From 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 Mon Sep 17 00:00:00 2001 From: debashisdeb Date: Fri, 20 Jun 2014 15:42:42 +0530 Subject: removing problem statements --- Electronic_Principles_/Chapter_15_New.ipynb | 53 ----------------------------- 1 file changed, 53 deletions(-) (limited to 'Electronic_Principles_/Chapter_15_New.ipynb') diff --git a/Electronic_Principles_/Chapter_15_New.ipynb b/Electronic_Principles_/Chapter_15_New.ipynb index 3e39f907..b47db517 100644 --- a/Electronic_Principles_/Chapter_15_New.ipynb +++ b/Electronic_Principles_/Chapter_15_New.ipynb @@ -27,22 +27,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.1.py\n", - "#The diode of figure 15-5 has a brekover voltage of 10 V. if Vin is increased to 15V, what is the ID?\n", "\n", - "#Variable declaration\n", "VB=10 #breakover voltage(V)\n", "Vin=15 #input voltage(V)\n", "R=100.0 #resistance (Ohm)\n", "\n", - "#Calculation\n", - "#Vin>VB so diode breaks over\n", "I1=1000*Vin/R #diode current ideally(mA)\n", "I2=1000*(Vin-0.7)/R #diode current with second approx.(mA)\n", - "#To get more accurate answer, as per figure 15-3e , Voltage=0.9V when I=150mA\n", "I3=1000*(Vin-0.9)/R #diode current more accurately(mA)\n", "\n", - "#Result\n", "print 'Diode current ideally ID1 = ',I1,'mA'\n", "print 'Diode current with second approx. ID2 = ',I2,'mA'\n", "print 'Diode current more accurately ID3 = ',I3,'mA'" @@ -74,19 +67,13 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.2.py\n", - "#The diode of figure 15-5 has Ih of 4 mA. Vin is increased to 15 V ,then decreased to open the diode. \n", - "#What is the input voltage that opens the diode?\n", "\n", - "#Variable declaration\n", "Ih=4*10**-3 #holding current(mA)\n", "R=100.0 #resistance (Ohm)\n", "Vs=15 #input voltage (V)\n", "\n", - "#Calculation\n", "Vin=0.7+(Ih*R) #new input voltage(V)\n", "\n", - "#Result\n", "print 'New input voltage Vin = ',Vin,'V'" ], "language": "python", @@ -114,23 +101,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.3.py\n", - "#Figure 15-6a shows a sawtooth generator. \n", - "#when capacitor voltage reaches +10V, diode breaks over. \n", - "#What is RC time constant for capacitor charging? \n", - "#What is frequency of the sawtooth wave if its period is approximately 20% of time constant.\n", "\n", - "#Variable declaration\n", "R=2.0*10**3 #resistance (Ohm)\n", "C=0.02*10**-6 #capacitance (F)\n", "VB=10 #breakdown voltage(V)\n", "\n", - "#Calculation\n", "RC=R*C #Time constant(s)\n", "T=0.2*RC #period (s)\n", "f=T**-1 #frequency(Hz) \n", "\n", - "#Result\n", "print 'time constant RC = ',RC*10**6,'us'\n", "print 'Period T = ',T*10**6,'us'\n", "print 'Frequency = ',f/1000,'KHz'" @@ -162,22 +141,16 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.4.py\n", - "#In figure 15-14 the SCR has a trigger voltage 0.75 V and trigger current 7mA. What is Vin that turns SCR on?\n", - "#If Ih is 6mA, what is supply voltage that turns it off?\n", "\n", - "#Variable declaration\n", "It=7*10**-3 #trigger current(mA)\n", "R1=100.0 #resistance (Ohm)\n", "R2=1*10**3 #resistance (Ohm)\n", "Vt=0.75 #trigger voltage (V)\n", "Ih=6*10**-3 #holding current(mA)\n", "\n", - "#Calculation\n", "Vin=Vt+(It*R2) #minimum input voltage(V)\n", "VCC=0.7+(Ih*R1) #supply voltage for turning of SCR(V)\n", "\n", - "#Result\n", "print 'Minimum input voltage Vin = ',Vin,'V'\n", "print 'supply voltage for turning of SCR VCC = ',VCC,'V'" ], @@ -207,10 +180,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.5.py\n", - "#What is peak output voltage? What is frequency of sawtooth wave if its period is approximately 20% of time constant?\n", "\n", - "#Variable declaration\n", "IGT=200*10**-6 #trigger current(mA)\n", "VGT=1 #trigger voltage(V) \n", "R1=900.0 #resistance (Ohm)\n", @@ -220,7 +190,6 @@ "Ih=6*10**-3 #holding current(mA)\n", "R=1*10**3 #Resistance (Ohm) \n", "\n", - "#Calculation\n", "RTH=R1*R2/(R1+R2) #Thevenin resistance (Ohm)\n", "Vin=VGT+(IGT*RTH) #input voltage needed to trigger(V)\n", "Vp=10*Vin #Output voltage at SCR firing point(V)\n", @@ -228,7 +197,6 @@ "T=RC*0.2 #period (s)\n", "f=1/T #frequency (Hz)\n", "\n", - "#Result\n", "print 'peak output voltage Vpeak = ',Vp,'V'\n", "print 'time constant RC = ',RC*10**6,'us'\n", "print 'Period T = ',T*10**6,'us'\n", @@ -262,20 +230,15 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.6.py\n", - "#Calculate supply voltage that turns on crowbar of figure 15-21.\n", "\n", - "#Variable declaration\n", "Vz=5.6 #breakdown voltage(V)\n", "VGT1=0.75 #trigger voltage (V) \n", "VGT2=1.5 #worst case maximum trigger voltage(V) \n", "Vz2=6.16 #break down voltage with 10% tolerance (V)\n", "\n", - "#Calculation\n", "VCC1=Vz+VGT1 #supply voltage(V) \n", "VCC2=VGT2+Vz2 #Over voltage (V)\n", "\n", - "#Result\n", "print 'supply voltage VCC1 = ',VCC1,'V'\n", "print 'supply over voltage VCC2 = ',VCC2,'V'" ], @@ -305,18 +268,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.7.py\n", - "#Using figure 15-22a, find approximate firing angle & conduction angle when R=26KOhm\n", "\n", "import math # This will import math module\n", "\n", - "#Variable declaration\n", "C=0.1*10**-6 #capacitance (F)\n", "f=60 #frequency (Hz)\n", "R=26*10**3 #resistance(KOhm)\n", "Vm=120 #input ac voltage(V)\n", "\n", - "#Calculation\n", "XC=(2*math.pi*f*C)**-1 #capacitive reactance(Ohm)\n", "ZT=((R**2)+(XC**2))**0.5 #impedance (Ohm)\n", "thetaz=math.atan2(-XC,R)*180/math.pi #angle (deg)\n", @@ -324,7 +283,6 @@ "VC=IC*XC #voltage across C(V)\n", "thetac=180+thetaz #conduction angle(deg)\n", "\n", - "#Result\n", "print 'Capacitor reactance XC = ',round((XC/1000),2),'KOhm'\n", "print 'impedance ZT = ',round((ZT/1000),2),'KOhm'\n", "print 'firing angle = ',round(thetaz,2),'deg'\n", @@ -362,19 +320,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.8.py\n", - "#If the triac has fired, what is the approximate current through 22Ohm resistor?\n", "\n", - "#Variable declaration\n", "C=1*10**-6 #capacitance (F)\n", "R1=22.0 #resistance (Ohm)\n", "R2=82*10**3 #resistance(KOhm)\n", "Vs=75 #input voltage(V)\n", "\n", - "#Calculation\n", "I=Vs/R1 #current through 22Ohm resistor (A)\n", "\n", - "#Result\n", "print 'current through 22Ohm resistor I = ',round(I,2),'A'" ], "language": "python", @@ -402,18 +355,12 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Example 15.9.py\n", - "#diac has breakover voltage of 32V. \n", - "#If the triac has a trigger voltage of 1V and a trigger current of 10mA, what is the Vc that triggers the triac?\n", "\n", - "#Variable declaration\n", "Vdb=32.0 #diac break down voltage (V)\n", "VTT=1 #triac trigger voltage(V)\n", "\n", - "#Calculation\n", "Vin=VTT+Vdb #input voltage for triggering triac\n", "\n", - "#Result\n", "print 'input voltage for triggering triac vin = ',Vin,'V'" ], "language": "python", -- cgit