From 59a36d896ee95ac3215648464259a55a7f8f9c83 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Fri, 10 Jun 2016 23:30:29 +0600 Subject: Added(A)/Deleted(D) following books A Elements_of_thermal_technology_by_John_H._Seely/Boiling_Heat_Transfer.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Combustion_Processes.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Conduction_Heat_Transfer.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Convection_Heat_Transfer1.ipynb A Elements_of_thermal_technology_by_John_H._Seely/First_Law_of_Thermodynamics.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Gas_Properties_and_Processes.ipynb A Elements_of_thermal_technology_by_John_H._Seely/README.txt A Elements_of_thermal_technology_by_John_H._Seely/Radiation_Heat_Transfer.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Refrigeration_and_Air_Conditioning.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Second_Law_of_Thermodynamics.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Surface_Tension.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Tem.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Thermodynamic_Definitions_and_Concepts.ipynb A Elements_of_thermal_technology_by_John_H._Seely/Units_and_Dimensions.ipynb A Elements_of_thermal_technology_by_John_H._Seely/screenshots/2.png A Elements_of_thermal_technology_by_John_H._Seely/screenshots/3.png A Elements_of_thermal_technology_by_John_H._Seely/screenshots/Screenshot_from_2016-06-10_16:53:24.png A Elements_of_thermal_technology_by_John_H._Seely/viscosity.ipynb A Elements_of_thermal_technology_by_John_H._Seely/work_and_heat.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/1._Introduction_to_Operational_Amplifiers.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/2._Interpretation_of_Data_Sheets_and_Characteristics_of_an_Op-Amp.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/3._An_Op-Amp_with_Negative_Feedback.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/4._The_Practical_Op-Amp.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/5._Frequency_response_of_an_Op-Amp.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/6._General_Linear_Applications.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/7._Active_Filters_and_Oscillators.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/8._Comparators_and_Converters.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/9._Specialixed_IC_Applications.ipynb A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/README.txt A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/screenshots/1.png A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/screenshots/2.png A Op-Amps_&_Linear_Integrated_Circuits_by_Ramakant_Gaykwad/screenshots/3.png A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Atomic_Bonding.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Atomic_Diffusion.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Atomic_Packing.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Atomic_Shape_and_Size.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Atoms_in_Crystals.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Band_Theory.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Crystal_Imperfections.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Dielectric_Properties_of_Materials.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Diffraction_of_Waves_and_Particles_by_Crystals.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Free_Electrons_in_Crystals.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Lattice_or_Atomic_Vibrations.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Magnetic_Properties_of_Materials.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Optical_Properties_of_Materials.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/README.txt A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Semiconducting_Properties_of_Materials.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Superconductivity.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/Thermal_Properties_of_Materials.ipynb A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/screenshots/1.png A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/screenshots/2.png A Solid_State_Physics:_Structure_And_Properties_Of_Materials_by_M._A._Wahab/screenshots/3.png --- .../Boiling_Heat_Transfer.ipynb | 157 ++++++++ .../Combustion_Processes.ipynb | 227 +++++++++++ .../Conduction_Heat_Transfer.ipynb | 421 +++++++++++++++++++++ .../Convection_Heat_Transfer1.ipynb | 264 +++++++++++++ .../First_Law_of_Thermodynamics.ipynb | 351 +++++++++++++++++ .../Gas_Properties_and_Processes.ipynb | 374 ++++++++++++++++++ .../README.txt | 10 + .../Radiation_Heat_Transfer.ipynb | 349 +++++++++++++++++ .../Refrigeration_and_Air_Conditioning.ipynb | 146 +++++++ .../Second_Law_of_Thermodynamics.ipynb | 242 ++++++++++++ .../Surface_Tension.ipynb | 179 +++++++++ .../Tem.ipynb | 238 ++++++++++++ .../Thermodynamic_Definitions_and_Concepts.ipynb | 175 +++++++++ .../Units_and_Dimensions.ipynb | 216 +++++++++++ .../screenshots/2.png | Bin 0 -> 42600 bytes .../screenshots/3.png | Bin 0 -> 72359 bytes .../Screenshot_from_2016-06-10_16:53:24.png | Bin 0 -> 72483 bytes .../viscosity.ipynb | 290 ++++++++++++++ .../work_and_heat.ipynb | 361 ++++++++++++++++++ 19 files changed, 4000 insertions(+) create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Boiling_Heat_Transfer.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Combustion_Processes.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Conduction_Heat_Transfer.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Convection_Heat_Transfer1.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/First_Law_of_Thermodynamics.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Gas_Properties_and_Processes.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/README.txt create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Radiation_Heat_Transfer.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Refrigeration_and_Air_Conditioning.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Second_Law_of_Thermodynamics.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Surface_Tension.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Tem.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Thermodynamic_Definitions_and_Concepts.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/Units_and_Dimensions.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/screenshots/2.png create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/screenshots/3.png create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/screenshots/Screenshot_from_2016-06-10_16:53:24.png create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/viscosity.ipynb create mode 100644 Elements_of_thermal_technology_by_John_H._Seely/work_and_heat.ipynb (limited to 'Elements_of_thermal_technology_by_John_H._Seely') diff --git a/Elements_of_thermal_technology_by_John_H._Seely/Boiling_Heat_Transfer.ipynb b/Elements_of_thermal_technology_by_John_H._Seely/Boiling_Heat_Transfer.ipynb new file mode 100644 index 00000000..301b16bb --- /dev/null +++ b/Elements_of_thermal_technology_by_John_H._Seely/Boiling_Heat_Transfer.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Boiling Heat Transfer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 13.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Heat transfer coefficient for nucleate boiling (W/m^2 C) = 1.76e+05\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Water at 1 atm is boiled on a brass surface. Using the rohsenow correlation\n", + "#determine the heat transfer coefficient for nucleate boiling if the wall \n", + "#superheat is 11C?\n", + "import math\n", + "#initialisation of variables\n", + "P= 1 \t\t\t\t#atm\n", + "dt= 11 \t\t\t\t#C\n", + "Csf= 0.006\n", + "r= 1./3.\n", + "s= 1.\n", + "cl= 4.218 \t\t\t#J/gm K\n", + "hfg= 2257 \t\t\t#J/gm\n", + "Pr= 1.75\n", + "ul= 283.1/1000. \t#gm/m s\n", + "s= 57.78/1000. \t\t#N/m\n", + "pl= 958*1000. \t\t#gm/m^3\n", + "pv= 598. \t\t\t#gm/m^3\n", + "gc= 1000. \t\t\t#gm m/N s^2\n", + "g= 9.8 \t\t\t\t#m/s^2\n", + "#CALCULATIONS\n", + "p= pl-pv \t\t\t#change in density\n", + "q= ((math.pow(((cl*dt)/(hfg*Csf*Pr)),(1/r))*(ul*hfg))/math.pow((gc*s/(g*p)),(0.5))) #Heat transfer rate\n", + "h= q/dt \t\t\t#Heat transfer coefficient\n", + "#RESULTS\n", + "print '%s %.2e' % ('Heat transfer coefficient for nucleate boiling (W/m^2 C) = ',h)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 13.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Condensation heat tranfer coefficient if the tube is vertical (Btu/h ft^2 F) = 758.79\n", + " \n", + " Condensation heat tranfer coefficient if the tube is horizontally (Btu/h ft^2 F) = 1926.98\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#A tube, 1/2 in OD and 5 ft long, is used to condense steam at 6 psia; the\n", + "#average temperature of the tube is maintained at 130 F. Determine the \n", + "#condensation heat transfer coefficient if the tube is mounted\n", + "#(a) vertically and (b) horizontally\n", + "import math\n", + "#initialisation of variables\n", + "k= 0.384 \t\t\t\t\t\t\t\t\t\t\t#Btu/hr ft F\n", + "Tsat= 170.03 \t\t\t\t\t\t\t\t\t\t#F\n", + "hfg= 996.2 \t\t\t\t\t\t\t\t\t\t\t#Btu/lbm\n", + "T= 130 \t\t\t\t\t\t\t\t\t\t\t\t#F\n", + "l= 5. \t\t\t\t\t\t\t\t\t\t\t\t#ft\n", + "P= 6. \t\t\t\t\t\t\t\t\t\t\t\t#psia\n", + "g= 4.17*math.pow(10,8) \t\t\t\t\t\t\t\t#ft/h^2\n", + "d= 0.042 \t\t\t\t\t\t\t\t\t\t\t#ft\n", + "p= 61.2 \t\t\t\t\t\t\t\t\t\t\t#lbm/ft^3\n", + "u= 1.05 \t\t\t\t\t\t\t\t\t\t\t#lbm/ft h\n", + "#CALCULATIONS\n", + "dt= Tsat-T \t\t\t\t\t\t\t\t\t\t\t#Change in temp.\n", + "Tf= (Tsat+T)/2. \t\t\t\t\t\t\t\t\t#Average temp.\n", + "hc= 0.943*math.pow(((k*k*k*p*p*g*hfg)/(l*u*dt)),(1./4.))\n", + "hc1= 0.725*math.pow(((k*k*k*p*p*g*hfg)/(d*u*dt)),(1./4.))\n", + "#RESULTS\n", + "print '%s %.2f' % ('Condensation heat tranfer coefficient if the tube is vertical (Btu/h ft^2 F) = ',hc)\n", + "print '%s %.2f' % (' \\n Condensation heat tranfer coefficient if the tube is horizontally (Btu/h ft^2 F) = ',hc1)\n", + "raw_input('press enter key to exit')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_of_thermal_technology_by_John_H._Seely/Combustion_Processes.ipynb b/Elements_of_thermal_technology_by_John_H._Seely/Combustion_Processes.ipynb new file mode 100644 index 00000000..7fb09a1d --- /dev/null +++ b/Elements_of_thermal_technology_by_John_H._Seely/Combustion_Processes.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Combustion Processes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 10.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mass of O2 required (lbm) = 96.00\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#If 3 mol carbon are completely burned in a process, determine \n", + "#(a) the number of moles of O2 required and\n", + "#(b) the mass of O2 required\n", + "#initialisation of variables\n", + "n= 3 \t\t\t\t#lbm mol\n", + "Mo2= 32 \t\t\t#lbm/lbm mol\n", + "#CALCULATIONS\n", + "m= n*Mo2 \t\t\t#Mass of O2 required\n", + "#RESULTS\n", + "print '%s %.2f' % ('Mass of O2 required (lbm) = ',m)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 10.3" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Air-fuel ratio (gm air/gm fuel) = 15.12\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Determine the air-fuel ratio on a gram-molal and a mass basis if octane is \n", + "#completely burned in the presence of theoretical air\n", + "#initialisation of variables\n", + "n= 12.5 \t\t\t\t\t#mol\n", + "n1= 3.76 \t\t\t\t\t#mol\n", + "M= 114 \t\t\t\t\t\t#gm/gm mol\n", + "M1= 28.96 \t\t\t\t\t#gm/gm mol\n", + "#CALCULATIONS\n", + "n2= n*(1+n1) \t\t\t\t#Moles\n", + "m= n2*M1/M \t\t\t\t\t#Air-fuel ratio \n", + "#RESULTS\n", + "print '%s %.2f' % ('Air-fuel ratio (gm air/gm fuel) = ',m)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 10.4" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Air-fuel ratio (kg mol air/kg mol fuel) = 89.25\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Develop the stoichiometric equation that expresses the process of octane \n", + "#being burned with 150% theoretical air. What is the air-fuel ratio on a \n", + "#kilogram molal basis?\n", + "#initialisation of variables\n", + "p= 150\n", + "nO2= 12.5 \t\t\t\t\t\t\t\t#mol\n", + "n1= 3.76\n", + "#CALCULATIONS\n", + "n2= (nO2*(p/100.))+(nO2*n1*(p/100.))\t#ir-fuel ratio \n", + "#RESULTS\n", + "print '%s %.2f' % ('Air-fuel ratio (kg mol air/kg mol fuel) = ',n2)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 10.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Benzene required (gm) = 568.40\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Benzene is used in a heating process that is 65% efficient. How much benzene\n", + "#is required to heat 185 liter tank of water from 10 to 30C?\n", + "#initialisation of variables\n", + "P= 65 \n", + "T= 30 \t\t\t\t#C\n", + "T1= 10 \t\t\t\t#C\n", + "c= 4.19 \t\t\t#J/gm C\n", + "h= 41961\n", + "m= 185 \t\t\t\t#lt\n", + "#CALCULATIONS\n", + "Q= m*1000*c*(T-T1)\t#Heat required\n", + "M= (Q*100.)/(h*P) \t#Mass of benzene required\n", + "#RESULTS\n", + "print '%s %.2f' % ('Benzene required (gm) = ',M)\n", + "raw_input('press enter key to exit')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_of_thermal_technology_by_John_H._Seely/Conduction_Heat_Transfer.ipynb b/Elements_of_thermal_technology_by_John_H._Seely/Conduction_Heat_Transfer.ipynb new file mode 100644 index 00000000..a0581011 --- /dev/null +++ b/Elements_of_thermal_technology_by_John_H._Seely/Conduction_Heat_Transfer.ipynb @@ -0,0 +1,421 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Conduction Heat Transfer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 11.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Outside wall temperature (F) = 23.08\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#THe inside surface of a plane wall is exposed to air at 76 F and the outside \n", + "#surface to air at 21 F. The inside surface conductance is 1.5., and the outside\n", + "#is 6.5. If a thermocouple indicates that the inside wall temperature is 67 F\n", + "#what is the outside wall temperature.?\n", + "#initialisation of variables\n", + "T= 76 \t\t\t\t\t#F\n", + "T1= 21 \t\t\t\t\t#F\n", + "Tw= 67 \t\t\t\t\t#W\n", + "h= 1.5 \t\t\t\t\t#Btu/hr ft^2 F\n", + "A= 1. \t\t\t\t\t#ft^2 \n", + "h0= 6.5 \t\t\t\t#Btu/hr\n", + "#CALCULATIONS\n", + "q= h*A*(T-Tw)\t\t\t#Heat flow\n", + "t= (q/(h0*A))+T1 \t\t#Outside wall temperature\n", + "#results\n", + "print '%s %.2f' % ('Outside wall temperature (F) = ',t)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 11.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Thermal transmittance (Btu/hr ft^2 F) = 0.62\n", + " \n", + " Heat transfer rate (Btu/hr) = 31.25\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#The inside and outside surface conductances are 2.0 and 10.0 Btu/hr ft^2 F\n", + "#respectively and the thermal conductivity of the wall is 0.5 units. Determine\n", + "#(a)the thermal transmittance and (b) the hear transfer rate for 1 ft^2 of wall\n", + "#surfaces\n", + "#initialisation of variables\n", + "hi= 2. \t\t\t\t\t\t\t\t\t#Btu/hr ft^2 F\n", + "l= 6. \t\t\t\t\t\t\t\t\t#in\n", + "k= 0.5 \t\t\t\t\t\t\t\t\t#Btu/hr ft F\n", + "h0= 10. \t\t\t\t\t\t\t\t#Btu/hr ft^2 F\n", + "ti= 70. \t\t\t\t\t\t\t\t#F\n", + "t0= 20.\t\t\t\t\t\t\t\t\t#F\n", + "A= 1. \t\t\t\t\t\t\t\t\t#ft^2\n", + "#CALCULATIONS\n", + "U= 1/((1/hi)+((l*0.5)/(6*k))+(1/h0))\t#Thermal transmittance \n", + "q= U*A*(ti-t0)\t\t\t\t\t\t\t#Heat transfer rate\n", + "#RESULTS\n", + "print '%s %.2f' % ('Thermal transmittance (Btu/hr ft^2 F) = ',U)\n", + "print '%s %.2f' % (' \\n Heat transfer rate (Btu/hr) = ',q)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 11.3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Heat loss (Btu/hr) = 32.00\n", + " \n", + " Temperature at the interface of the steel and the insulation (F) = 299.98\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#A composite wall is made up of a 1/4 in. steel plate(k=31.4) and 3 in insulation\n", + "#(k=0.04). If the outside of the steel surface is 300 F, and the outside of the \n", + "#insulation is 100 F, determine (a) the heat loss and (b) the temperature at\n", + "#the interface of the steel amd the insulation\n", + "#initialisation of variables\n", + "Ti= 300. \t\t\t\t\t\t\t#F\n", + "T0= 100. \t\t\t\t\t\t\t#F\n", + "l= 0.25 \t\t\t\t\t\t\t#in\n", + "li= 3. \t\t\t\t\t\t\t\t#in\n", + "A= 12. \t\t\t\t\t\t\t\t#in/ft\n", + "ks= 31.4 \t\t\t\t\t\t\t#Btu/hr ft F\n", + "ki= 0.04 \t\t\t\t\t\t\t#Btu/hr ft F\n", + "#CALCULATIONS\n", + "q= (Ti-T0)/((l/(A*ks))+(li/(A*ki))) #Heat loss\n", + "t= Ti-((q*l/12.)/ks) \t\t\t\t#Temperature\n", + "#RESULTS\n", + "print '%s %.2f' % ('Heat loss (Btu/hr) = ',q)\n", + "print '%s %.2f' % (' \\n Temperature at the interface of the steel and the insulation (F) = ',t)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 11.4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Heat loss (W) = 347.46\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#A steel pipe (k=6.4) has an OD of 8.89 cm and an ID of 7.8 cm, and is covered\n", + "#with 1.3 cm asbestos (k=0.19). The pipe transports a fluid at 149 C and has\n", + "#an inner surface conductance of 227. Outside temp=27. Outside conductance=23\n", + "#what os the heat loss of 1m of pipe?\n", + "import math\n", + "#initialisation of variables\n", + "ti= 149. \t\t\t\t\t\t\t\t#C\n", + "t0= 27. \t\t\t\t\t\t\t\t#C\n", + "D0= 0.1149 \t\t\t\t\t\t\t\t#m\n", + "l= 1. \t\t\t\t\t\t\t\t\t#m\n", + "h0= 23. \t\t\t\t\t\t\t\t#W/m^2 C\n", + "hi= 227. \t\t\t\t\t\t\t\t#W/m^2 C\n", + "k= 0.19 \t\t\t\t\t\t\t\t#W/m C\n", + "Di= 0.0889 \t\t\t\t\t\t\t\t#cm\n", + "#CALCULATIONS\n", + "D1= D0*100 \n", + "D2= Di*100 \n", + "R0=(1/(D0*math.pi*l*h0))\t\t\t\t#Resistance\n", + "Rins=(math.log(D1/D2)/(2*math.pi*k*l))\t#Resistance\n", + "Ri=1/(Di*math.pi*l*hi) \t\t\t\t\t#Resistance Inlet\n", + "q= (ti-t0)/(R0+Rins+Ri) \t\t\t\t#Total heat\n", + "#RESULTS\n", + "print '%s %.2f' % ('Heat loss (W) = ',q)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 11.5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power consumption (W) = 970.90\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#The working chamber of an electrically heated furnace is a cube 0.2 m on each\n", + "#side and the walls are 0.1 m thick. Interior wall temperatures are to be \n", + "#maintained at 1100 c while the outside wall temperatures are at 150C. If the\n", + "#thermal conductivity of the furnace material is 0.35, estimate the power consumption.\n", + "import math\n", + "#initialisation of variables\n", + "l= 0.2 \t\t\t\t\t\t\t\t\t#m\n", + "l1= 0.5\t\t\t\t\t\t\t\t \t#m\n", + "k= 0.35 \t\t\t\t\t\t\t\t#W/m C\n", + "t= 0.15 \t\t\t\t\t\t\t\t#m\n", + "T1= 1100 \t\t\t\t\t\t\t\t#C\n", + "T2= 150 \t\t\t\t\t\t\t\t#C\n", + "#CALCULATIONS\n", + "Ai= 6*l*l \t\t\t\t\t\t\t\t#Inner area\n", + "Ao= 6*l1*l1 \t\t\t\t\t\t\t#outer area\n", + "q= 0.73*k*math.sqrt(Ai*Ao)*(T1-T2)/t \t#Power consumption\n", + "#RESULTS\n", + "print '%s %.2f' % ('Power consumption (W) = ',q)\n", + "raw_input('press enter key to exit')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 11.6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "heat loss will increase if the insulation is added\n", + "press enter key to exit\n" + ] + }, + { + "data": { + "text/plain": [ + "''" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#A copper tube, 0.6 cm OD, carries hot water between two tanks, the outside\n", + "#surface conductance is 12. If it is important to minimize the heat loss\n", + "#should the tube be covered with an insulation whose k=0.19\n", + "#initialisation of variables\n", + "h= 12 \t\t\t\t#W/m^2 C\n", + "k= 0.19 \t\t\t#W/m C\n", + "d= 0.6 \t\t\t\t#m\n", + "#CALCULATIONS\n", + "r= k/h \t\t\t\t#Critical radius\n", + "d1=d/2. \t\t\t#Radius of tube\n", + "if (r