From 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 Mon Sep 17 00:00:00 2001 From: debashisdeb Date: Fri, 20 Jun 2014 15:42:42 +0530 Subject: removing problem statements --- Electronic_Principles_/Chapter_4_New.ipynb | 51 ------------------------------ 1 file changed, 51 deletions(-) (limited to 'Electronic_Principles_/Chapter_4_New.ipynb') diff --git a/Electronic_Principles_/Chapter_4_New.ipynb b/Electronic_Principles_/Chapter_4_New.ipynb index af0210e1..b02a4e3e 100644 --- a/Electronic_Principles_/Chapter_4_New.ipynb +++ b/Electronic_Principles_/Chapter_4_New.ipynb @@ -27,23 +27,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.1.py\n", - "#Calculate peak load voltage and the dc load voltage.\n", "\n", "import math\n", "\n", - "#Variable declaration\n", "Vrms=10 #RMS Value of sine wave(V)\n", "f=60 #frequency(Hz)\n", "\n", - "#Calculation\n", "Vp=Vrms/0.707 #peak source voltage(V)\n", "Vpout=Vp #peak load voltage(V)\n", "Vdc=Vp/math.pi #dc load voltage(V)\n", "Vpouts=Vp-0.7 #peak load voltage in 2nd approx.\n", "Vdc=Vpouts/math.pi #dc load voltage(V)\n", "\n", - "#Result\n", "print 'Vp=',round(Vp,2),'V'\n", "print 'With an ideal diode, Vpout =',round(Vpout,2),'V'\n", "print 'DC load voltage, Vdc =',round(Vdc,2),'V'\n", @@ -79,15 +74,11 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.2.py\n", - "#What are the peak load voltage and dc load voltage in Figure 4.5?\n", "\n", "import math\n", "\n", - "#Variable declaration\n", "Vs=120 #supply voltage(V)\n", "\n", - "#Calculation\n", "V2=Vs/5 #Secondary voltage(V)\n", "Vp=V2/0.707 #peak secondary voltage\n", "Vpout=Vp #peak load voltage(V)\n", @@ -95,7 +86,6 @@ "Vpouts=Vp-0.7 #peak load voltage in 2nd approx.(V)\n", "Vdc2=Vpouts/math.pi #dc load voltage(V)\n", "\n", - "#Result\n", "print 'As per fig.4-5, Transformer turns ratio is 5:1'\n", "print 'V2=',round(V2,2),'V'\n", "print 'Vp=',round(Vp,2),'V'\n", @@ -135,21 +125,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.3.py\n", - "#Figure 4.7 shows full wave rectifier, Calculate the peak input and output voltages.\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=10 #turn ratio\n", "\n", - "#Calculation\n", "Vp1=Vrms/0.707 #peak primary voltage(V)\n", "Vp2=Vp1/N12 #peak secondary voltage(V)\n", "Vpin=0.5*Vp2 #input voltage(V)\n", "Vpout=Vpin #Output voltage (V)\n", "Vpouts=Vpin-0.7 #Output voltage in 2nd approx.(V)\n", "\n", - "#Result\n", "print 'Peak primary voltage Vp1=',round(Vp1,2),'V'\n", "print 'Peak secondary voltage Vp2=',round(Vp2,2),'V'\n", "print 'Due to center-tap,' \n", @@ -187,21 +172,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.4.py\n", - "#Figure 4.7 shows full wave rectifier. If one of the diodes were open then, calculate the peak input and output voltages.\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=10 #turn ratio\n", "\n", - "#Calculation\n", "Vp1=Vrms/0.707 #peak primary voltage(V)\n", "Vp2=Vp1/N12 #peak secondary voltage(V)\n", "Vpin=0.5*Vp2 #input voltage(V)\n", "Vpout=Vpin #Output voltage(V)\n", "Vpouts=Vpin-0.7 #Output voltage in 2nd approx.(V)\n", "\n", - "#Result\n", "print 'Peak primary voltage Vp1=',round(Vp1,2),'V'\n", "print 'Peak secondary voltage Vp2=',round(Vp2,2),'V'\n", "print 'Due to one of the diodes were open, load voltage will be the half wave signal'\n", @@ -239,19 +219,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.5.py\n", - "#Calculate peak & output voltages in figure 4.9\n", "\n", - "#variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=10 #turn ratio\n", "\n", - "#Calculation\n", "Vp1=Vrms/0.707 #peak primary voltage(V)\n", "Vp2=Vp1/N12 #peak secondary voltage(V)\n", "Vpout=Vp2 #Output voltage(V)\n", "\n", - "#Result\n", "print 'Peak primary voltage Vp1=',round(Vp1,2),'V'\n", "print 'Peak secondary voltage Vp2=',round(Vp2,2),'V'\n", "print 'secondary voltage is input of rectifier'\n", @@ -285,24 +260,19 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.6.py\n", - "#What is the dc load voltage and ripple in figure 4.14?\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=5 #turn ratio\n", "RL=5 #Load resistance(KOhm)\n", "C=100 #Capacitance(uF)\n", "f=60 #Frequency(Hz)\n", "\n", - "#Calculation\n", "V2=Vrms/N12 #RMS secondary voltage(V)\n", "Vp=V2/0.707 #peak secondary voltage(V)\n", "VL=Vp #dc load voltage(V)\n", "IL=VL/RL #Load current(mA)\n", "VR=(IL/(f*C))*(10**3) #ripple voltage(V)\n", "\n", - "#Result\n", "print 'RMS secondary voltage V2=',V2,'V'\n", "print 'Peak secondary voltage Vp=',round(Vp,2),'V'\n", "print 'with ideal diode and small ripple, dc load voltage, VL =',round(VL,2),'V'\n", @@ -342,24 +312,19 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.7.py\n", - "#What is the dc load voltage and ripple in figure 4.15?\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=5 #turn ratio\n", "RL=5 #Load resistance(KOhm)\n", "C=100 #Capacitance(uF)\n", "f=60 #Frequency(Hz)\n", "\n", - "#Calculation\n", "V2=Vrms/N12 #RMS secondary voltage(V)\n", "Vp=V2/0.707 #peak secondary voltage(V)\n", "VL=Vp/2 #dc load voltage(V)\n", "IL=VL/RL #Load current(mA)\n", "VR=(IL/(2*f*C))*(10**3) #ripple voltage(V)\n", "\n", - "#Result\n", "print 'RMS secondary voltage V2=',V2,'V'\n", "print 'Peak secondary voltage Vp=',round(Vp,2),'V'\n", "print 'Half this voltage is input to each half-wave section, with ideal diode and small ripple, dc load voltage, VL =',round(VL,2),'V'\n", @@ -401,24 +366,19 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.8.py\n", - "#What is the dc load voltage and ripple in figure 4.16?\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=5 #turn ratio\n", "RL=5 #Load resistance(KOhm)\n", "C=100 #Capacitance(uF)\n", "f=60 #Frequency(Hz)\n", "\n", - "#Calculation\n", "V2=Vrms/N12 #RMS secondary voltage(V)\n", "Vp=V2/0.707 #peak secondary voltage(V)\n", "VL=Vp #dc load voltage(V)\n", "IL=VL/RL #Load current(mA)\n", "VR=(IL/(2*f*C))*(10**3) #ripple voltage(V)\n", "\n", - "#Result\n", "print 'RMS secondary voltage V2=',V2,'V'\n", "print 'Peak secondary voltage Vp=',round(Vp,2),'V'\n", "print 'with ideal diode and small ripple, dc load voltage, VL =',round(VL,2),'V'\n", @@ -460,24 +420,19 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.9.py\n", - "#Calculate the dc load voltage and ripple in figure 4.17\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=15 #turn ratio\n", "RL=0.5 #Load resistance(KOhm)\n", "C=4700 #Capacitance(uF)\n", "f=60 #Frequency(Hz)\n", "\n", - "#Calculation\n", "V2=Vrms/N12 #RMS secondary voltage(V)\n", "Vp=V2/0.707 #peak secondary voltage(V)\n", "VL=Vp-1.4 #dc load voltage(V)\n", "IL=VL/RL #Load current(mA)\n", "VR=(IL/(2*f*C))*(10**3) #ripple voltage(V)\n", "\n", - "#Result\n", "print 'RMS secondary voltage V2=',V2,'V'\n", "print 'Peak secondary voltage Vp=',round(Vp,2),'V'\n", "print 'with ideal diode and small ripple & due to 1.4V across two conducting diodes actual dc voltage is, VL =',round(VL,2),'V'\n", @@ -517,21 +472,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 4.10.py\n", - "#What is the peak inverse voltage for turns ratio is 8:1?\n", - "#Breakdown voltage of 50V.\n", "\n", - "#Variable declaration\n", "Vrms=120 #RMS value of supply(V)\n", "N12=8 #turn ratio\n", "f=60 #Frequency(Hz)\n", "\n", - "#Calculation\n", "V2=Vrms/N12 #RMS secondary voltage(V)\n", "Vp=V2/0.707 #peak secondary voltage(V)\n", "PIV = Vp #Peak Inverse Voltage(V)\n", "\n", - "#Result\n", "print 'RMS secondary voltage V2=',V2,'V'\n", "print 'Peak inverse voltage PIV =',round(PIV,2),'V'\n", "print 'PIV << breakdown voltage(50V), So, it is safe to use IN4001'" -- cgit