From 3df6e3d40e05badcf11bbde0dfe5b0d9390d2ffc Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Sat, 2 Jan 2016 23:30:09 +0600 Subject: Added(A)/Deleted(D) following books A Electronic_Circuits_by_M._H._Tooley/Chapter12_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter13_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter2_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter3_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter4_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter5_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter7_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter8_2.ipynb A Electronic_Circuits_by_M._H._Tooley/Chapter9_2.ipynb A Electronic_Circuits_by_M._H._Tooley/chapter6_2.ipynb A Electronic_Circuits_by_M._H._Tooley/screenshots/Chapter1_1.png A Electronic_Circuits_by_M._H._Tooley/screenshots/Chapter2_1.png A Electronic_Circuits_by_M._H._Tooley/screenshots/Chapter3_1.png A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter10_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter11_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter2_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter3_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter4_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter5_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter6_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter7_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter8_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/Chapter9_1.ipynb A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/screenshots/Chapter10.png A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/screenshots/Chapter11.png A Introduction_to_Nuclear_Engineering_by_J._R._Lamarsh_and_A._J._Baratta/screenshots/Chapter2.png --- .../Chapter1_2.ipynb | 770 +++++++++++++++++++++ 1 file changed, 770 insertions(+) create mode 100644 Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb (limited to 'Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb') diff --git a/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb b/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb new file mode 100644 index 00000000..5c47a9e8 --- /dev/null +++ b/Electronic_Circuits_by_M._H._Tooley/Chapter1_2.ipynb @@ -0,0 +1,770 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:b9799d17ce9c5e8acfde2941052198091704f3207bfb93e90879b4a048464a60" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter1-Electrical Fundamentals" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex4-pg3" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.4\n", + "import math\n", + "ang_d=215.;##given\n", + "ang_r=ang_d*math.pi/180.;\n", + "print'%s %.2f %s %.2f %s '%(\"%f degree angle is \",ang_d,\" radians\" and \"\",ang_r,\"\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "%f degree angle is 215.00 3.75 \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex5-pg3" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.5\n", + "import math\n", + "ang_r=2.5;##given\n", + "ang_d=2.5*180./math.pi;##angle in degrees\n", + "print'%s %.2f %s %.2f %s '%(\"%f degree angle is \",ang_d,\" radians\" and \"\",ang_r,\"\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "%f degree angle is 143.24 2.50 \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6-pg4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.6\n", + "import math\n", + "i_amp=0.075;##given\n", + "i_milamp=i_amp*1000.;##current in milliamp.\n", + "print'%s %.2f %s'%(\"%f amp current is \",i_milamp,\" mA\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "%f amp current is 75.00 mA\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7-pg4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.7\n", + "import math\n", + "fq_khz=1495.;##given\n", + "fq_Mhz=fq_khz/1000.;\n", + "print'%s %.2f %s'%(\" kHz frequency is \",fq_Mhz,\" MHz\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " kHz frequency is 1.50 MHz\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex8-pg4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.8\n", + "import math\n", + "c_pF=27000.;##given\n", + "c_uF=c_pF/1000.;\n", + "print'%s %.2f %s'%(\"picofarad capacitance is \",c_uF,\" microfarad\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "picofarad capacitance is 27.00 microfarad\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex9-pg4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.9\n", + "import math\n", + "c_mA=7.25;##given\n", + "c_A=c_mA*1000.;\n", + "print'%s %.2f %s'%(\" milliampere current is \",c_A,\" ampere\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " milliampere current is 7250.00 ampere\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex10-pg4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Exa:1.10\n", + "import math\n", + "vg_v=3.75*10**-6;##given\n", + "vg_mv=vg_v*1000.;\n", + "print'%s %.2e %s'%(\" volt voltage is \",vg_mv,\" mV\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " volt voltage is 3.75e-03 mV\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11-pg5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.11\n", + "import math\n", + "r=33000.;##in ohms\n", + "i=0.003;##in amp\n", + "v=i*r;\n", + "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage dropped = 99.00 volts\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex12-pg5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.12\n", + "import math\n", + "t=20.*10**-3;##in sec\n", + "i=45.*10**-6;##in amp\n", + "q=i*t*10**9;\n", + "print'%s %.2f %s'%(\"Charge transferred = \",q,\" nC\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge transferred = 900.00 nC\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex13-pg5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.13\n", + "import math\n", + "p=0.3;##in watts\n", + "v=1500.;##in volts\n", + "i=(p/v)*10**6;\n", + "print'%s %.2f %s'%(\"Current supplied = \",i,\" microamp\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current supplied = 200.00 microamp\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex14-pg7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.14\n", + "import math\n", + "r=12.;##in ohms\n", + "v=6.;##in volts\n", + "i=(v/r);\n", + "print'%s %.2f %s'%(\"Current = \",i,\" Amp\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current = 0.50 Amp\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex15-pg7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.15\n", + "import math\n", + "r=56.;##in ohms\n", + "i=0.1;##in amp\n", + "v=i*r;\n", + "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage dropped = 5.60 volts\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex16-pg7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.16\n", + "import math\n", + "v=15.;##in volts\n", + "i=0.001;##in amp\n", + "r=v/i;\n", + "print'%s %.2f %s'%(\"Resistance = \",r,\" ohms\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance = 15000.00 ohms\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex17-pg7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.17\n", + "import math\n", + "p=1.724*10**-8;##in ohm-meter\n", + "l=8.;##in meters\n", + "a=1.*10**-6;##in sq. meter\n", + "r=(p*l)/a;\n", + "print'%s %.2f %s'%(\"Resistance = \",r,\" ohms\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance = 0.14 ohms\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex18-pg8" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.18\n", + "import math\n", + "p=1.724*10**-8;##in ohm-meter\n", + "l=20.;##in meters\n", + "a=1.*10**-6;##in sq. meter\n", + "i=5.;##in amperes\n", + "r=(p*l)/a;\n", + "v=i*r;\n", + "print'%s %.2f %s'%(\"Voltage dropped = \",v,\" volts\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage dropped = 1.72 volts\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex19-pg9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.19\n", + "import math\n", + "v=3.;##in volts\n", + "i=1.5;##in amperes\n", + "p=v*i;\n", + "print'%s %.2f %s'%(\"Power supplied = \",p,\" watts\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power supplied = 4.50 watts\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex20-pg9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.20\n", + "import math\n", + "v=4.;##in volts\n", + "r=100.;##in ohms\n", + "p=(v**2)/r;\n", + "print'%s %.2f %s'%(\"Power dissipated = \",p,\" watts\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power dissipated = 0.16 watts\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex21-pg9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.21\n", + "import math\n", + "i=20.*10**-3;##in amps\n", + "r=1000.;##in ohms\n", + "p=(i**2)*r;\n", + "print'%s %.2f %s'%(\"Power dissipated = \",p,\" watts\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power dissipated = 0.40 watts\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex22-pg10" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.22\n", + "import math\n", + "v=600;##in volts\n", + "d=25*10^-3;##in meters\n", + "E=(v)/d;\n", + "print'%s %.2f %s'%(\"Electric Field Strength = \",E/10000,\" kV/m\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Electric Field Strength = -1.00 kV/m\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex23-pg13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.23\n", + "import math\n", + "u=4.*math.pi*10**-7;##in H/m\n", + "i=20.;##in amps\n", + "d=50.*10**-3;##in meters\n", + "B=(u*i)/(2.*math.pi*d);\n", + "print'%s %.2e %s'%(\"Flux Density = \",B,\" Tesla\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux Density = 8.00e-05 Tesla\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex24-pg13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.24\n", + "import math\n", + "B=(2.5*10**-3);##in Tesla\n", + "a=(20.*10**-4);##in sq. meter\n", + "flux=B*a;\n", + "print'%s %.2e %s'%(\"Flux = \",flux,\" webers\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux = 5.00e-06 webers\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex25-pg15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.25\n", + "import math\n", + "B1=0.6;##in Tesla\n", + "u1=B1/800.;\n", + "u_r1=u1/(4.*math.pi*10**-7);\n", + "print'%s %.2f %s'%(\"reltive permitivity at 0.6T = \",u_r1,\"\");\n", + "B2=1.6;##in Tesla\n", + "u2=0.2/4000.;\n", + "u_r2=u2 /(4.*math.pi*10**-7);\n", + "print'%s %.2f %s'%(\"\\n reltive permitivity at 1.6T = \",u_r2,\"\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "reltive permitivity at 0.6T = 596.83 \n", + "\n", + " reltive permitivity at 1.6T = 39.79 \n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex26-pg16" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "##Ex:1.26\n", + "import math\n", + "flux=0.8*10**-3;\n", + "a=(500.*10**-6);##in sq. meter\n", + "l=0.6;##in meter\n", + "N=800.;\n", + "B=flux/a;\n", + "print'%s %.2e %s'%(\"Flux Density = \",B,\" Tesla\");\n", + "H=3500.;##in A/m\n", + "i=(H*l)/N;\n", + "print'%s %.2f %s'%(\"\\n Current required = \",i,\" amp.s\");" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux Density = 1.60e+00 Tesla\n", + "\n", + " Current required = 2.62 amp.s\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit