From 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 Mon Sep 17 00:00:00 2001 From: debashisdeb Date: Fri, 20 Jun 2014 15:42:42 +0530 Subject: removing problem statements --- Electronic_Principles_/Chapter_23_New.ipynb | 79 ----------------------------- 1 file changed, 79 deletions(-) (limited to 'Electronic_Principles_/Chapter_23_New.ipynb') diff --git a/Electronic_Principles_/Chapter_23_New.ipynb b/Electronic_Principles_/Chapter_23_New.ipynb index a5d3197f..a842cb81 100644 --- a/Electronic_Principles_/Chapter_23_New.ipynb +++ b/Electronic_Principles_/Chapter_23_New.ipynb @@ -27,22 +27,17 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.1.py\n", - "#Calculate the minimum and maximum frequencies in figure 23-9.\n", "import math\n", "\n", - "#Variable declaration\n", "R1=100.0*10**3 #non-inverting input resistance wiper R1(Ohm)\n", "R2=1.0*10**3 #non-inverting input resistance R2(Ohm)\n", "C=0.01*10**-6 #capacitance at non-inverting input(F)\n", "\n", - "#Calculation\n", "R=R1+R2 #max. total resistance(Ohm)\n", "fr1=(2*math.pi*R*C)**-1 #minimum frequency(Hz)\n", "R=R2 #min. total resistance(Ohm)\n", "fr2=(2*math.pi*R*C)**-1 #maximum frequency(Hz)\n", "\n", - "#Result\n", "print 'minimum frequency fr = ',round(fr1,2),'Hz'\n", "print 'maximum frequency fr = ',round((fr2/1000),2),'KHz'" ], @@ -72,19 +67,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.2.py\n", - "#if the lamp voltage is expressed in rms volts,what is the output voltage of oscillator?\n", "\n", - "#Variable declaration\n", "Rf=2 #feedback resistance(KOhm)\n", "Rl=1 #lamp resistance(KOhm)\n", "Vl=2 #lamp voltage(V)\n", "\n", - "#Calculation\n", "Il=Vl/Rl #lamp current(mA)\n", "Vout=Il*(Rf+Rl) #output voltage of oscillator(V)\n", "\n", - "#Result\n", "print 'Lamp current = ',Il,'mA'\n", "print 'output voltage of oscillator = ',Vout,'Vrms'" ], @@ -114,21 +104,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.3.py\n", - "#What is frequency of oscillation, feedback fraction & voltage gain needed to start oscillating.\n", "\n", - "#Variable declaration\n", "C1=0.001*10**-6 #capacitance in oscillator(F)\n", "C2=0.01*10**-6 #capacitance in oscillator(F)\n", "L=15*10**-6 #inductance(H)\n", "\n", - "#Calculation\n", "C=C1*C2/(C1+C2) #equivalent capacitance(F)\n", "fr=(2*math.pi*((L*C)**0.5))**-1 #oscillation frequency(Hz)\n", "B=C1/C2 #feedback fraction\n", "Av_min=C2/C1 #minimum voltage gain\n", "\n", - "#Result\n", "print 'feedback fraction B = ',B\n", "print 'oscillation frequency fr = ',round((fr*10**-6),2),'MHz'\n", "print 'minimum voltage gain Av(min) = ',Av_min" @@ -160,20 +145,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.4.py\n", - "#50 pF is added in series with 15uH inductor. what is the frequency of oscillation?\n", "\n", - "#Variable declaration\n", "C1=0.001*10**-6 #capacitance in oscillator(F)\n", "C2=0.01*10**-6 #capacitance in oscillator(F)\n", "C3=50.0*10**-12 #capacitance in oscillator(F)\n", "L=15*10**-6 #inductance(H)\n", "\n", - "#Calculation\n", "C=(C1**-1+C2**-1+C3**-1)**-1 #equivalent capacitance(F)\n", "fr=(2*math.pi*((L*C)**0.5))**-1 #oscillation frequency(Hz)\n", "\n", - "#Result\n", "print 'oscillation frequency fr = ',round((fr*10**-6),2),'MHz'" ], "language": "python", @@ -201,24 +181,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.5.py\n", - "#A crystal has values L=3H, Cs=0.05pF, R=2KOhm,Cm=10pF.\n", - "#what are the series and parallel resonant frequencies of the crystal?\n", "\n", "import math\n", "\n", - "#Variable declaration\n", "Cs=0.05*10**-12 #series capacitance in oscillator(F)\n", "Cm=10.0*10**-12 #capacitance in oscillator(F)\n", "R=2.0*10**3 #resistance in oscillator(Ohm)\n", "L=3 #inductance(H)\n", "\n", - "#Calculation\n", "fs=(2*math.pi*((L*Cs)**0.5))**-1 #series resonant frequency(Hz)\n", "Cp=Cs*Cm/(Cs+Cm) #equvalent parallel capacitance(F)\n", "fp=(2*math.pi*((L*Cp)**0.5))**-1 #parallel resonant frequency(Hz)\n", "\n", - "#Result\n", "print 'series resonant frequency fs = ',math.ceil(fs*10**-3),'KHz'\n", "print 'parallel resonant frequency fp = ',math.ceil(fp*10**-3),'KHz'" ], @@ -248,21 +222,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 22.9.py\n", - "#VCC=12 V, R=33KOhm, C=0.47 uF. What is minimum trigger voltage that produces an output pulse?\n", - "#what is maximum capacitor voltage & width of output pulse?\n", "\n", - "#Variable declaration\n", "VCC=12.0 #given supply voltage(V)\n", "R=33*10**3 #given resistance(Ohm)\n", "C=0.47*10**-6 #given capacitance(F)\n", "\n", - "#Calculation\n", "LTP=VCC/3 #trip point LTP (V)\n", "UTP=2*LTP #trip point UTP (V)\n", "W=1.1*R*C #pulse width of output(s)\n", "\n", - "#Result\n", "print 'trigger voltage LTP = ',LTP,'V'\n", "print 'trigger voltage UTP = ',UTP,'V'\n", "print 'pulse width W = ',W*10**3,'ms'" @@ -294,17 +262,12 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.7.py\n", - "#what is the pulse width in figure 23-24 if R=10MOhm and C=470 uF?\n", "\n", - "#Variable declaration\n", "R=10*10**6 #given resistance(Ohm)\n", "C=470*10**-6 #given capacitance(F)\n", "\n", - "#Calculation\n", "W=1.1*R*C #pulse width of output(s)\n", "\n", - "#Result\n", "print 'pulse width W = ',W,'s = ',round((W/3600),2),'hours'" ], "language": "python", @@ -332,19 +295,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.8.py\n", - "#R1=75KOhm, R2=30KOhm, C=47nF. what is frequency of the output signal & duty cycle?\n", "\n", - "#Variable declaration\n", "R1=75.0*10**3 #given resistance1(Ohm)\n", "R2=30.0*10**3 #given resistance2(Ohm)\n", "C=47.0*10**-9 #given capacitance(F)\n", "\n", - "#Calculation\n", "f=1.44/((R1+(2*R2))*C) #frequency (Hz)\n", "D=(R1+R2)/(R1+(2*R2)) #duty cycle \n", "\n", - "#Result\n", "print 'frequency f = ',round(f,2),'Hz' \n", "print 'duty cycle D = ',round((D*100),2),'%'" ], @@ -374,12 +332,9 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.9.py\n", - "#what are the frequency & duty cycle when Vcon is 11V & 1V?\n", "\n", "import math\n", "\n", - "#Variable declaration\n", "VCC=12.0 #given supply voltage(V)\n", "R1=75.0*10**3 #given resistance1(Ohm)\n", "R2=30.0*10**3 #given resistance2(Ohm)\n", @@ -387,19 +342,15 @@ "Vcon1=11 #given Vcon(V) \n", "Vcon2=1 #given Vcon(V) \n", "\n", - "#Calculation\n", - "#for Vcon=11V\n", "W1=-(R1+R2)*C*(math.log((VCC-Vcon1)/(VCC-(0.5*Vcon1)))) #pulse width(s)\n", "T1=W1+(0.693*R2*C) #period(s)\n", "D1=W1/T1 #duty cycle\n", "f1=1/T1 #frequency(Hz)\n", - "#for Vcon=11V\n", "W2=-(R1+R2)*C*(math.log((VCC-Vcon2)/(VCC-(0.5*Vcon2)))) #pulse width(s)\n", "T2=W2+(0.693*R2*C) #period(s)\n", "D2=W2/T2 #duty cycle\n", "f2=1/T2 #frequency(Hz)\n", "\n", - "#Result\n", "print 'For Vcon = 11V,'\n", "print 'frequency f = ',round(f1,2),'Hz'\n", "print 'duty cycle D = ',round((D1*100),2),'%'\n", @@ -437,19 +388,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.10.py\n", - "#VCC=12V, R=9.1KOhm, C=0.01uF. clock frequency is 2.5KHz.\n", - "#if modulating signal has peak value of 2V, what is the period of output pulses, quiescent pulse width,\n", - "#minimum & maximum pulse widths & duty cycles?\n", "\n", - "#Variable declaration\n", "VCC=12.0 #given supply voltage(V)\n", "R=9.1*10**3 #given resistance(Ohm)\n", "C=0.01*10**-6 #given capacitance(F)\n", "f=2.5*10**3 #given frequency(Hz)\n", "Vmod=2 #peak value of modulating signal(V) \n", "\n", - "#Calculation\n", "T=1/f #period of output pulse(s)\n", "W=1.1*R*C #pulse width(s)\n", "UTP_max=(2*VCC/3)+Vmod #maximum UTP(V)\n", @@ -459,7 +404,6 @@ "Dmin=Wmin/T #minimum duty cycle\n", "Dmax=Wmax/T #maximum duty cycle\n", "\n", - "#Result\n", "print 'period of output pulse T = ',T*10**6,'us'\n", "print 'Quiscent pulse width W = ',W*10**6,'us'\n", "print 'minimum UTP = ',UTP_min,'V'\n", @@ -501,19 +445,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.11.py\n", - "#VCC=12V, R1=3.9KOhm,R2=3KOhm, C=0.01uF.\n", - "#if modulating signal has peak value of 1.5V, what is the period of output pulses, quiescent pulse width,\n", - "#minimum & maximum pulse widths & space between pulses?\n", "\n", - "#Variable declaration\n", "VCC=12.0 #given supply voltage(V)\n", "R1=3.9*10**3 #given resistance(Ohm)\n", "R2=3*10**3 #given resistance(Ohm)\n", "C=0.01*10**-6 #given capacitance(F)\n", "Vmod=1.5 #peak value of modulating signal(V) \n", "\n", - "#Calculation \n", "W=0.693*(R1+R2)*C #pulse width(s)\n", "T=0.693*(R1+(2*R2))*C #period of output pulse(s)\n", "UTP_max=(2*VCC/3)+Vmod #maximum UTP(V)\n", @@ -524,7 +462,6 @@ "Tmax=Wmax+(0.693*R2*C) #maximum period(s)\n", "s=0.693*R2*C #space(s)\n", "\n", - "#Result\n", "print 'period of output pulse T = ',T*10**6,'us'\n", "print 'Quiscent pulse width W = ',W*10**6,'us'\n", "print 'minimum UTP = ',UTP_min,'V'\n", @@ -568,21 +505,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.12.py\n", - "#A ramp generator of figure 23-43 has a constant collector current of 1mA. If VCC=15V, C=100nF. \n", - "#what is slope of output ramp, its peak value & its duration?\n", "\n", - "#Variable declaration\n", "VCC=15.0 #given supply voltage(V)\n", "C=100*10**-9 #given capacitance(F)\n", "Ic=1*10**-3 #collector current (A)\n", "\n", - "#Calculation \n", "S=Ic/C #slope(V/s) \n", "V=2*VCC/3 #peak value(V)\n", "T=V/S #duration of ramp(s) \n", "\n", - "#Result\n", "print 'slope is ',S/1000,'V/ms'\n", "print 'Peak value V = ',V,'V'\n", "print 'duration of ramp = ',T*10**3,'ms'" @@ -614,17 +545,12 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.13.py\n", - "#In figure 23-50, R=10KOhm,C=0.01uF with s1 closed, what are the output waveforms and frequency at pins 2 & 11?\n", "\n", - "#Variable declaration\n", "R=10*10**3 #given resistance(Ohm)\n", "C=0.01*10**-6 #given capacitance(F)\n", "\n", - "#Calculation \n", "f0=(R*C)**-1 #output frequency(Hz)\n", "\n", - "#Result\n", "print 'output frequency f0 = ',f0/1000,'KHz' " ], "language": "python", @@ -652,19 +578,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 23.14.py\n", - "#In figure 23-51, R1=1KOhm,R2=2KOhm,C=0.1uF,Determine square wave output frequency & duty cycle.\n", "\n", - "#Variable declaration\n", "R1=1.0*10**3 #given resistance(Ohm)\n", "R2=2.0*10**3 #given resistance(Ohm)\n", "C=0.1*10**-6 #given capacitance(F)\n", "\n", - "#Calculation \n", "f=(2/C)*((R1+R2)**-1) #output frequency(Hz)\n", "D=R1/(R1+R2) #duty cycle\n", "\n", - "#Result\n", "print 'output frequency f = ',round((f/1000),2),'KHz' \n", "print 'duty cycle = ',round((D*100),2),'%'" ], -- cgit