From f270f72badd9c61d48f290c3396004802841b9df Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- .../chapter11.ipynb | 170 +++++++++++++++++++++ 1 file changed, 170 insertions(+) create mode 100755 Electronic_devices_and_circuits_by_I.J_Nagrath/chapter11.ipynb (limited to 'Electronic_devices_and_circuits_by_I.J_Nagrath/chapter11.ipynb') diff --git a/Electronic_devices_and_circuits_by_I.J_Nagrath/chapter11.ipynb b/Electronic_devices_and_circuits_by_I.J_Nagrath/chapter11.ipynb new file mode 100755 index 00000000..4150f842 --- /dev/null +++ b/Electronic_devices_and_circuits_by_I.J_Nagrath/chapter11.ipynb @@ -0,0 +1,170 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:9ece3b9f8730ff4f15d623a124d9415b373cdc935ed6cb089360bef5516a2604" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + " Chapter 11: Cathode Ray Oscilloscope" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2,Page number 532" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "E=120 #electric field(V/m) \n", + "B=5*10**-5 #magnetic field(T) \n", + "q=1.6*10**-19 #charge on electron(C)\n", + "u=10**6 #velocity of electron(m/s)\n", + "m=9.1*10**-31 #mass of electron(Kg) \n", + "a=9.81 #acceleration of gravitation(m/s^2)\n", + "\n", + "#Calculations\n", + "#Part a\n", + "fe=q*E #force on electron due to electric field(N)\n", + "\n", + "#Part\n", + "fm=B*q*u #force on electron due to magnetic field(N)\n", + "\n", + "#Part c\n", + "fg=m*a #force on electron due to gravitational field(N)\n", + "\n", + "#Results\n", + "print\"force on electron due to electric field is\",fe,\"N\"\n", + "print\"force on electron due to magnetic field is\",fm,\"N\"\n", + "print\"force on electron due to gravitational field is\",fg,\"N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "force on electron due to electric field is 1.92e-17 N\n", + "force on electron due to magnetic field is 8e-18 N\n", + "force on electron due to gravitational field is 8.9271e-30 N\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3,Page number 532" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "T1=1200. #temperature(k)\n", + "T2=1000. #temperature(k)\n", + "Ww=1.2*10**5 #work function(eV)\n", + "k=8.62\n", + "Ie1=200 #emission current density\n", + "T3=1500. #temperature(k)\n", + "\n", + "#Calculations\n", + "Ie2=Ie1*(T2/T1)**2*math.exp(-(Ww/k)*((1/T2)-(1/T1))) #current density(mA/cm^2) at 1000k\n", + "Ie3=Ie1*(T3/T1)**2*math.exp(-(Ww/k)*((1/T3)-(1/T1))) #current density(mA/cm^2) at 1000k\n", + "\n", + "#Results\n", + "print\"current density at 1000 k is\",round(Ie2,2),\"mA/cm^2\"\n", + "print\"current density at 1500 k is\",round(Ie3,2),\"mA/cm^2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "current density at 1000 k is 13.65 mA/cm^2\n", + "current density at 1500 k is 3180.49 mA/cm^2\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.4,Page number 533" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "Ls=40 #distance from screen(m)\n", + "d=1.5 #distance between plates(cm)\n", + "Va=1200 #accelerating potential(V) \n", + "L=3 #length of CRT(m)\n", + "e=1.6*10**-19 #charge on electron(C)\n", + "m=9.1*10**-31 #mass of electron(Kg) \n", + "Y=4*10**-2 #vertical deflection(V)\n", + "\n", + "#Calculations\n", + "#Part a\n", + "U=math.sqrt((2*e*Va)/m) #velocity of electron upon striking screen(m/s)\n", + "\n", + "#Part\n", + "Vd=(2*d*Va*Y)/(L*Ls) #deflecting voltage(V)\n", + "\n", + "#Part c\n", + "Vdmax=(m*d**2*U**2)/(e*L**2) #maximum allowable deflection(V)\n", + "\n", + "#Results\n", + "print\"velocity of electron upon stricking the screen is\",round((U/1E+7),3),\"*10^7 m/s\"\n", + "print\"deflecting voltage is\",round(Vd/1E-2),\"V\"\n", + "print\"maximum allowable deflection is\",Vdmax,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "velocity of electron upon stricking the screen is 2.054 *10^7 m/s\n", + "deflecting voltage is 120.0 V\n", + "maximum allowable deflection is 600.0 V\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit