From f270f72badd9c61d48f290c3396004802841b9df Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- .../chapter8.ipynb | 435 +++++++++++++++++++++ 1 file changed, 435 insertions(+) create mode 100755 Electronic_devices_and_circuits_by_I.J_Nagrath/chapter8.ipynb (limited to 'Electronic_devices_and_circuits_by_I.J_Nagrath/chapter8.ipynb') diff --git a/Electronic_devices_and_circuits_by_I.J_Nagrath/chapter8.ipynb b/Electronic_devices_and_circuits_by_I.J_Nagrath/chapter8.ipynb new file mode 100755 index 00000000..326b2cab --- /dev/null +++ b/Electronic_devices_and_circuits_by_I.J_Nagrath/chapter8.ipynb @@ -0,0 +1,435 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:7039c5014fcc7b7ac57b07f9ca218d5a9c1cf6429694e23e4e8bce3552a45c07" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8:Multivibrators And Switching Regulators" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1,Page number 426" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "C=0.1 #capacitance(uF)\n", + "R1=10 #resistance(k ohms)\n", + "R2=2.3 #resistance(k ohms)\n", + "Vcc=12. #supply voltage(V) \n", + "Rl=10**3. #resistance(k ohms)\n", + "\n", + "#Calculations\n", + "#Part a\n", + "f=1/(0.693*C*(R2+R1/2)) #frequency(Hz)\n", + "\n", + "#Part b\n", + "D=(1+(R2/R1))/(1+2*(R2/R1))*100 #duty cycle\n", + " \n", + "#Part c\n", + "#(i)\n", + "T1=0.693*C*(R1+R2) #time period through R1(ms)\n", + "T2=0.693*R2*C #time period through R2(ms)\n", + "Pavg=(Vcc/Rl)**2*(T1/(T1+T2)) #average power dissipated during current sourcing(mW)\n", + "\n", + "#Part d\n", + "Pavg1=(T2/(T1+T2))*(Vcc/Rl)**2 #average power dissipated during current sinking(mW)\n", + "\n", + "#Results\n", + "print\"print\",round(f,2),\"kHz\"\n", + "print\"duty cycle is\",round(D,2),\"%\"\n", + "print\"average power dissipated in current sourcing is\",round((Pavg/1E-3),3),\"mW\"\n", + "print\"average power dissipated in current sinking is\",round(Pavg1/1e-3,3),\"mW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "print 1.98 kHz\n", + "duty cycle is 84.25 %\n", + "average power dissipated in current sourcing is 0.121 mW\n", + "average power dissipated in current sinking is 0.023 mW\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2,Page number 426" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "#Variable declaration\n", + "t=1 #time constant\n", + "e=1.8 #e=R1/R2 min=1.8\n", + "e1=9. #e1=R1/R2 max=9\n", + "\n", + "#Calculations\n", + "Betamin=1/(1+e) #current gain minimum\n", + "Betamax=1/(1+e1) #current gain maximum\n", + "Tmax=2*t*math.log((1+Betamin)/(1-Betamin)) \n", + "Tmin=2*t*math.log((1+Betamax)/(1-Betamax)) \n", + "fmin=1/Tmax #minimum freq(Hz)\n", + "fmax=1/Tmin #maximum freq(k Hz)\n", + "\n", + "#Results\n", + "print\"fmin is\",round(fmin/1E-3),\"Hz and fmax is\",round(fmax,1),\"KHz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fmin is 669.0 Hz and fmax is 2.5 KHz\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3,Page number 427" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "C=0.01 #capacitance(uF)\n", + "R2=15 #resistance(k ohms)\n", + "Va2=4 #voltage(V)\n", + "Vcc=15. #supply voltage(V)\n", + "R1=33 #resistance(k ohms)\n", + "\n", + "#Calculations\n", + "Va1=0.67*Vcc #voltage(V)\n", + "Vamax=Va1+Va2 #Va maximum(V)\n", + "Vamin=Va1-Va2 #Va minimum(V)\n", + "T1max=C*(R1+R2)*(math.log((1-(Vamax/(2*Vcc)))/(1-(Vamax/Vcc)))) #time period(ms)\n", + "T1min=C*(R1+R2)*(math.log((1-(Vamin/(2*Vcc)))/(1-(Vamin/Vcc)))) #time period(ms)\n", + "T2=0.693*R2*C\n", + "fmax=1/(T1min+T2) #maximum frequency(K Hz)\n", + "fmin=1/(T1max+T2) #miniimum frequency(K Hz)\n", + "\n", + "#Results\n", + "print\"minimum freq is\",round(fmin,2),\"(solution given in the textbook is incorrect)\"\n", + "print\"maximum freq is\",round(fmax,2),\"(solution given in the textbook is incorrect)\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum freq is 0.89 (solution given in the textbook is incorrect)\n", + "maximum freq is 4.1 (solution given in the textbook is incorrect)\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4,Page number 433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Vi=25 #input voltage(V) \n", + "Vsmax=30 #supply voltage max(V)\n", + "Vomin=Vl=12 #output minimum voltage or load voltage(V)\n", + "R1=20 #load voltage(V)\n", + "Io=15. #output current(mA) \n", + "Iq=3. #quinscent current of regulator(mA)\n", + "Vo=20. #output voltage(V)\n", + "\n", + "#Calculations\n", + "#Part a\n", + "#(i)\n", + "Vimax=Vsmax #maximum permissible voltage(V)\n", + "Ro=0 #for Vomin=beta=0\n", + "#(ii)\n", + "Vomax=Vi-2\n", + "betaVomax=Vomax-Vomin #output voltage(V)\n", + "R2max=(R1*betaVomax)/(Vomax-betaVomax) #R2max(k ohms)\n", + "#(iii)\n", + "R3=betaVomax/Io #R3(k ohms)\n", + "\n", + "#Part b\n", + "Vt=(Iq*betaVomax)/Io #common terminal fall(V)\n", + "Vomin1=Vl+Vt #voltage output minimum(V)\n", + "\n", + "#Part c\n", + "betaVo=Vo-Vl #output voltage(V)\n", + "beta=betaVo/Vo #current gain\n", + "R2=(R1*betaVo)/(Vo-betaVo) #R2(ohms)\n", + "\n", + "#Results\n", + "print\"a)i)max permissible supply voltage is\",Vimax,\"V\"\n", + "print\"ii)output voltage range for Vi=25V is\",Vomin,\"V to\",Vomax,\"V and R2max is\",R2max,\"k ohms\"\n", + "print\"iii)R3 is\",round(R3,2),\"kohms\"\n", + "print\"b)Vomin is\",Vomin1,\"V\"\n", + "print\"c)R2 is\",round(R2,2),\"ohms and R3 is\",round(R3,3),\"ohms\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)i)max permissible supply voltage is 30 V\n", + "ii)output voltage range for Vi=25V is 12 V to 23 V and R2max is 18 k ohms\n", + "iii)R3 is 0.73 kohms\n", + "b)Vomin is 14.2 V\n", + "c)R2 is 13.33 ohms and R3 is 0.733 ohms\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.5,Page number 434" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "A=.0025 #voltage gain\n", + "Vi=8 #input voltage(V)\n", + "R2=1.5 #resistance 2(k ohms)\n", + "R1=1 #resistance 1(k ohms)\n", + "Vl=5 #load voltage(V)\n", + "\n", + "#Calculations\n", + "beta=R2/(R1+R2) #current gain\n", + "Vo=Vl/(1-beta) #output voltage(V)\n", + "Vo1=(A*Vi)/(1+(A*beta)-beta) #output voltage ripple if Vi=8Vp-p\n", + "\n", + "#Results\n", + "print\"Vo is\",Vo,\"V\"\n", + "print\"expression of output voltage ripple\",round(Vo1,2),\"Vp-p\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Vo is 12.5 V\n", + "expression of output voltage ripple 0.05 Vp-p\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.6,Page number 435" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Ro=7.5 #output resistance(ohms)\n", + "hfe=50 \n", + "Ve=20 #voltage given to emitter(V) \n", + "Vbe=0.8 #base to emitter voltage(V)\n", + "Vc=15 #collector voltage(V)\n", + "P=12 #maximum power dissipation(W)\n", + "Ib1=5 #for minimum load current Il=0,Ib=5\n", + "\n", + "#Calculations\n", + "Io=(Vc/Ro)*10**3 #output current(A)\n", + "Il=76 #load current(mA)\n", + "Is=Il+5 #supply current(mA)\n", + "Ic=Io-Is #collector current(A)\n", + "Ib=Ic/hfe #base current(mA)\n", + "Ie=Ic-Ib #emitter current(mA)\n", + "Pt=(Ve*Ie)-(Vc*Ic) #power dissipated in transistor(W) \n", + "Pl=(Ve-Vbe)*Is-Vc*Il #power dissipated in LR\n", + "Vimax=(P+Vc*(Ic*10**-3))/(Ie*10**-3) #input voltage maximum\n", + "Iomin=hfe*Ib1 #output current minimum(mA)\n", + "\n", + "#Results\n", + "print\"power dissipated in the transistor is\",round((Pt/1E+3),2),\"W and in LR is\",round((Pl/1E+3),3),\"W\"\n", + "print\"maximum permissible input voltage is\",round(Vimax,2),\"V\"\n", + "print\"minimum load current for load voltage to remain stabalized is\",Iomin,\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "power dissipated in the transistor is 8.83 W and in LR is 0.415 W\n", + "maximum permissible input voltage is 21.69 V\n", + "minimum load current for load voltage to remain stabalized is 250 mA\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.7,Page number 440" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "VL=12 #load voltage(V)\n", + "I=2. #current at 12 V\n", + "V=240 #dc source(V)\n", + "d=17/50. #duty cycle\n", + "d1=0.6 #duty cycle\n", + "eta1=0.8 #efficiency\n", + "\n", + "#Calculations\n", + "P=VL*I #average load power(W)\n", + "Isav=(1*d)/2 #average supply current(A)\n", + "Pav=V*Isav #average supply power(W)\n", + "eta=(P/Pav)*100 #regulator efficiency\n", + "Isav1=(1*d1)/2 #average supply current(A)\n", + "Il=(eta1*V*Isav1)/Vdc #load current(A)\n", + "Po=Il*Vdc #power output(W)\n", + "\n", + "#Results\n", + "print\"regulator efficiency is\",round(eta,1),\"%\"\n", + "print\"average supply current is\",Il,\"A\"\n", + "print\"power output is\",Po,\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "regulator efficiency is 58.8 %\n", + "average supply current is 4.8 A\n", + "power output is 57.6 W\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.8,Page number 441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Vs=200 #dc source voltage(V)\n", + "Il=5 #current to load voltage(A)\n", + "Vl=15 #load voltage(V)\n", + "eta=.85 #efficiency\n", + "f=20 #oscillator frequency(Hz)\n", + "iSmax=2.6 #peak value of supply current(A)\n", + "P=100 #full load power supply(W)\n", + "pdf=0.4 #pulse duty factor\n", + "\n", + "#Calculations\n", + "Isav=(Vl*Il)/(Vs*eta) #average peak supply current(A)\n", + "iS=(2*Isav)/pdf #supply current(A)\n", + "T=1000/f #oscillation time period(uS)\n", + "tp=pdf*T #transistor time(us)\n", + "d=iS/tp #change in iS with respect to time(A/us)\n", + "tp1=iSmax/d #transistor time(us)\n", + "pdf1=tp1/T #pulse duty factor\n", + "Isav1=(iSmax*pdf1)/2 #average peak supply current(A)\n", + "eta1=(P*100)/(Vs*Isav1) #efficiency\n", + "\n", + "#Results\n", + "print\"peak value of supply current is\",round(Isav,3),\"A\"\n", + "print\"pdf is\",round(pdf,3)\n", + "print\"overall efficienc is\",round(eta1,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak value of supply current is 0.441 A\n", + "pdf is 0.4\n", + "overall efficienc is 81.6 %\n" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit