccfj9lPbUmZi2PHjokpU6YIl8slfvrpJ5GZ\nmSm+/fZbhUYsHylzsXjxYrFs2TIhhBAtLS0iOTlZnD17Vonhyq6xsVFS2C71vhm1K5Jg9qnEGilz\n8corr+D8+fOeXCApKQkWi0XJYctCylzECylzkZ6ejmnTpmHMmDFISEjAE088gVGjRik88tCTMhe/\n+93vMG/ePOj1enR0dODVV1/FwIEDFR556M2ZMwf79+/HmTNnkJKSgpKSEjidTgCB3zdVQsToG8RE\nRBQWUfupLSIiigwsJEREFBQWEiIiCgoLCRERBYWFhEiiX/3qV9i9e3enn61evRq/+c1vrml7+fJl\nTJ482e/NjqdPn0Zubm6Pv58yZQouXbrk13MSyY2FhEiiOXPmYNu2bZ1+VlFRgccee+yatu+//z4e\nfPBBv09SMJlMmDZtWo+/LygowDvvvOPXcxLJjYWESKIZM2Zg586dcLlcAACr1Yrm5mZMmjTpmrZb\nt27Fww8/DACora3F5MmTMX36dKSlpWHp0qXYvHkzxo8fjzFjxuC7777z9PvrX/+KvLw8nD59Gvfe\ney/uuOMOjB49Gl988QUA9xe7dS1mREpjISGSaODAgRg/fjyqq6sBANu2bcPs2bOvadfe3o6///3v\nGDlypOdnR48eRVlZGY4dO4bNmzfj1KlTsFgsWLBgAdauXevpd/z4caSnp2PLli2YNm0a6urqcPTo\nUYwdOxaA+6umz5w5g59++ikMV0wkDQsJkR+8396qqKjAnDlzrmlz5syZaw76GzduHNRqNfr27Qut\nVuvJQTIzM2G1WgEAhw4dgsFgAACMHz8e5eXlKCkpwdGjR3HDDTd4nkutVnc6C4lIaSwkRH4wGo3Y\nt28f6urq8PPPP+OOO+7otl3XkP26667z/DkhIcHzOCEhwfNW2a5du5CXlwfA/Z0Rn3/+OZKTk/H4\n4493Ot5dCBGTp1hT9GIhIfLDDTfcgPvuuw/z5s3rNmQH3F8O9eOPP/r93DU1NZg6dSoA4IcffsDg\nwYOxYMECLFiwAEeOHPG0a21t7fZ0ZyKlsJAQ+WnOnDn429/+1u3bWgDQp08fZGZm4vjx4wDc3+XQ\n0wriyu/OnDmD66+/Hv379wfgDujHjh2LO++8Ex988AGeeeYZAEBLSwsGDRrkaUcUCXhoI5EMNmzY\ngNbWVixZskRS+/fffx92ux0vvvhir+3Wr1+Pn376CYsXLw7FMIlCgoWESAYOhwNTp07F/v37Q5pn\nTJkyBZWVlZ3CdyKlsZAQEVFQmJEQEVFQWEiIiCgoLCRERBQUFhIiIgoKCwkREQWFhYSIiILyf2cF\nCXXQW9RxAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.2 page NO.360" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 62.4 # density in Ibm/ft^3 \n", + "cp=0.9988 # specific heat BTU/(lbm-degree Rankine) \n", + "v= 1.083e-5 # viscosity in sq.ft/s \n", + "kf = 0.345 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "a = 5.54e-3 # diffusivity in sq.ft/hr \n", + "Pr = 7.02 # Prandtl Number\n", + "V=1.2 # velocity in ft/s\n", + "\n", + "x1=1\n", + "Re1=(V*x1)/v # Reynolds Number at x=1 ft\n", + "hL1=0.664*Pr**(1/3.0)*Re1**0.5*kf/x1\n", + "Tw=100 # temperature of metal plate in degree fahrenheit\n", + "T_inf=40 # temperature of water in degree fahrenheit\n", + "A1=x1*18/12.0 # cross sectional area for 1 ft length\n", + "q1=hL1*A1*(Tw-T_inf)\n", + "\n", + "print\"The heat transferred to water over the plate is\",round(q1,0),\"BTU/hr\"\n", + "x2=2\n", + "Re2=(V*x2)/v # Reynolds Number at x=1 ft\n", + "hL2=0.664*Pr**(1/3.0)*Re2**0.5*kf/x2\n", + "Tw=100 # temperature of metal plate in degree fahrenheit\n", + "T_inf=40 # temperature of water in degree fahrenheit\n", + "A2=x2*18/12.0 # cross sectional area for 1 ft length\n", + "q2=hL2*A2*(Tw-T_inf)\n", + "print\"The heat transferred to water over the plate is \",round(q2,0),\"BTU/hr\"\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "T=[100,80,60,50,40]\n", + "y=[0,0.0008,0.0018,0.0025,0.004]\n", + "xlabel(\"T (F)\") \n", + "ylabel(\"y (ft) \") \n", + "plt.xlim((100,40))\n", + "plt.ylim((0,0.004))\n", + "a1=plot(T,y)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)\n", + "\n", + "Pr=[0.6,50]\n", + "t=[1.2,0.28]\n", + "xlabel(\"Pr\") \n", + "ylabel(\"t (ft) \") \n", + "plt.xlim((0.6,50))\n", + "plt.ylim((0,2))\n", + "ax.plot([10], [1], 'o')\n", + "ax.annotate('(Exact solution)', xy=(8,1.2))\n", + "ax.annotate('(dt/dt=Pr**-(1/3))', xy=(15,1))\n", + "ax.plot([25], [0.75], 'o')\n", + "ax.plot([35], [0.55], 'o')\n", + "ax.plot([40], [0.48], 'o')\n", + "\n", + "a1=plot(Pr,t)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transferred to water over the plate is 13141.0 BTU/hr\n", + "The heat transferred to water over the plate is 18584.0 BTU/hr\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEMCAYAAAAIx/uNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9U2/W9P/BnKOHcXk4ntVpqCZo2SRsomgax0d16v9EO\nOTCX27pdLnS7l+PYHXfdROeut+56Zsu5toV5d656uVV0lRb1Su2uCh0UmetJdbtNscJ274VaYxuu\nIZRqf6Cr620gvr5/sGSlBRJoPiT55Pk4p+eQ8H59+n5JzYvX6/PJJxoRERAREUVRSqw3QERE6sPi\nQkREUcfiQkREUcfiQkREUcfiQkREUcfiQkREUadoceno6IDZbIbJZEJdXd2Ea6qrq2EymWCxWNDT\n0xNx7E9+8hOkpKTgzJkzoee2bdsGk8kEs9mMzs7O6CdERESREYWMjo6KwWAQj8cjfr9fLBaL9PX1\njVvT1tYmxcXFIiLicrnEZrNFFPvhhx9KUVGR6PV6OX36tIiI9Pb2isViEb/fLx6PRwwGgwQCAaXS\nIyKiKSjWuXR1dcFoNEKv10Or1aKsrAwtLS3j1rS2tqKiogIAYLPZMDw8jKGhobCxDz74IH784x+P\nO1ZLSwvKy8uh1Wqh1+thNBrR1dWlVHpERDQFxYqLz+dDdnZ26LFOp4PP54tozeDg4KSxLS0t0Ol0\nuOmmm8Yda3BwEDqdbsq/j4iIZkeqUgfWaDQRrZNp3H3m/Pnz2Lp1K37xi19EFD/RHiLdFxERjTed\n12vFOpesrCx4vd7QY6/XO66zmGjNwMAAdDrdpLHHjh1Df38/LBYLlixZgoGBAdx88804efLkhMfK\nysqacG8ioto/mzZtivkemB9zY37q+HPkiGDBAsHx49O/BaVixaWgoAButxv9/f3w+/3YvXs3HA7H\nuDUOhwNNTU0AAJfLhYyMDGRmZk4am5eXh5MnT8Lj8cDj8UCn06G7uxuZmZlwOBxobm6G3++Hx+OB\n2+3GqlWrlEqPiEjVAgHg3nuBmhpgyZLpxys2FktNTUV9fT2KiooQCARQWVmJnJwcNDQ0AACqqqpQ\nUlKC9vZ2GI1GpKeno7GxccrYS1084srNzUVpaSlyc3ORmpqK7du3cwRGRDRD//IvwJ/8CfCd78ws\nXiMiSXXLfY1GAzWn7HQ6YbfbY70Nxag5PzXnBjC/RPLee8Dq1cA77/yxa5nuayeLCxERhQQCY4Xl\nG98AvvvdPz4/3ddO3v6FiIhCrnQcFsTOhYiIAEw8Dgti50JERNN2pVeHXYrFhYiIojYOC+JYjIgo\nyU01DgviWIyIiCIW7XFYEIsLEVESi/Y4LIhjMSKiJBXJOCyIYzEiIgpLqXFYEIsLEVESUmocFsSx\nGBFRkpnOOCyIYzEiIpqU0uOwIBYXIqIkovQ4LIhjMSKiJDGTcVgQx2JERHSZ2RqHBbG4EBElgdka\nhwVxLEZEpHJXMg4L4liMiIhCZnscFqRoceno6IDZbIbJZEJdXd2Ea6qrq2EymWCxWNDT0xM29kc/\n+hEsFgtWrlyJNWvWwOv1AgD6+/sxd+5cWK1WWK1WbNiwQcnUiIgSwmyPw0JEIaOjo2IwGMTj8Yjf\n7xeLxSJ9fX3j1rS1tUlxcbGIiLhcLrHZbGFjP/3001D8U089JZWVlSIi4vF4JC8vL+y+FEyZiCiu\nHDkismCByPHjV36s6b52Kta5dHV1wWg0Qq/XQ6vVoqysDC0tLePWtLa2oqKiAgBgs9kwPDyMoaGh\nKWPnzZsXij937hyuueYapVIgIkpYsRqHBSlWXHw+H7Kzs0OPdTodfD5fRGsGBwenjH3kkUdw/fXX\nY9euXXj44YdDz3s8HlitVtjtdvzqV79SIi0iooQQs3HYH6QqdWCNRhPROpnBlVtbtmzBli1bUFtb\ni+9///tobGzE4sWL4fV6MX/+fHR3d2Pt2rXo7e0d1+kEbd68OfS13W6H3W6f9h6IiOLVe+8BtbVj\nV4elzLCFcDqdcDqdM96DYsUlKysrdLIdALxeL3Q63ZRrBgYGoNPpMDIyEjYWANavX4+SkhIAQFpa\nGtLS0gAA+fn5MBgMcLvdyM/Pvyzu4uJCRKQm0RqHXfqLd01NzbTiFRuLFRQUwO12o7+/H36/H7t3\n74bD4Ri3xuFwoKmpCQDgcrmQkZGBzMzMKWPdbncovqWlBVarFQBw6tQpBAIBAMDx48fhdruxdOlS\npdIjIopLsR6HBSnWuaSmpqK+vh5FRUUIBAKorKxETk4OGhoaAABVVVUoKSlBe3s7jEYj0tPT0djY\nOGUsAPzwhz/E0aNHMWfOHBgMBjz99NMAgLfeeguPPvootFotUlJS0NDQgIyMDKXSIyKKO9EYh0UL\n36FPRKQCgcDYu/C/8Q3gu9+N/vH5Dn0ioiQUL+OwIHYuREQJLhr3DguHnQsRURKJ9ZslJ8PiQkSU\nwOJtHBbEsRgRUYKajXFYEMdiRERJIF7HYUEsLkRECShex2FBHIsRESWY2RyHBXEsRkSkYvE+Dgti\ncSEiSiDxPg4L4liMiChBBMdhXV3AbN+Xl2MxIiIVungclgg3fGdxISJKAIkyDgviWIyIKM7FchwW\nxLEYEZGKJNo4LIjFhYgojiXaOCyIYzEiojgVD+OwII7FiIhUIFHHYUEsLkREcShRx2FBihaXjo4O\nmM1mmEwm1NXVTbimuroaJpMJFosFPT09YWN/9KMfwWKxYOXKlVizZg28Xm/oe9u2bYPJZILZbEZn\nZ6dyiRERKei994DaWmDHDiAlUVsAUcjo6KgYDAbxeDzi9/vFYrFIX1/fuDVtbW1SXFwsIiIul0ts\nNlvY2E8//TQU/9RTT0llZaWIiPT29orFYhG/3y8ej0cMBoMEAoHL9qVgykREV2x0VOTWW0Xq62O9\nk/Gm+9qpWE3s6uqC0WiEXq+HVqtFWVkZWlpaxq1pbW1FRUUFAMBms2F4eBhDQ0NTxs6bNy8Uf+7c\nOVxzzTUAgJaWFpSXl0Or1UKv18NoNKKrq0up9IiIFJHo47CgVKUO7PP5kJ2dHXqs0+lw6NChsGt8\nPh8GBwenjH3kkUfwwgsvYO7cuaECMjg4iFtvvfWyY01k8+bNoa/tdjvsdvuMciQiiqbgOKyrK/bj\nMKfTCafTOeN4xYqLRqOJaJ3M4LLgLVu2YMuWLaitrcUDDzyAxsbGae3h4uJCRBQP4u3qsEt/8a6p\nqZlWvGLFJSsra9zJdq/XC51ON+WagYEB6HQ6jIyMhI0FgPXr16OkpGTSY2VlZUUtHyIiJallHBak\nWONVUFAAt9uN/v5++P1+7N69Gw6HY9wah8OBpqYmAIDL5UJGRgYyMzOnjHW73aH4lpYWWK3W0LGa\nm5vh9/vh8XjgdruxatUqpdIjIooaVVwddgnFOpfU1FTU19ejqKgIgUAAlZWVyMnJQUNDAwCgqqoK\nJSUlaG9vh9FoRHp6emi8NVksAPzwhz/E0aNHMWfOHBgMBjz99NMAgNzcXJSWliI3NxepqanYvn17\nxKM5IqJYibdxWLTw9i9ERDH0z/8MtLUBv/xlfHct033tZHEhIoqReLp3WDi8txgRUQJQ6zgsiMWF\niCgG1HZ12KU4FiMimmWJNA4L4liMiCiOqX0cFsTiQkQ0i9Q+DgviWIyIaJYk4jgsiGMxIqI4lCzj\nsCAWFyKiWZAs47AgjsWIiBSWyOOwII7FiIjiSLKNw4JYXIiIFJRs47AgjsWIiBSihnFYEMdiRERx\nIFnHYUEsLkRECkjWcVgQx2JERFGmpnFYEMdiREQxlOzjsCAWFyKiKEr2cVgQx2JERFGixnFYUFyN\nxTo6OmA2m2EymVBXVzfhmurqaphMJlgsFvT09ISNfeihh5CTkwOLxYJ77rkHn3zyCQCgv78fc+fO\nhdVqhdVqxYYNG5RMjYhoHI7DLiEKGR0dFYPBIB6PR/x+v1gsFunr6xu3pq2tTYqLi0VExOVyic1m\nCxvb2dkpgUBAREQ2btwoGzduFBERj8cjeXl5YfelYMpElMQef1zEbhf5w8uT6kz3tVOxzqWrqwtG\noxF6vR5arRZlZWVoaWkZt6a1tRUVFRUAAJvNhuHhYQwNDU0ZW1hYiJSUlFDMwMCAUikQEUXkvfeA\n2lpgxw4ghWeyAQCpSh3Y5/MhOzs79Fin0+HQoUNh1/h8PgwODoaNBYDnn38e5eXloccejwdWqxVX\nXXUVHnvsMaxevXrCvW3evDn0td1uh91un256REQAgL17gW9/G/jxj9U1DnM6nXA6nTOOV6y4aDSa\niNbJDE+ub9myBWlpaVi/fj0AYPHixfB6vZg/fz66u7uxdu1a9Pb2Yt68eZfFXlxciIhm4tw54Ac/\nADo7gVdeAW6/PdY7iq5Lf/GuqamZVrxiDVxWVha8Xm/osdfrhU6nm3LNwMAAdDpd2NidO3eivb0d\nL730Uui5tLQ0zJ8/HwCQn58Pg8EAt9sd9byIiA4dAqxW4MIF4Le/VV9hiQplTv2IjIyMyNKlS8Xj\n8ciFCxfCntA/ePBg6IT+VLH79u2T3Nxc+fjjj8cd6+OPP5bR0VERETl27JhkZWXJ2bNnL9uXgikT\nkcqNjIhs2iSycKHInj2x3s3smu5rp2JjsdTUVNTX16OoqAiBQACVlZXIyclBQ0MDAKCqqgolJSVo\nb2+H0WhEeno6Ghsbp4wFgPvuuw9+vx+FhYUAgNtuuw3bt2/HgQMHsGnTJmi1WqSkpKChoQEZGRlK\npUdEScbtBr7xDSAjA+jpARYvjvWO4hvfRElENAUR4LnngEceAR59FPjud5PzirDpvnYq1rkQESW6\njz4CKisBnw84cADIzY31jhJHEtZfIqLw9u4FLBbgxhsBl4uFZbrYuRARXUTtlxjPFnYuRER/wEuM\no4edCxElvdFR4LHHgKefBrZvB7761VjvKPGxuBBRUuMlxsrgWIyIkpII8OyzwBe/OFZc9u1jYYkm\ndi5ElHR4ibHy2LkQUVLhJcazg50LESUFXmI8u8IWl+HhYRw8eBD9/f3QaDTQ6/W47bbbcNVVV83G\n/oiIrtihQ2PnVf7sz8YuMf7CF2K9I/Wb9N5ib7/9Nh5//HH09/fDarVi8eLFEBGcOHECPT090Ov1\n+Id/+IdJP5ArXvHeYkTJg5cYR0/U7i322muv4Sc/+QlMJtOE33///ffxzDPPJFxxIaLkwEuMYyvs\nXZE9Hg+WLFkS9rlEwc6FSN14F2NlTPe1M2xxsVqt6OnpGfdcfn4+uru7Z7bDGGNxIVKviy8xfvFF\nXgkWTVEbix05cgR9fX345JNP8Oqrr0JEoNFo8Omnn+LChQtR2SwRUbTs3Qt8+9vAvfcC//EfQFpa\nrHeU3CYtLu+//z727t2LTz75BHv37g09P2/ePDz33HOzsjkionB4iXF8mrS47NmzBy+++CK2bt2K\nf/zHf5zNPRERRYSXGMevSU9zdXd3Y3BwEM3NzThz5sxlf4iIYmV0FNi8GXA4gNpaYOdOFpZ4M2lx\n+bu/+zusWbMGR48exc033zzuT0FBQUQH7+jogNlshslkQl1d3YRrqqurYTKZYLFYxl04MFnsQw89\nhJycHFgsFtxzzz345JNPQt/btm0bTCYTzGYzOjs7I9ojESUWt3usU3G5xi4x5ntX4pSEUVVVFW7J\nhEZHR8VgMIjH4xG/3y8Wi0X6+vrGrWlra5Pi4mIREXG5XGKz2cLGdnZ2SiAQEBGRjRs3ysaNG0VE\npLe3VywWi/j9fvF4PGIwGELrLhZBykQUhz7/XKShQeSaa0T+9V/HHtPsme5r56Sdy+9+9zsAwDPP\nPDNpYQqumUhXVxeMRiP0ej20Wi3KysrQ0tIybk1raysqKioAADabDcPDwxgaGpoytrCwECl/uGjd\nZrNhYGAAANDS0oLy8nJotVro9XoYjUZ0dXWFr65EFPc++mhsBPbMM2N3Mf7e9wCNJta7oqlMekJ/\n3bp1WL58Of7iL/4CBQUFuPrqqwEAp0+fxuHDh/H666/D7XbjzTffnDDe5/MhOzs79Fin0+HQoUNh\n1/h8PgwODoaNBYDnn38e5eXlAIDBwUHceuutlx1rIps3bw59bbfbYbfbJ/mvQESxxkuMY8PpdMLp\ndM44ftLi8uabb2L//v3493//d9x///0YHBwEACxevBirV6/G17/+9SlflDUR/lohM3xD45YtW5CW\nlob169dPew8XFxciik+8xDi2Lv3Fu6amZlrxU94V+c4778Sdd945o41lZWXB6/WGHnu9Xuh0uinX\nDAwMQKfTYWRkZMrYnTt3or29Hb/85S+nPFZWVtaM9k5EscVLjFVAmVM/IiMjI7J06VLxeDxy4cKF\nsCf0Dx48GDqhP1Xsvn37JDc3Vz7++ONxxwqe0L9w4YIcP35cli5dKp9PcMZPwZSJ6AqNjIhs2iSy\ncKHIz34W693Qxab72qnYh4Wlpqaivr4eRUVFCAQCqKysRE5ODhoaGgAAVVVVKCkpQXt7O4xGI9LT\n09HY2DhlLADcd9998Pv9KCwsBADcdttt2L59O3Jzc1FaWorc3FykpqZi+/btEY/miCj2gncxnj+f\ndzFWg7A3rlQb3riSKL5cfBfjTZvG7mLM3wvjT9RuXElEpLSL72J84ADvYqwm/JQDIoqJvXsBiwW4\n8caxd9uzsKgLOxcimlXBS4x/8Qtgzx6AH2arTmE7l6eeegpnz56djb0QkcodOgRYrcCFC8BvfsPC\nomZhi8vJkydxyy23oLS0FB0dHTwZTkTTNjIC1NTwLsbJJKKrxT7//HN0dnZi586dOHz4MEpLS1FZ\nWQmDwTAbe4wqXi1GNHtGR8c+bvixx4Bly4Cf/pSXGCeq6b52RnRCPyUlBYsWLUJmZibmzJmDs2fP\n4mtf+xoeeuihGW+UiNRrdHSsOzGbgaYmYMcOoL2dhSWZhO1cnnzySTQ1NWHBggX41re+hXXr1kGr\n1eLzzz+HyWTCsWPHZmuvUcHOhUg5F3cq118/9r6V//f/Yr0rioaov8/lzJkzePXVV3HDDTeMez4l\nJQV79+6d/g6JSHUuLSo7drCoJDu+Q5+IZoydSvLgO/SJSHHsVCgcFhciihiLCkWKxYWIwmJRoeli\ncSGiSbGo0EyxuBDRZVhU6EqxuBBRCIsKRQuLCxGxqFDUsbgQJTEWFVIKiwtREmJRIaUp+kmUHR0d\nMJvNMJlMqKurm3BNdXU1TCYTLBYLenp6wsbu2bMHK1aswJw5c9Dd3R16vr+/H3PnzoXVaoXVasWG\nDRuUS4woQU10Q8n9+1lYSAGikNHRUTEYDOLxeMTv94vFYpG+vr5xa9ra2qS4uFhERFwul9hstrCx\nR44ckaNHj4rdbpd33303dCyPxyN5eXlh96VgykRxa2REpLFRxGAQueMOEacz1juiRDPd107FxmJd\nXV0wGo3Q6/UAgLKyMrS0tCAnJye0prW1FRUVFQAAm82G4eFhDA0NwePxTBprNpuV2jKR6nD8RbGi\nWHHx+XzIzs4OPdbpdDh06FDYNT6fD4ODg2FjJ+LxeGC1WnHVVVfhsccew+pJPkN18+bNoa/tdjvs\ndnuEWRElBhYVulJOpxNOp3PG8YoVF41GE9E6idIdihcvXgyv14v58+eju7sba9euRW9vL+bNm3fZ\n2ouLC5GasKhQtFz6i3dNTc204hUrLllZWfB6vaHHXq8XOp1uyjUDAwPQ6XQYGRkJG3uptLQ0pKWl\nAQDy8/NhMBjgdruRn58fjXSI4hqLCsUbxa4WKygogNvtRn9/P/x+P3bv3g2HwzFujcPhQFNTEwDA\n5XIhIyMDmZmZEcUC47ueU6dOIRAIAACOHz8Ot9uNpUuXKpUeUVzg1V8UrxTrXFJTU1FfX4+ioiIE\nAgFUVlYiJycHDQ0NAICqqiqUlJSgvb0dRqMR6enpaGxsnDIWAF577TVUV1fj1KlT+PKXvwyr1Yp9\n+/bhwIED2LRpE7RaLVJSUtDQ0ICMjAyl0iOKKXYqFO/4SZRECYSf/Eixwk+iJFIhdiqUaFhciOIY\niwolKhYXojjEokKJjsWFKI6wqJBasLgQxQEWFVIbFheiGGJRIbVicSGKARYVUjsWF6JZxKJCyYLF\nhWgWsKhQsmFxIVIQiwolKxYXIgWwqFCyY3EhiiIWFaIxLC5EUcCiQjQeiwvRFWBRIZoYiwvRDLCo\nEE2NxYVoGlhUiCLD4kIUARYVoulhcSGaAosK0cywuBBNgEWF6MqkKHnwjo4OmM1mmEwm1NXVTbim\nuroaJpMJFosFPT09YWP37NmDFStWYM6cOeju7h53rG3btsFkMsFsNqOzs1OZpEjVRkeBnTsBsxlo\nahorKvv3s7AQTZsoZHR0VAwGg3g8HvH7/WKxWKSvr2/cmra2NikuLhYREZfLJTabLWzskSNH5OjR\no2K32+Xdd98NHau3t1csFov4/X7xeDxiMBgkEAhcti8FU6YENjIi0tgoYjCI3HGHiNMZ6x0RxZfp\nvnYq1rl0dXXBaDRCr9dDq9WirKwMLS0t49a0traioqICAGCz2TA8PIyhoaEpY81mM5YtW3bZ39fS\n0oLy8nJotVro9XoYjUZ0dXUplR6pBDsVImUods7F5/MhOzs79Fin0+HQoUNh1/h8PgwODoaNvdTg\n4CBuvfXWy441kc2bN4e+ttvtsNvtkaREKsJzKkRTczqdcDqdM45XrLhoNJqI1o11W7O7h4uLCyUX\nFhWiyFz6i3dNTc204hUrLllZWfB6vaHHXq8XOp1uyjUDAwPQ6XQYGRkJGxvu7xsYGEBWVtaVpkEq\nwaJCNLsUO+dSUFAAt9uN/v5++P1+7N69Gw6HY9wah8OBpqYmAIDL5UJGRgYyMzMjigXGdz0OhwPN\nzc3w+/3weDxwu91YtWqVUulRguA5FaLYUKxzSU1NRX19PYqKihAIBFBZWYmcnBw0NDQAAKqqqlBS\nUoL29nYYjUakp6ejsbFxylgAeO2111BdXY1Tp07hy1/+MqxWK/bt24fc3FyUlpYiNzcXqamp2L59\ne8SjOVIfdipEsaURJU96xCGNRqPoeR6KrUuLyqZNLCpE0TDd106+Q59UgZ0KUXxhcaGExqJCFJ9Y\nXCghsagQxTcWF0ooLCpEiYHFhRLC+fPAyy8DW7eyqBAlAhYXimt9fcCzz451KwUFLCpEiYLFheLO\n+fPAz342VlQ++AD45jeBd94BliyJ9c6IKFJ8nwvFjUu7lKoq4O67Aa021jsjIr7PhRIKuxQidWLn\nQjHBLoUosbBzobjFLoUoebBzIcWxSyFKfOxcKC6wSyFKbuxcKKrYpRCpEzsXmnXsUojoUuxcaMbY\npRAlD3YupCh2KUQUCXYuFBF2KUTJbbqvnSkK7gUdHR0wm80wmUyoq6ubcE11dTVMJhMsFgt6enrC\nxp45cwaFhYVYtmwZ7rrrLgwPDwMA+vv7MXfuXFitVlitVmzYsEHJ1JLC+fPACy8At98OrFkDpKeP\ndSkdHcC6dSwsRDQFUcjo6KgYDAbxeDzi9/vFYrFIX1/fuDVtbW1SXFwsIiIul0tsNlvY2Iceekjq\n6upERKS2tlY2btwoIiIej0fy8vLC7kvBlFWjt1fk/vtFFiwQKSoSefVVEb8/1rsiolia7munYp1L\nV1cXjEYj9Ho9tFotysrK0NLSMm5Na2srKioqAAA2mw3Dw8MYGhqaMvbimIqKCrz++utKpZBU2KUQ\nUTQpVlx8Ph+ys7NDj3U6HXw+X0RrBgcHJ409efIkMjMzAQCZmZk4efJkaJ3H44HVaoXdbsevfvUr\nRfJSm74+4IEHgOxs4KWXgAcfBD78ENiyhSfpiWjmFLtaTKPRRLROIjhBJCITHk+j0YSeX7x4Mbxe\nL+bPn4/u7m6sXbsWvb29mDdv3mVxmzdvDn1tt9tht9sj2qta8IovIgrH6XTC6XTOOF6x4pKVlQWv\n1xt67PV6odPpplwzMDAAnU6HkZGRy57PysoCMNatDA0NYdGiRThx4gQWLlwIAEhLS0NaWhoAID8/\nHwaDAW63G/n5+Zft7eLikkwuveLrwQd5xRcRTezSX7xramqmFa/YWKygoAButxv9/f3w+/3YvXs3\nHA7HuDUOhwNNTU0AAJfLhYyMDGRmZk4Z63A4sGvXLgDArl27sHbtWgDAqVOnEAgEAADHjx+H2+3G\n0qVLlUovYfBcChHFgmKdS2pqKurr61FUVIRAIIDKykrk5OSgoaEBAFBVVYWSkhK0t7fDaDQiPT0d\njY2NU8YCwMMPP4zS0lLs2LEDer0er7zyCgDgrbfewqOPPgqtVouUlBQ0NDQgIyNDqfTiHrsUIool\nvolSRSY6l/Ktb/FcChFduem+drK4qADfPU9ESuO9xZIEr/gionjGziXBsEsholhg56JC7FKIKNGw\nc4lj7FKIKF6wc0lw7FKISA3YucQJdilEFM/YuSQQdilEpFbsXGKAXQoRJRp2LnGKXQoRJRN2Lgpj\nl0JEasDOJQ6wSyGiZMfOJYrYpRCRWrFzmWXsUoiILsfOZYbYpRBRMmHnoiB2KUREkWHnEgF2KUSU\n7Ni5RAm7FCKimWPncgl2KUREl5tu55Ki4F7Q0dEBs9kMk8mEurq6CddUV1fDZDLBYrGgp6cnbOyZ\nM2dQWFiIZcuW4a677sLw8HDoe9u2bYPJZILZbEZnZ2fE+zx/HnjhBeD224E1a4D09LEupaMDWLcu\nsQqL0+mM9RYUpeb81JwbwPySjWLFJRAI4Hvf+x46OjrQ19eHl19+GUeOHBm3pr29HR988AHcbjee\nffZZfOc73wkbW1tbi8LCQrz//vtYs2YNamtrAQB9fX3YvXs3+vr60NHRgQ0bNuDzzz+fco99fcAD\nDwDZ2cBLLwEPPgh8+CGwZUvijr/U/g9czfmpOTeA+SUbxYpLV1cXjEYj9Ho9tFotysrK0NLSMm5N\na2srKioqAAA2mw3Dw8MYGhqaMvbimIqKCrz++usAgJaWFpSXl0Or1UKv18NoNKKrq2vCvamlSyEi\nileKFRefz4fs7OzQY51OB5/PF9GawcHBSWNPnjyJzMxMAEBmZiZOnjwJABgcHIROp5vy7wtSS5dC\nRBSvFLvGxmYPAAAHrElEQVRaTKPRRLQukhNEIjLh8TQazZR/z2Tfe+MNDd54I6LtJaSamppYb0FR\nas5PzbkBzC+ZKFZcsrKy4PV6Q4+9Xu+4zmKiNQMDA9DpdBgZGbns+aysLABj3crQ0BAWLVqEEydO\nYOHChZMeKxhzsSS7OI6IKCYUG4sVFBTA7Xajv78ffr8fu3fvhsPhGLfG4XCgqakJAOByuZCRkYHM\nzMwpYx0OB3bt2gUA2LVrF9auXRt6vrm5GX6/Hx6PB263G6tWrVIqPSIimoJinUtqairq6+tRVFSE\nQCCAyspK5OTkoKGhAQBQVVWFkpIStLe3w2g0Ij09HY2NjVPGAsDDDz+M0tJS7NixA3q9Hq+88goA\nIDc3F6WlpcjNzUVqaiq2b98e8WiOiIiiTFTk3nvvlYULF0peXl7oudOnT8uXvvQlMZlMUlhYKGfP\nng19b+vWrWI0GmX58uXyxhtvxGLLV+SJJ56QvLw8WbFihTzxxBMiMnW+iWbr1q2Sm5sreXl5Ul5e\nLv/3f/+nmvzee+89WblyZejPF77wBXnyySdVk5+IyNmzZ+WrX/2qmM1mycnJEZfLpZr8brjhBrnx\nxhtl5cqVcsstt4iIuv7fExEZHR2VlStXyt133y0i089P0TdRzrZ7770XHR0d456L5vti4sn//M//\n4Kc//Sneeecd/Pa3v8XPf/5zHDt2bNJ8E01/fz+ee+45dHd347//+78RCATQ3NysmvyWL1+Onp4e\n9PT04N1338Wf/umfYt26darJDwDuv/9+lJSU4MiRI/iv//ovmM1m1eSn0WjgdDrR09MTesuDWnIL\nevLJJ5GbmxuaAE07v9mogLPJ4/GM61yWL18uQ0NDIiJy4sQJWb58uYiM/VZcW1sbWldUVCQHDx6c\n3c1egT179khlZWXo8T/90z9JXV3dpPkmmtOnT8uyZcvkzJkzMjIyInfffbd0dnaqJr+LvfHGG7J6\n9WoRmfzfa6IZHh6WJUuWXPa8WvLT6/Vy6tSpcc+pJTcREa/XK2vWrJH9+/eHOpfp5qeqzmUi0Xhf\nTDzKy8vD22+/jTNnzuD3v/892tvbMTAwMGm+iebqq6/GD37wA1x//fVYvHgxMjIyUFhYqJr8Ltbc\n3Izy8nIAk/97TTQejwfXXnst7r33XuTn5+Nv//Zv8dlnn6kmP41Ggy996UsoKCjAc889B0A9PzsA\n+P73v4/HH38cKSl/LBHTzU/1xeViM31fTDwym83YuHEj7rrrLhQXF2PlypWYM2fOuDXh8o1nx44d\nwxNPPIH+/n4MDg7i3LlzePHFF8etSeT8gvx+P/bu3Yu//Mu/vOx7iZzf6Ogouru7sWHDBnR3dyM9\nPf2yMUoi5/frX/8aPT092LdvH/7t3/4Nb7/99rjvJ3JuP//5z7Fw4UJYrdZJ37oRSX6qLy7B98UA\nmNH7YuLZN7/5TRw+fBgHDhzA/PnzsWzZsknzTTSHDx/GF7/4RSxYsACpqam45557cPDgQSxatEgV\n+QXt27cPN998M6699loAk/97TTQ6nQ46nQ633HILAOBrX/sauru7VfPzu+666wAA1157LdatW4eu\nri7V/Oz+8z//E62trViyZAnKy8uxf/9+/PVf//W081N9cVHz+2I++ugjAMCHH36IV199FevXr580\n30RjNpvhcrlw/vx5iAjefPNN5Obm4itf+Yoq8gt6+eWXQyMxYPJ/r4lm0aJFyM7Oxvvvvw8AePPN\nN7FixQpV/Px+//vf43e/+x0A4LPPPkNnZyduvPFG1fzstm7dCq/XC4/Hg+bmZtx555144YUXpp+f\nwueFZlVZWZlcd911otVqRafTyfPPPy+nT5+WNWvWTHj53JYtW8RgMMjy5culo6Mjhjufmdtvv11y\nc3PFYrHI/v37RUSmzDfR1NXVhS5F/pu/+Rvx+/2qyu/cuXOyYMEC+fTTT0PPqSm/3/zmN1JQUCA3\n3XSTrFu3ToaHh1WR3/Hjx8VisYjFYpEVK1bI1q1bRURdP7sgp9MpX/nKV0Rk+vkl3YeFERGR8lQ/\nFiMiotnH4kJERFHH4kJERFHH4kJERFHH4kKkkNOnT8NqtcJqteK6666DTqeD1WpFfn4+RkZGJo37\nq7/6Kxw/fhwAoNfrcdNNN4WO43K5cPLkSZSUlMxWGkQzotgt94mS3YIFC9DT0wNg7BMK582bhwcf\nfHDKmA8++ACfffYZli5dCuCPN0i8+uqrx62bP38+uru7kZ+fr8zmia4QOxeiWRLJVf/Nzc2Xfaje\nRHEOhwMvv/xy1PZGFG0sLkRx5Ne//jUKCgpCj0UEd9xxB6xWK2677bbQ86tWrcJbb70Viy0SRYRj\nMaI48r//+7+h+1YBk4/FrrvuOvT398/y7ogix86FKM5EMj4TkYS96y4lBxYXojhyww034MSJE2HX\nnThxAjfccMMs7IhoZlhciGZJJJ3G6tWrcfjw4bAxXV1d+PM///Oo7Y0o2njjSqI4cvz4cdx3331o\na2ubct3Xv/51/P3f/z2sVuss7Yxoeti5EMWRpUuXYt68eTh27Nikaz766CMMDw+zsFBcY+dCRERR\nx86FiIiijsWFiIiijsWFiIiijsWFiIiijsWFiIiijsWFiIii7v8D2EqN0pcBl9MAAAAASUVORK5C\nYII=\n" + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlGX+P/D3MCAwgBxmghRMzAOCwDB5Ck3FEMkDUNqa\ntqWpm+aW6O7329pW16a7+7WT5aLuaoddt7LVTvsLECR0ZfCASBmWeQAPYGCIzXCWM3P//pjp2UZQ\nDjIMMO/XdXFdPs/c88zHO5s3z/OZeW6ZEEKAiIhsnp21CyAiot6BgUBERAAYCEREZMJAICIiAAwE\nIiIyYSAQEREACwZCUVERpk+fjjFjxiA4OBhbtmxpc1x8fDxGjhwJtVqN3NxcS5VDRETtsLfUgR0c\nHLB582aEhYWhpqYGY8eORVRUFAIDA6UxqampuHDhAs6fP4/jx49j1apVyM7OtlRJRER0CxY7Q7jz\nzjsRFhYGAHB1dUVgYCB++OEHszFJSUlYsmQJAGDixImoqKhAaWmppUoiIqJb6JEeQmFhIXJzczFx\n4kSz/VeuXMGQIUOkbT8/PxQXF/dESUREdAOLXTL6SU1NDR5++GEkJCTA1dW11eM33jlDJpO1GtPW\nPiIial9n7k5k0TOEpqYmzJ8/H4899hgefPDBVo/7+vqiqKhI2i4uLoavr2+bxxJC2OzPSy+9ZPUa\nessP54Lzwfno+E9nWSwQhBBYvnw5goKCsHbt2jbHxMbG4v333wcAZGdnw8PDAz4+PpYqiYiIbsFi\nl4yOHj2KXbt2ITQ0FBqNBgCwceNGfP/99wCAlStXYvbs2UhNTcWIESPg4uKCnTt3WqocIiJqh8UC\n4b777oPBYGh33LZt2yxVQr8RERFh7RJ6Dc6FOc6HOc7H7ZGJrlxo6mEymaxL18OIiGxZZ987eesK\nIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBER\nAAYCERGZMBCIiAgAA4GIiEwYCEREBICBQEREJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQ\niIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBERAAYCERGZMBCIiAgAA4GIiEwYCEREBICBQERE\nJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEg\nEBERAAYCERGZMBCIiAgAA4GIiEwsGgjLli2Dj48PQkJC2nxcq9XC3d0dGo0GGo0Gf/7zny1ZDhER\n3YK9JQ++dOlSrF69GosXL77pmGnTpiEpKcmSZRARUQdY9AxhypQp8PT0vOUYIYQlSyAiog6y6BlC\ne2QyGbKysqBWq+Hr64tNmzYhKCiozbHr16+X/hwREYGIiIieKZKIqI/QarXQarVdfr5MWPhX9MLC\nQsTExODUqVOtHquuroZcLodCocC+ffuwZs0a5Ofnty5SJuOZBBFRJ3X2vdOqnzJyc3ODQqEAAMya\nNQtNTU0oKyuzZklERDbLqoFQWloqpVdOTg6EEPDy8rJmSURENsuiPYRFixYhMzMTOp0OQ4YMwYYN\nG9DU1AQAWLlyJT799FNs374d9vb2UCgU2LNnjyXLISKiW7B4D6E7sIdARNR5faqHQEREvQcDgYiI\nADAQiIjIhIFAREQAGAhERGTCQCAiIgAMBCIiMmEgEBERAAYCERGZMBCIiAgAA4GIiEwYCEREBICB\nQEREJgwEIiICwEAgIiITBgIREQFgIBARkQkDgYiIADAQiIjIhIFAREQAGAg9rqGhAdOmTYMQAoWF\nhXB2doZGo5F+du3a1W2vlZmZiWPHjt32cQoLCxESEtLuuI0bN5ptT548ucuvuWDBAhQUFHT5+UTU\neQyEHvbhhx9i7ty5kMlkAIARI0YgNzdX+nnssce67bUyMjKQlZXVbcdrz8svv2y2ffTo0S4f68kn\nn8TmzZtvtyQi6gQGQg/bvXs34uLibjnm8uXLGDVqFPR6PQwGA6ZMmYIDBw4AAB566CGMGzcOwcHB\neOedd6TnpKWlYezYsQgLC0NUVBQuX76Mt956C5s3b4ZGo8GRI0fMXiMzM1M6K7nnnntw/fp1CCHw\n7LPPIiQkBKGhofj4449b1fbPf/4Tq1evlrbnzp2LzMxMPPfcc6irq4NGo8Hjjz8OAHB1dQWAmx5X\nq9UiIiICv/jFLxAYGGgWhhEREUhNTe3M1BLR7RJ9QB8ps13Nzc3izjvvlLYLCgqEs7OzCAsLk36O\nHDkihBDi3XffFb/4xS/Ea6+9Jp566inpOWVlZUIIIWpra0VwcLAoKysT165dE0OGDBGFhYVCCCHK\ny8uFEEKsX79evPHGG23WEhMTI7KysoQQQly/fl00NzeLTz/9VERFRQmDwSBKS0vFXXfdJa5evSoK\nCgpEcHCwEEKInTt3imeeeUY6zty5c0VmZqYQQghXV1ez1/hpu63jlpSUiIyMDOHu7i6uXLkiDAaD\nCA8Pl/7+QggxdepUcebMmc5OMxGZdPa9k2cIPUin08HNzc1s3/Dhw80uGf103X358uWorKzEW2+9\nhU2bNknjExISEBYWhvDwcBQXFyM/Px/Z2dmYOnUqhg4dCgDw8PCQxhv/TbQ2efJk/OY3v8HWrVtR\nXl4OuVyOo0eP4tFHH4VMJoO3tzemTZuGnJyc2/57HzlypNVxv/zyS8hkMkyYMAGDBw+GTCZDWFgY\nCgsLpecNHjzYbJuILIuB0MNu9gZ9o9raWhQXF0Mmk6G6uhqA8RLLf/7zH2RnZ+PkyZMICwtDfX29\n1I/ojHXr1uHvf/876urqMHnyZOTl5bVZ343Htre3h8FgkLbr6+vbfS2ZTHbT4zo6Okr75HI5mpub\npW0hBOzs+E+UqKfw/7YepFKpUFNT06Gx69atw+OPP44NGzbgySefBABUVVXB09MTTk5OOHfuHLKz\nsyGTyXDvvffi0KFD0m/TZWVlAAA3NzcpTG508eJFjBkzBr/73e8wfvx4nDt3DlOmTMFHH30Eg8GA\nH3/8EYcOHcKECRPMnufv74+TJ09CCIGioiKzMwgHBwezN/Sf3Oy47YVjSUmJdNZDRJZnb+0COqru\nUh2c73a2dhm3RS6XIzg4GHl5eQgICABgfGPWaDTSmGXLlkGtVuPEiRPYsmULZDIZPvvsM7z33ntY\ntGgRduzYgaCgIAQEBCA8PByAMWjefvttzJs3DwaDAT4+Pvjiiy8QExODhx9+GImJidi2bZvZx0AT\nEhKQkZEBOzs7BAcHY/bs2XBwcMCxY8egVqshk8nw+uuvw9vbG4WFhdJv9Pfddx+GDRuGoKAgBAYG\nYuzYsdIxV6xYgdDQUIwdOxYffPCB9JyHHnqozeOePXu21RnIT9tNTU0oLi7G6NGjLfBfgojaIhMd\nvYZhRTKZDEe8j2CA9wAoY5VQxangNs4NMrvOXyqxtn/+858oLS3FunXrrF1Kr5aeno6UlBQkJCRY\nuxSiPquty7W3HN9XAsHQbEBVThX0iXroknRormiGMkYJVawKnpGesHPqG1e/GhsbMWPGDGRmZnbp\n2r+tWLBgAV577TX4+/tbuxSiPqvfBsKNZdaer4U+SQ9dog4139TAM9ITqjgVlHOUcFA5WKlSIqLe\nw2YC4eeadE3QpxjPHMoPlMNV7QpVrArKOCUUIxU9WCkRUe9hk4Hwc4Z6A8oPlkOXqIM+WQ97d3vj\nmUOsEgMnDoRMzss0RGQbbD4Qfk4YBKq/qpYuLTVea4RyrrEp7TnDE3KF3ALVEhH1DgyEW6i7VGcM\nhyQdqr+qhsd0D+OlpblKDPAZ0A2VEhH1HgyEDmoqa0LZvjLoEnUoTy+HIkghXVpSjFbwE0BE1Ocx\nELrA0GBAhbYCuiQd9El62DnbSU1p90nu7DsQUZ/EQLhNQgjU5NYYm9JJejQUN0A5RwllrBJeM70g\nd2XfgYj6BgZCN6u/XA99srEpXXW8Cu5T3I2XlmKUcBzk2P4BiIispNsDoaKiAseOHZPuZ+Pv74/w\n8HC4u7vfdrEdZc1A+LnmymZj3yFJh7K0MjiPdIYqTgVVrAqKMew7EFHv0m2BcPjwYbz++usoLCyE\nRqPB4MGDIYRASUkJcnNz4e/vj9/97ne47777uq34mxbZSwLh5wyNBlQeroQuUQddog4ye5mx7xCr\nhMcUD8jsGQ5EZF3dFgi//e1vsWrVKowcObLNJ+bn52PHjh148803u1ZpJ/TGQPg5IQSuf3vd2JRO\n1KOuoA7KWUoo45TwivaC/cA+c1NZIupHuv2SUUFBAYYNG9buPkvq7YFwo4biBuiSjU3pyqOVcJ/k\nDmWcEqoYFRz92Hcgop7R2ffOdm8ROm/evFb75s+f37mqbIyjnyN8V/kidF8owovDMehXg1CVVYUv\n1V/ixLgTKPxjIWq+qelTIQcADQ0NmDZtWqu6n3jiCXz22WcAgL/85S+oq6sze/yVV17Bv/71r1bH\nc3V1BQBcvnwZu3fv7lQt/v7+CA0NhVqtRnR0NEpLS286dsOGDR3a93OnTp3CsmXLAADnzp1DeHg4\nnJyc8MYbb7Qa+9RTTyErKwt/+MMfoFarERYWhsjISBQVFQEAvvnmGyxfvlwan5SUhD/96U8d+nsS\n9aSbniGcPXsWZ86cwbPPPotNmzZBCAGZTIaqqiq8/vrrOH36dM8V2cfOEG5GNAtUHvlv3wEGGNd3\niFXBfZo77Bx69y28//GPf0Cv1+PZZ58127906VLExMRg3rx5GDZsGL766isolUrp8fvvvx+ffPKJ\n2T7gvyu6abVavPHGG0hOTu5wLcOGDcOJEyfg5eWFF154ATU1NWZrJwghsH//fhw6dAhNTU0YNWoU\nqqurERQU1Grf2rVrWx1/8eLFWL16NcaPH48ff/wRly9fxueffw5PT0/8z//8j9lYjUaDr7/+GjU1\nNdKa2Vu3bsU333yDd999FwAQERGBjz/+GN7e3hBCQKPR4Msvv4SDA+/MS5bTbWcI+fn5SE5ORmVl\nJZKTk7F3714kJyfj66+/xjvvvNMtxdoamb0MHhEeGLF5BCZenIiQvSEYcOcAXHrhErK8s3Bm0Rlc\n23MNzRWtl6HsDXbv3o24uDgAwDPPPIPRo0cjKioK165dgxACW7duxQ8//IDp06cjMjISgHHZz8bG\nRiiVShQUFCA8PByhoaF48cUXpeM+99xzOHz4MDQaTZcWxJkyZQouXLiAy5cvIyAgAEuWLEFISAgC\nAwMxc+ZMJCQkoKysDGvXrsXMmTNb7btRQ0MDsrOzMX78eADAHXfcgXHjxrX55n327FmMGjUKMplM\nCgMAqKmpgUqlkrZnzZqFTz75BIDxf9Lw8HCkp6d3+u9KZEk37XZ+8skn2LVrFzZu3Ijnn3++J2uy\nCTKZDC7BLnAJdsHQ54eioaQB+mQ9SneVIm9FHgZOHCidPTgNdbJ2uWhpacF3332HUaNG4d///jfy\n8/Nx9uxZXL16FUFBQVi+fDlWr16NN998E1qtFl5eXgCAAwcOYMaMGQCANWvW4Omnn8Zjjz2Gv/3t\nb9KxX331VWzatEk6Q8jPz8cjjzzSqgaZTAatVouBAwcCgPSbz969exEaGgoAuHDhAj744ANMmDAB\nBw4cgFarRXx8PLy8vLBlyxYEBQW12hcfH2/2Orm5udISp+3Zt28fZs2aJW2/8MIL+OCDD6BQKJCd\nnS3tnzBhAnbs2IGnn35a2j506BDmzJnTodch6hHiJgIDA8WVK1dESEiI0Ov1rX46YunSpcLb21sE\nBwffdMzq1avFiBEjRGhoqPj666/bHHOLMvul5upmce3f10T6jAyR4vCF2O2SLP54999F6l+0wmAw\nWKWmq1evipEjRwohhFizZo3YuXOn9Ni8efPEZ599JoQQwt/f3+zfx4oVK0R2drYQQgilUimam5uF\nEEJUVlYKV1dXIYQQGRkZYu7cuZ2qx9/fX4SEhIiwsDCxZMkSUVlZKQoKCsSwYcNajV2/fn2H9v1k\nz5494sknn2zzOZs2bTLbFx0dLUpKSlqNffnll8UTTzwhbZ89e1ZMmDBB2k5LSxMLFiy4aQ1E3aGz\n7503PUN46qmnEBkZiUuXLpktpA4Yf1O7dOlSu2GzdOlSrF69GosXL27z8dTUVFy4cAHnz5/H8ePH\nsWrVKrPfqmyV3FWOnAFnsaZgPwqa/oygpipMvqTDyGfPIeNPmfBbMBiqOBU8Ijxg59hzfQdh+o28\nM9clc3JysGPHjk69Tl5eHhYuXNjmY5mZmdIZws/PRACgrKwMLi4urZ7z0ksv3XLf559/LjWZ3333\n3Q7//Wpra1FRUYE777yz1WOPPvooZs+eLW0LUw/uJwaDgV9kpF7npu8m8fHxOHv2LJYuXYqCggKz\nn46EAWC8tuvp6XnTx5OSkrBkyRIAwMSJE1FRUXHLT4vYki1b0nHx4v/BABm+gzvewnAsapqDd0cf\ng9NQJxT+sRBZPlk4veA0SneVoqmsyaL1qFQq1NTUAACmTp2Kjz76CAaDASUlJcjIyJDGubm5oaqq\nCgBw+vRpjB49Wnrjmzx5Mvbs2QMA+PDDD82eU11dLW0HBAQgNze3zZ+fwqA7Pfjgg9Lxx44di6FD\nh+Lq1autxt0YEhkZGbj//vul7fPnz0t/TkxMhEajkbZLSkowdOjQm24T9QY3PUOorq6Gm5vbLX+7\n+2lMV125cgVDhgyRtv38/FBcXAwfH59WY9evXy/9OSIiAhEREV1+3b6goaHt/zQ/2DfgrnV34a51\nd6GxtBH6FD2ufXIN+b/Oh9tYN+kW3s53O3drPXK5HMHBwcjLy8NDDz2EgwcPIigoCHfddRcmTZok\njVuxYgUeeOABDB48GHPmzDG7vp6QkIBHH30Ur776KuLi4qSgUKvVkMvlCAsLw9KlS7FmzZp267nZ\nb9fd8Vu3Wq1GXl6etH316lWMHz8eVVVVsLOzQ0JCAk6fPo19+/ZhwYIF0rjf//73yMvLg1wux/Dh\nw7F9+3bpsZycHEydOtVsOyYm5rZrJfo5rVYLrVbb9QPc7FpSZGSk+PWvfy2++OILs2vCOp1OpKWl\niaeeekpERka2e02qoKDgpj2EuXPniiNHjpi95okTJ1qNu0WZ/dbMmS8IQLT6iY5+sc3xzdebxY+J\nP4pzy8+JI95HRE5wjrj4/EVRebxSGFq6p++wc+dO8corr3R4fFRUlLh69Wq3vHZPW7JkidT7uJl7\n7rlH6om0Z9q0aaK0tFQIIURLS4tQq9WiqanptuskupXOvnfe9JLRgQMHMH/+fHz88ceYPHky3N3d\n4e7ujvvuuw+ffvopHnnkERw4cKDrSQTA19dX+vIOABQXF8PX1/e2jtlfxMfPxPDhL5jtGz78eaxe\nHdXmeLlCDlWsCgHvBmDSD5Mw6u1RQAtw7olzOOZ3DHkr86BP0cNQb+hyTY8++ihSUlI63D9IT09v\n82yvL/jf//3fdnsfJ06cgFze/u3Qv/32W4wYMQLe3t4AjJ+Kevjhh2Fvz1uaUO9i8dtfFxYWIiYm\nBqdOnWr1WGpqKrZt24bU1FRkZ2dj7dq1bTaV+8sX0zorJeUQtm7dj/p6OZycWrB6dRTmzJna/hNv\nUHu+VlpXuuabGnhGehovLc1RwkHFL0YR9Ve9aj2ERYsWITMzEzqdDj4+PtiwYQOamozNz5UrVwIw\nfsEpLS0NLi4u2LlzJ+65557WRdpoIFhCk64J+hTjutLlB8rhqnaVVodTjFRYuzwi6ka9KhC6CwPB\nMgz1BpQfLDeuDpesh727vdSUHjhxIJcOJerjGAjUJcIgUP1VtXRpqfFaI5RzlVDFqeA5wxNyBZcO\nJeprGAjULeou1RnDIUmH6q+q4THdw3hpaa4SA3wGWLs8IuoABgJ1u6ayJuPSoYk6lKeXQxGkkC4t\nKUZz6VCi3oqBQBZlaDCgQlthXB0uSQ87ZzupKe0+yZ19B6JepNsXyFm3bl2H9pFtsHO0g1e0F0b9\ndRTu/f5eBO0Jgp2LHS7EX0DWnVk498Q5/PjvH9FS02LtUomok9o9Q9BoNMjNzTXbFxIS0ub3CiyF\nZwh9Q/3leuiTjU3pquNV8JjqAWWsEsoYJRwHcelQop7WbZeMtm/fjr/97W+4ePEihg8fLu2vrq7G\n5MmTzW5OZmkMhL6nubLZ2HdI0qEsrQzOI52hilNBFauCYgz7DkQ9odsCobKyEuXl5Xjuuefw6quv\nSgd1c3NrtRSipTEQ+jZDowGVh41Lh+qT9IAcxr5DrBIeUzwgs2c4EFkCm8rUqwkhcP3b68amdKIe\ndQV1UM5SQhmnhFe0F+wH8v4+RN2FgUB9SkNxA3TJxjOHyqOVcJ/kDmWcEqoYFRz92Hcguh0MBOqz\nmquaUZ5uupVGqh7Ow5yN60rHqeAS6sK+A1EnMRCoXxDNApVHKqFL0kGXqANaYAyHWBXcp7nDzqHn\nlg4l6qsYCNTvCCFQe6ZWakrX5tXC6wEvqOJU8HrAC/Ye7DsQtYWBQP1eQ0kD9Hv10CfqUXGoAgMn\nDpTOHpyGOlm7PKJeg4FANqWlpgVl+8ugT9JDv1cPR19HY1M6VgXXe1zZdyCbxkAgmyVaBKqOVUGX\naOw7GGoNUlPaI8IDdo7sO5BtYSAQmdSeq5Wa0rWna+E50xOqWBW8ZnvBwYtLh1L/x0AgakPjtUbo\n9xrvs1SRUQG3sW7SLbyd73a2dnlEFsFAIGpHS20Lyg+UGxcAStZhgPcA6dKS2zg3yOzYd6D+gYFA\n1AmiRaAqpwr6ROPqcM0VzVDGGJvSnpGesHMy7zuk7E/Bln9tQYNogKPMEfGPxmNO1BwrVU90awwE\nottQe75WWle65psaeEZ6Gi8tzVEiPTcda/66Bhc1F6Xxw3OHI+HpBIYC9UoMBKJu0qRrgj7VGA7l\nB8pR4FyAFHUKjgYcxRXlFWlc9PfRSPt7mhUrJWobA4HIAgz1BqycuxIDKwYiPD8c1x2v4+joo8gK\nyMIdjXcg4/0Ma5dI1Epn3zv5nX+iDrBzssP3Q75H+pR0yIQMAT8EYFLeJPw2+bfwqfJB3oA8KGOV\n8JzhCblCbu1yibqEZwhEHZSyP6V1D+Hr4dgyfwtCy0KhS9Kh+qtqeEz3MC4ANFeJAT4DrFgx2Tpe\nMiKyoJT9Kdi6ZyvqW+rhJHfC6oWrzRrKTWVNxqVDE3UoTy+HIkghfd9BMZpLh1LPYiAQ9RKGBgMq\ntBXG1eGS9LBztjOeOcQp4T7JHTI5w4Esi4FA1AsJIVCTWyPdwruhuAHKOaalQ6O8IHdl34G6HwOB\nqA+ov1wPfbLxI61Vx6vgMdUDylgllDFKOA7i0qHUPRgIRH1Mc2Wzse+QpENZWhmcRzpDFaeCKlYF\nxRj2HajrGAhEfZih0YDKw5XSpSXIYew7xCrhMcUDMnuGA3UcA4GonxBC4Pq3141N6UQ96grqoJyt\nhDJWaVw61I1fI6JbYyAQ9VMNxQ3QJRvPHCqPVsJ9krtxdbgYFRz92Heg1hgIRDaguaoZ5enlxktL\nqXo4D3OWbuHtEurCvgMBYCAQ2RzRLFB5pFJaHQ4tMIZDrAru09xh58ClQ20VA4HIhgkhUHumVmpK\n1+bVwusBL6jiVMa+gwf7DraEgUBEkoaSBuj36qFP1KPiUAUGThwonT04DXWydnlkYQwEImpTy/UW\nlKWXQZ+kh36vHo6+jsamdKwKrve4su/QDzEQiKhdokWg6lgVdInGvoOh1iA1pT0iPGDnyL5Df8BA\nIKJOqz1XKzWla0/XwnOmJ1SxKnjN9oKDl4O1y6MuYiAQ0W1pvNZo7Dsk6VF+sBxuY92kW3g73+1s\n7fKoExgIRNRtWmpbUP6fcugT9dAl6zDAe4B0acltnBsO70tF+pYtsG9oQLOjI2bGx2PqnDntH5h6\nBAOBiCxCGASqjldBn2S8S2ttaQ2Kmw9jVtU+eOJr2KEJLwwfjuiEBIZCL8FAIKIe8X/3LcTiowbo\nMBk1GA5PfA0VjuLt6Qr84eD/s3Z5hM6/d/JbKkTUJU32VzEEmRiCT9CEgdDjXugwGZMOTUDu1Fxp\ndTjFSIW1S6UO4mfLiKhLmh3/e0M9B1ThTqQjGC/h8PStuOu5u1B3oQ4np51ETlAOLj13CZXHKiFa\neKbfm/GSERF1yaGUFHyxZg3+7+JFad/zw4fjgZ/1EIRBoPpEtbEpnaRDY2kjVDHGTyx5zvCEXMGl\nQy2pV/UQ0tLSsHbtWrS0tOBXv/oV1q1bZ/a4VqtFXFwc7r77bgDA/Pnz8eKLL7YukoFA1CsdSknB\n/q1bIa+vR4uTE6JWr75lQ7nuUp2xKZ2kQ/VX1fCY7mG8tDRXiQE+A3qwctvQawKhpaUFAQEBOHDg\nAHx9fTF+/Hjs3r0bgYGB0hitVos333wTSUlJty6SgUDU7zSVNRmXDk3UoTy9HIoghXHp0DgVnAOc\neSuNbtBrmso5OTkYMWIE/P39AQALFy5EYmKiWSAA4Bs9kY1y8HKAzy994PNLHxgaDKjQVkCXpMM3\nUd/AztlO+jKc+yR3yOS3DoeUgwex5fPP0WBnB0eDAfEPPog599/fQ3+T/sNigXDlyhUMGTJE2vbz\n88Px48fNxshkMmRlZUGtVsPX1xebNm1CUFBQm8dbv3699OeIiAhERERYomwisgI7Rzt4RXvBK9oL\nYptATW4NdIk6XIi/gIbiBijnKKGMU8IrygtyV/O+Q8rBg1izezcu/vKX0r6LH34IADYXClqtFlqt\ntsvPt9glo88++wxpaWl45513AAC7du3C8ePHsXXrVmlMdXU15HI5FAoF9u3bhzVr1iA/P791kbxk\nRGSz6i/XQ59s/DJc1fEqeEz1gDJWCWWMEo6DHBEdH4/0efNaPS/688+R9pe/WKHi3qOz750W+9ip\nr68vioqKpO2ioiL4+fmZjXFzc4NCYfyM8qxZs9DU1ISysjJLlUREfZDTUCf4PuML9X41wovC4fOY\nDyq0FfhyzJc4MfEEJpwYDf8CADe879Vbpdq+zWKXjMaNG4fz58+jsLAQgwcPxkcffYTdu3ebjSkt\nLYW3tzexZmRyAAAJkUlEQVRkMhlycnIghICXl5elSiKiPs7e3R7eC73hvdAbhkYDKg9Xwv23uXj5\n90CLHMiaBBydDJwKAbj8T+dZLBDs7e2xbds2REdHo6WlBcuXL0dgYCDeeustAMDKlSvx6aefYvv2\n7bC3t4dCocCePXssVQ4R9TN2A+zgGemJwM13Y82/PgTu/SUmZQGrtgO+lxvgNCUO1z65Zlw61I03\nZegIfjGNiPq8lIMHsTUpCfUwnhnEh8dCXRYAfZIelUcr4T7J3bg6XIwKjn6O7R2u3+g130PoTgwE\nIuqq5upmlH9RDl2iDvpUPZyHOUu38HYJdenX33dgIBAR3YRoFqg8UimtDocWGMMhVgX3ae6wc+hf\nt3djIBARdYAQArVnao1nDkl61ObVwusBL6jiVMa+g0ff7zswEIiIuqChpMG4dGiiHhWHKjBw4kDp\n7MFpaN/8zBIDgYjoNrVcb0FZehn0SXro9+rh6OtobErHquB6j2uf6TswEIiIupFoEag6VgVdorHv\nYKg1SE1pjwgP2Dn23r4DA4GIyIJqz9VKTena07XwnOkJVawKXrO94ODlYO3yzDAQiIh6SOO1RmPf\nIUmP8oPlcBvrJt2l1fluZ2uXx0AgIrKGltoWlP+n3Lg6XLIOA7wHSJeW3Ma5QWbX830HBgIRkZUJ\ng0DV8Srj6nCJOjRXNEMZY2xKe0Z6ws6pZ/oODAQiol6m9nyttHRozckaeEZ6Gi8tzVHCQWW5vgMD\ngYioF2vSNUGfajxzKD9QDle1q9R3UIxUdOtrMRCIiPoIQ70B5QfLpbMHew97qGJVUMYpMXDCwHaX\nDm0PA4GIqA8SBoHqE9XGpnSSDo2ljVDFGM8cPGd4Qq6Qt3+QGzAQiIj6gbpLddLSodVfVcNjuofx\n7GGuEgN8BnToGAwEIqJ+pqm8CWWpZca+Q3o5FEEKqOJUUMWp4BzgfNNbaTAQiIj6MUODARXaCuiS\njHdptXO2k5rS7pPczfoODAQiIhshhEBNbo10C++G4gYo5yihjFPCK8q4dCgDgYjIBtV/Xy99Yqkq\nuwpTq6cyEIiIbF1zZTMcPBwYCERE1Pn3zt57I28iIupRDAQiIgLAQCAiIhMGAhERAWAgEBGRCQOB\niIgAMBCIiMiEgUBERAAYCEREZMJAICIiAAwEIiIyYSAQEREABgIREZkwEIiICAADgYiITBgIREQE\ngIFAREQmDAQiIgLAQCAiIhMGAhERAWAgEBGRCQOBiIgAMBCIiMiEgUBERAAYCEREZGLRQEhLS8Po\n0aMxcuRIvPrqq22OiY+Px8iRI6FWq5Gbm2vJcvosrVZr7RJ6Dc6FOc6HOc7H7bFYILS0tOCZZ55B\nWloazpw5g927d+Ps2bNmY1JTU3HhwgWcP38eb7/9NlatWmWpcvo0/iP/L86FOc6HOc7H7bFYIOTk\n5GDEiBHw9/eHg4MDFi5ciMTERLMxSUlJWLJkCQBg4sSJqKioQGlpqaVKIiKiW7BYIFy5cgVDhgyR\ntv38/HDlypV2xxQXF1uqJCIiugV7Sx1YJpN1aJwQokPP6+jx+qsNGzZYu4Reg3NhjvNhjvPRdRYL\nBF9fXxQVFUnbRUVF8PPzu+WY4uJi+Pr6tjrWjaFBRETdz2KXjMaNG4fz58+jsLAQjY2N+OijjxAb\nG2s2JjY2Fu+//z4AIDs7Gx4eHvDx8bFUSUREdAsWO0Owt7fHtm3bEB0djZaWFixfvhyBgYF46623\nAAArV67E7NmzkZqaihEjRsDFxQU7d+60VDlERNQOmeD1mF5j2bJlSElJgbe3N06dOgUAKCsrwyOP\nPILLly/D398fH3/8MTw8PKxcac8oKirC4sWLce3aNchkMqxYsQLx8fE2OSf19fWYNm0aGhoa0NjY\niLi4OLz88ss2ORc/19LSgnHjxsHPzw/Jyck2PR/+/v4YOHAg5HI5HBwckJOT0+n54DeVe5GlS5ci\nLS3NbN8rr7yCqKgo5OfnIzIyEq+88oqVqut5Dg4O2Lx5M06fPo3s7Gz89a9/xdmzZ21yTpycnJCR\nkYGTJ0/i22+/RUZGBo4cOWKTc/FzCQkJCAoKkj50YsvzIZPJoNVqkZubi5ycHABdmA9BvUpBQYEI\nDg6WtgMCAsTVq1eFEEKUlJSIgIAAa5VmdXFxcWL//v02PyfXr18X48aNE999951Nz0VRUZGIjIwU\nBw8eFHPnzhVC2Pb/L/7+/kKn05nt6+x88AyhlystLZUa7T4+Pjb7xb3CwkLk5uZi4sSJNjsnBoMB\nYWFh8PHxwfTp0zFmzBibnQsA+M1vfoPXX38ddnb/fRuz5fmQyWSYMWMGxo0bh3feeQdA5+fDYk1l\n6n4ymcwmv49RU1OD+fPnIyEhAW5ubmaP2dKc2NnZ4eTJk6isrER0dDQyMjLMHreludi7dy+8vb2h\n0WhuersKW5oPADh69CgGDRqEH3/8EVFRURg9erTZ4x2ZD54h9HI+Pj64evUqAKCkpATe3t5Wrqhn\nNTU1Yf78+Xj88cfx4IMPAuCcuLu7Y86cOThx4oTNzkVWVhaSkpIwbNgwLFq0CAcPHsTjjz9us/MB\nAIMGDQIA3HHHHXjooYeQk5PT6flgIPRysbGxeO+99wAA7733nvSmaAuEEFi+fDmCgoKwdu1aab8t\nzolOp0NFRQUAoK6uDvv374dGo7HJuQCAjRs3oqioCAUFBdizZw/uv/9+fPDBBzY7H7W1taiurgYA\nXL9+Henp6QgJCen8fFiqwUGdt3DhQjFo0CDh4OAg/Pz8xD/+8Q+h1+tFZGSkGDlypIiKihLl5eXW\nLrPHHD58WMhkMqFWq0VYWJgICwsT+/bts8k5+fbbb4VGoxFqtVqEhISI1157TQghbHIubqTVakVM\nTIwQwnbn49KlS0KtVgu1Wi3GjBkjNm7cKITo/HzwewhERASAl4yIiMiEgUBERAAYCEREZMJAICIi\nAAwEok6Ry+XQaDQICQnBggULUFdXZ+2SiLoNA4GoExQKBXJzc3Hq1CkMGDAAO3bsMHu8ubnZSpUR\n3T4GAlEXTZkyBRcuXEBmZiamTJmCuLg4jBkzxtplEXUZ72VE1AXNzc1ITU3F7NmzAQC5ubk4ffo0\nhg4dauXKiLqOZwhEnVBXVweNRoPx48fD398fy5YtgxACEyZMYBhQn8czBKJOcHZ2Rm5ubqv9Li4u\nVqiGqHvxDIGIiAAwEIg6pa37ydvaffep/+LN7YiICADPEIiIyISBQEREABgIRERkwkAgIiIADAQi\nIjJhIBAREQDg/wPa6rEVsfB01AAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.3 page NO.363" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou=0.998\t # density in kg/cu.m\n", + "cp=1009 \t\t# specific heat in J/(kg*K) \n", + "v=20.76e-6 \t# viscosity in sq.m/s \n", + "Pr=0.697 \t# Prandtl Number \n", + "k=0.03003 \t# thermal conductivity in W/(m.K)\n", + "a=0.2983e-4 \t# diffusivity in sq.m/s \n", + "L=1.0 \t\t # Length of plate in m\n", + "V=5.0 \t\t # velocity of air in m/s\n", + "b=0.5 \t\t# width in m\n", + "Re=V*L/v \t# Reynolds number at plate end\n", + "\n", + "h=k*0.664*Re**(0.5)*Pr**(1/3.0)/L\t # The average convection coefficient in W/(sq.m.K)\n", + "Df=0.664*V*rou*v*b*(Re)**0.5 \t # drag force in N\n", + "hx=(1/2.0)*h # local convective coefficient\n", + "delta=5*L/(Re)**0.5 # The boundary-layer thickness at plate end\n", + "delta_t=delta/(Pr)**(1/3.0)\n", + "\n", + "print\"The local convective coefficient is \",round(hx,2),\"W/(sq.m.K)\"\n", + "print\"The boundary-layer thickness at plate end is \",round(delta*100,2),\"cm\"\n", + "print\"The thermal-boundary-layer thickness is \",round(delta_t*100,2),\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The local convective coefficient is 4.34 W/(sq.m.K)\n", + "The boundary-layer thickness at plate end is 1.02 cm\n", + "The thermal-boundary-layer thickness is 1.15 cm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.4 page NO. 364" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.0812 # density in Ibm/ft^3 \n", + "cp=0.2918 # specific heat BTU/(lbm-degree Rankine) \n", + "v= 17.07e-5 # viscosity in ft^2/s \n", + "kf = 0.01546 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "a = 0.8862 # diffusivity in ft^2/hr \n", + "Pr = 0.709 # Prandtl Number\n", + "\n", + "qw=10/(1.5*10.125)*(1/.2918)*144 # The wall flux \n", + "V_inf=20 # velocity in ft/s\n", + "L=1.5/12 # length in ft\n", + "Re_L=V_inf*10*L/v # Reynolds number at plate end\n", + "T_inf=300 # free stream temperature in degree Rankine\n", + "Tw=T_inf+(qw*L*10/(kf*0.453*(Re_L)**0.5*(Pr)**(1/3.0)))\n", + "\n", + "print\"The maximum heater surface temperature is \",round(Tw,0),\"R\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum heater surface temperature is 470.0 R\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.5 page NO. 368" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.0812 # density in Ibm/ft**3 \n", + "cp=0.2918 # specific heat BTU/(lbm-degree Rankine) \n", + "v= 17.07e-5 # viscosity in ft**2/s \n", + "kf = 0.01546 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "a = 0.8862 # diffusivity in ft**2/hr \n", + "Pr = 0.709 # Prandtl Number\n", + "Tw=469 # maximum heater temperature in degree Rankine\n", + "T_inf=300.0 # free-stream temperature in degree Rankine\n", + "qw=324.0 # The wall flux in BTU/(hr.ft**2)\n", + "V_inf=20 # velocity in ft/s\n", + "\n", + "hx=qw/(Tw-T_inf) # The convection coefficient\n", + "LHS=(hx/3600.0)*(Pr)**(2/3.0)/(rou*cp*V_inf)\n", + "Re_L=1.46e+005 # Reynolds number at plate end\n", + "RHS=0.332*(Re_L)**(-0.5)\n", + "err=(LHS-RHS)*100/LHS\n", + "\n", + "print\"The convection coefficient is BTU/(hr.sq.ft.degree R)\",hx\n", + "print\"The error is \",round(err,0),\"percent\"\n", + "print\"Since the error is only 3 percent, the agreement is quite good\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The convection coefficient is BTU/(hr.sq.ft.degree R) 1.91715976331\n", + "The error is 3.0 percent\n", + "Since the error is only 3 percent, the agreement is quite good\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.6 page NO. 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 62.4 # density in Ibm/cu.ft\n", + "v= 1.083e-5 # viscosity in sq.ft/s \n", + "V_inf=5*.5144/.3048 # barge velocity in ft/s using conversion factors from appendix table A1\n", + "L=20 # Length of barge in ft\n", + "Re_L=V_inf*L/v # Reynolds number at plate end\n", + "Cd=0.003 #value of Coefficient of discharge figure 7.11\n", + "gc=32.2\n", + "b=12 # width in ft\n", + "\n", + "Df=(Cd*rou*V_inf**2*b*L)/(2*gc)\n", + "\n", + "print\"The drag force is \",round(Df,0),\"lbf\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drag force is 50.0 lbf\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.7 page NO. 374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 1.0732 # density in kg/m**3 \n", + "cp= 1013 # specific heat in J/(kg*K) \n", + "v= 21.67e-6 # viscosity in m**2/s \n", + "Pr = 0.702 # Prandtl Number \n", + "k= 0.03352 # thermal conductivity in W/(m.K)\n", + "a = 0.3084e-4 # diffusivity in m**2/s\n", + "V_inf=60 # carbon dioxide velocity in m/s\n", + "vel=60 #velocity\n", + "\n", + "x_cr=(5e5)*v/V_inf # The transition length in m\n", + "w=4.0 # width of each heater in cm\n", + "b=0.16 # effective heating length in m\n", + "Tw=600 # temperature of heater surface in K\n", + "T_inf=400 # temperature of carbon dioxide in K\n", + "\n", + "y=0.664*Pr**(1/3.0)*k*(vel/v)**(1/2.0) #y=h1*x1**(1/2)\n", + "x1=0.04 # m\n", + "h1=y/x1**(0.5)\n", + "q1=h1*(Tw-T_inf)*x1*b\n", + "\n", + "x2=0.08\n", + "h2=y/(x2)**(0.5)\n", + "Q=h2*x2*(b)*(Tw-T_inf) #Q=q1+q2\n", + "q2=Q-q1\n", + "\n", + "x3=0.12\n", + "h3=y/(x3)**(0.5)\n", + "Q1=h3*x3*(b)*(Tw-T_inf) #Q=q1+q2+q3\n", + "q3=Q1-Q\n", + "\n", + "x4=0.16\n", + "h4=y/(x4)**(0.5)\n", + "Q2=h4*x4*(b)*(Tw-T_inf) #Q=q1+q2+q3+q4\n", + "q4=Q2-Q1\n", + "\n", + "Re5=vel*5*x1/(v)\n", + "\n", + "h5=0.0359*(Re5**(0.8)-830)*Pr**(1/3.0)*(k/(11.9*x1))\n", + "x5=0.2\n", + "Q3=h5*x5*(b)*(Tw-T_inf) #Q3=q1+q2+q3+q4+q5\n", + "q5=Q3-Q2\n", + "\n", + "Re6=vel*6*x1/(v)\n", + "h6=0.0359*(Re5**(0.8)-830)*Pr**(1/3.0)*(k/(10.3*x1))\n", + "x6=0.24\n", + "Q4=h6*x6*(b)*(Tw-T_inf) #Q4=q1+q2+q3+q4+q5+q6\n", + "q6=round(Q4,0)-round(Q3,0)\n", + "\n", + "print\"The wattage required for 1st heater is \",round(q1,0),\"W\"\n", + "print\"The wattage required for 2nd heater is \",round(q2,0),\"W\"\n", + "print\"The wattage required for 3rd heater is \",round(q3,1),\"W\"\n", + "print\"The wattage required for 4th heater is \",round(q4,0),\"W\"\n", + "print\"The wattage required for 5th heater is \",round(q5,0),\"W\"\n", + "print\"The wattage required for 6th heater is \",round(q6,1),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wattage required for 1st heater is 211.0 W\n", + "The wattage required for 2nd heater is 87.0 W\n", + "The wattage required for 3rd heater is 67.0 W\n", + "The wattage required for 4th heater is 56.0 W\n", + "The wattage required for 5th heater is 132.0 W\n", + "The wattage required for 6th heater is 213.0 W\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.8 page NO. 302" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.0735 # density in Ibm/ft**3 \n", + "v= 16.88e-5 # viscosity in ft**2/s \n", + "V=20*5280/3600.0 # flow velocity in ft/s\n", + "D=1.0 # diameter of pole in ft\n", + "L=30.0 # length of pole in ft\n", + "gc=32.2\n", + "Re_D=V*D/v # Reynolds Number for flow past the pole\n", + "Cd_cylinder=1.1 # value of Cd for smooth cylinder from figure 7.22\n", + "A_cylinder=D*L # frontal area of pole\n", + "\n", + "Df_cylinder=Cd_cylinder*(0.5)*rou*V**2*A_cylinder/gc\n", + "D_square=2/12.0 # length of square part of pole\n", + "L_square=4\n", + "Re_square=V*D_square/v # Reynolds Number for square part of pole\n", + "Cd_square=2 # Corresponding value of Cd for square part from figure 7.23\n", + "A_square=D_square*L_square # projected frontal area of square part\n", + "Df_square=Cd_square*(0.5)*rou*V**2*A_square/gc\n", + "Df_total=Df_cylinder+Df_square\n", + "print\"The total drag force on the pole is \",round(Df_total,1),\"lbf\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total drag force on the pole is 33.7 lbf\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.9 page NO. 387" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.883 # density in kg/cu.m\n", + "cp= 1014 # specific heat in J/(kg*K) \n", + "v= 25.90e-6 # viscosity in sq.m/s \n", + "Pr = 0.689 # Prandtl Number \n", + "kf= 0.03365 # thermal conductivity in W/(m.K)\n", + "a = 0.376e-4 # diffusivity in sq.m/s\n", + "V_inf=1 # velocity in m/s\n", + "D=0.00013 # diameter in m\n", + "L=0.01 # length of wire in cm\n", + "Re_D=V_inf*D/v # The Reynolds number of flow past the wire\n", + "C=0.911 #value of C for cylinder from table 7.4\n", + "m=0.385 #value of m for cylinder from table 7.4\n", + "\n", + "hc=kf*C*(Re_D)**m*(Pr)**(1/3)/D # the convection coefficient in W/(m**2.K)\n", + "Tw=500 # air stream temperature in K\n", + "T_inf=300 # wire surface temperature in K\n", + "As=math.pi*D*L # cross sectional area in sq.m\n", + "qw=hc*As*(Tw-T_inf) # The heat transferred to the air from the wire\n", + "resistivity=17e-6 # resistivity in ohm cm\n", + "Resistance=resistivity*(L/(math.pi*D**2)) # resistance in ohm\n", + "i=(qw*100/Resistance)**0.5 # current in ampere\n", + "\n", + "print\"The current is %.1f A\",round(i,1),\"A\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current is %.1f A 3.3 A\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.10 page NO.393" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.0735 # density in Ibm/cu.ft \n", + "cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n", + "v= 16.88e-5 # viscosity in sq.ft/s \n", + "kf = 0.01516 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "a = 0.859 # diffusivity in sq.ft/hr \n", + "Pr = 0.708 # Prandtl Number\n", + "OD=0.875/12 # outer diameter in ft\n", + "ID=0.06208 # inner diameter in ft\n", + "A=0.003027 # cross sectional area in sq.ft\n", + "L=2\n", + "sL=1.5/12\n", + "sT=1.3/12\n", + "V_inf=12 # velocity of air in ft/s\n", + "\n", + "V1=(sT*V_inf)/(sT-OD) # velocity at area A1 in ft/s\n", + "sD=((sL)**2+(sT/2)**2)**0.5 # diagonal pitch in inch\n", + "V2=(sT*V_inf)/(2*(sD-OD))\n", + "Vmax=V1\n", + "Re_D=Vmax*OD/v # Reynolds Number\n", + "sT_OD=1.3/0.875\n", + "sT_sL=1.3/1.5\n", + "f1=0.35 # value of f1 for above values of sT/Do and Re\n", + "f2=1.05 #Corresponding value of f2 for above values of sT/sL and Re\n", + "gc=32.2\n", + "N=7\n", + "dP=N*f1*f2*(rou*Vmax**2/(2*gc))\n", + "sL_Do=sL/OD\n", + "C1=0.438 #value of C1 for above values of sT/Do and sL/Do\n", + "C2=0.97 #value of C2 for above values of sT/Do and sL/Do\n", + "m=0.565 #value of m for above values of sT/Do and sL/Do\n", + "hc=kf*1.13*C1*C2*(Re_D)**m*(Pr)**(1/3.0)/OD # The convection coefficient\n", + "As=70*math.pi*OD*L # outside surface area of 70 tubes\n", + "Tw=200 # outside surface temeperature in degree F\n", + "T_inf=70 # air temperature in degree F\n", + "q=hc*As*(Tw-T_inf) # heat transferred\n", + "\n", + "print\"The pressure drop is \",round(dP/147,3),\"psi\"\n", + "print\"The heat transferred is\",round(q,1),\" BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The pressure drop is 0.027 psi\n", + "The heat transferred is 87571.6 BTU/hr\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER8.ipynb b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER8.ipynb new file mode 100755 index 00000000..759f39bd --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/CHAPTER8.ipynb @@ -0,0 +1,481 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8: Natural Convection System" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.1 Page No. 413" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.0551 # density in Ibm/cu.ft \n", + "cp=0.2420 # specific heat BTU/(lbm-degree Rankine) \n", + "v= 27.88e-5 # viscosity in sq.ft/s \n", + "kf = 0.01944 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "a = 1.457 # diffusivity in sq.ft/hr \n", + "Pr = 0.689 # Prandtl Number\n", + "T_inf=120.0+460.0 # wall temperature in degree R\n", + "Tw=400.0+460.0 # inside wall temperature in degree R\n", + "Beta=1/T_inf\n", + "\n", + "Beta_=0.00116\n", + "gc=32.2\n", + "L=1.0 # length of wall in ft\n", + "W=2.0 # width in ft\n", + "Gr=(gc*Beta_*(Tw-T_inf)*L**3)/v**2 # Grashof Number\n", + "temperature_slope=0.505 #temperature slope from table 8.1 \n", + "hL=(kf/L)*(4/3.0)*(Gr/4.0)**(1/4.0)*temperature_slope \n", + "A=L*W # cross sectional area in sq.ft\n", + "qw=hL*A*(Tw-T_inf)\n", + "\n", + "print\"The heat transferred is\",round(qw,0),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat transferred is 558.0 BTU/hr\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.2 Page No. 414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou1=1.295 # density in kg/cu.m\n", + "cp1=1005.5 # specific heat in J/(kg*K) \n", + "v1=12.59e-6 # viscosity in sq.m/s \n", + "Pr1=0.713 # Prandtl Number \n", + "kf1=0.02426 # thermal conductivity in W/(m.K)\n", + "a1=0.17661e-4 # diffusivity in sq.m/s \n", + "T_inf1=0 # inside and outside temperature in K\n", + "Beta1=1/(T_inf1+273.0) # volumetric thermal expansion coefficient at 295 K and 273 K\n", + "\n", + "rou2=1.177 # density in kg/cu.m\n", + "cp2=1005 # specific heat in J/(kg*K) \n", + "v2=15.68e-6 # viscosity in sq.m/s \n", + "Pr2=0.708 # Prandtl Number \n", + "kf2=0.02624 # thermal conductivity in W/(m.K)\n", + "a2=0.22160e-4 # diffusivity in sq.m/s \n", + "T_inf2=22.0 # inside and outside temperature in K\n", + "Beta2=1/(T_inf2+273.0) # volumetric thermal expansion coefficient at 295 K and 273 K\n", + "\n", + "g=9.81\n", + "t=0.005 # thickness of glass\n", + "L=0.60 # window length in m\n", + "k=0.81 # thermal conductivity of glass from appendix table B3\n", + "Tw1=18\n", + "Tw2=4\n", + "Ra1=(g*Beta1*(Tw2-T_inf1)*L**3)/(v1*a1)\n", + "hL1=(kf1/L)*(0.68+((0.67*((abs(Ra1)))**(1/4.0))/(1+(0.492/Pr1)**(9/16.0))**(4/9.0)))\n", + "Ra2=(g*Beta2*(Tw1-T_inf2)*L**3)/(v2*a2)\n", + "hL2=(kf2/L)*(0.68+((0.67*(abs(Ra2))**(1/4.0))/(1+(0.492/Pr2)**(9/16.0))**(4/9.0)))\n", + "q1=(T_inf1-T_inf2)/((1/hL2)+(t/k)+(1/hL1))\n", + "Tw2_=T_inf2-(q1/hL2)\n", + "Tw1_=q1/hL1+T_inf1\n", + "\n", + "Ra1_=3.7*10**8\n", + "hL1_=2.92\n", + "Ra2_=2.31*10**8\n", + "hL2_=2.80\n", + "q2=(T_inf2-T_inf1)/((1/hL2_)+(t/k)+(1/hL1_))\n", + "\n", + "Tw2final=q2-T_inf2\n", + "Tw1final=10.7\n", + "\n", + "print\"The heat loss is \",round(q2,1),\" W/sq.m\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat loss is 31.2 W/sq.m\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.3 Page No.419" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "rou= 0.0735 # density in Ibm/cu.ft \n", + "cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n", + "v= 16.88e-5 # viscosity in sq.ft/s \n", + "kf = 0.01516 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n", + "a = 0.859 # diffusivity in sq.ft/hr \n", + "Pr = 0.708 # Prandtl Number\n", + "Tw=90\n", + "T_inf=70\n", + "g=32.2\n", + "L=5.5 # length in ft\n", + "W=2+(4/12.0) # width in ft\n", + "Beta=1/(Tw+460.0) # volumetric thermal expansion coefficient in per degree Rankine\n", + "Ra=(g*Beta*(Tw-T_inf)*L**3)/(v*a/3600)\n", + "hc=(kf/L)*(0.825+((0.387*(Ra)**(1/6.0))/(1+(0.492/Pr)**(9/16.0))**(8/27.0)))**2\n", + "q=hc*L*W*(Tw-T_inf)\n", + "\n", + "print\"The heat gained is %d BTU/hr\",round(q,0),\"BTU/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The heat gained is %d BTU/hr 142.0 BTU/hr\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.4 Page no. 421" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "rou= 1123 # density in kg/m^3 \n", + "cp= 1006.7 # specific heat in J/(kg*K) \n", + "v= 17.204e-6 # vismath.cosity in m^2/s \n", + "Pr =0.703 # Prandtl Number \n", + "kf= 0.02738 # thermal conductivity in W/(m.K)\n", + "a = 0.2446e-4 # diffusivity in m^2/s \n", + "g=9.81\n", + "L=5.0\n", + "theta=45\n", + "T_inf=20.0 # ambient air temperature in degree C\n", + "Tw=65 # roof surface temperature in degree C\n", + "Beta=1/(T_inf+273.0) # volumetric thermal math.expansion coefficient in per K\n", + "\n", + "import math\n", + "x=((3e5*math.exp(0.1368*math.cos(90-theta))*v*a)/(g*math.cos(theta)*Beta*(Tw-T_inf)))**(1/3.0)\n", + "x=0.051\n", + "print\"The Laminar-turbulent transition length by Vliet equation is \",round(x,3),\"m\\n\\n\"\n", + "lists=[0.02,0.04,0.051,0.051,0.1,1.0,3,5]\n", + "Ra=[0,0,0,0,0,0,0,0]\n", + "hc=[0,0,0,0,0,0,0,0]\n", + "print\"_______________________________________________________\"\n", + "print\"x(m)\\t\\tRaL\\t\\t\\thc(W/[m.K])\"\n", + "print\"_______________________________________________________\"\n", + "for i in range(0,8):\n", + " if lists[i]" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/README.txt b/Engineering_Heat_Transfer_by_W_S_Janna/README.txt new file mode 100755 index 00000000..0da6ee5a --- /dev/null +++ b/Engineering_Heat_Transfer_by_W_S_Janna/README.txt @@ -0,0 +1,10 @@ +Contributed By: Ankit Garg +Course: btech +College/Institute/Organization: DCRUST, Murthal +Department/Designation: Chemical Engineering +Book Title: Engineering Heat Transfer +Author: W S Janna +Publisher: CRC Press +Year of publication: 1999 +Isbn: 9780849321269 +Edition: 2 \ No newline at end of file diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/heat_transferred.png b/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/heat_transferred.png new file mode 100755 index 00000000..12f4f4a9 Binary files /dev/null and b/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/heat_transferred.png differ diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/length_required.png b/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/length_required.png new file mode 100755 index 00000000..4071c2d2 Binary files /dev/null and b/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/length_required.png differ diff --git a/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/wall_tempratures.png b/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/wall_tempratures.png new file mode 100755 index 00000000..114869c8 Binary files /dev/null and b/Engineering_Heat_Transfer_by_W_S_Janna/screenshots/wall_tempratures.png differ -- cgit