From 1c1ea29e3e213559fef5f928df109b7d17c21f24 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Fri, 25 Jul 2014 13:33:31 +0530 Subject: removing unwanted and adding book --- .../chapter_29-checkpoint_1.ipynb | 449 --------------------- 1 file changed, 449 deletions(-) delete mode 100755 Electrical_Circuit_Theory_And_Technology/chapter_29-checkpoint_1.ipynb (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_29-checkpoint_1.ipynb') diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_29-checkpoint_1.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_29-checkpoint_1.ipynb deleted file mode 100755 index d6dbd493..00000000 --- a/Electrical_Circuit_Theory_And_Technology/chapter_29-checkpoint_1.ipynb +++ /dev/null @@ -1,449 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Chapter 29: parallel resonance and Q-factor

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 1, page no. 521

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine (a) the resonant frequency, (b) the dynamic resistance, \n", - "#(c) the current at resonance, and (d) the circuit Q-factor at resonance.\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "R = 10;# in ohms\n", - "L = 0.005;# IN Henry\n", - "C = 0.25e-6;# IN fARADS\n", - "V = 50;#in volts\n", - "\n", - "#calculation:\n", - " #Resonant frequency, for parallel\n", - "fr = ((1/(L*C) - ((R**2)/(L**2)))**0.5)/(2*math.pi)\n", - " #dynamic resistance\n", - "Rd = L/(C*R)\n", - " #Current at resonance\n", - "Ir = V/Rd\n", - "wr = 2*math.pi*fr\n", - " #Q-factor at resonance, Q = wr*L/R\n", - "Qr = wr*L/R\n", - "\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n (a)Resonance frequency is \",round(fr,2),\" Hz\\n\"\n", - "print \"\\n (b)dynamic resistance \",round(Rd,2),\" ohm\\n\"\n", - "print \"\\n (c)Current at resonance, Ir is \",round(Ir,2),\" A\\n\"\n", - "print \"\\n (d)Q-factor at resonance is \",round(Qr,2),\"\\n\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " (a)Resonance frequency is 4490.31 Hz\n", - "\n", - "\n", - " (b)dynamic resistance 2000.0 ohm\n", - "\n", - "\n", - " (c)Current at resonance, Ir is 0.02 A\n", - "\n", - "\n", - " (d)Q-factor at resonance is 14.11 \n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 2, page no. 521

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine the resonant frequency for the network\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "RL1 = 0;# in ohms\n", - "RL2 = 30;# in ohms\n", - "L = 0.100;# IN Henry\n", - "C = 40e-6;# IN fARADS\n", - "V = 50;#in volts\n", - "\n", - "#calculation:\n", - " #for RL1\n", - " #Resonant frequency,\n", - "wr1 = (1/(L*C))**0.5\n", - "fr1 = wr1/(2*math.pi)\n", - " #for RL2\n", - " #Resonant frequency,\n", - "wr2 = (1/(L*C) - ((RL2**2)/(L**2)))**0.5\n", - "fr2 = wr2/(2*math.pi)\n", - "\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n (a)Resonance frequency at RL = 0 is \",round(fr1,2),\" Hz\"\n", - "print \"\\n (b)Resonance frequency at RL = 30 ohm is \",round(fr2,2),\" Hz\\n\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " (a)Resonance frequency at RL = 0 is 79.58 Hz\n", - "\n", - " (b)Resonance frequency at RL = 30 ohm is 63.66 Hz\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 3, page no. 523

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine for the condition when the supply current is a minimum, \n", - "#(a) the capacitance of the capacitor, (b) the dynamic resistance, \n", - "#(c) the supply current, (d) the Q-factor, (e) the bandwidth,\n", - "#(f) the upper and lower \u00033 dB frequencies, and (g) the value of the circuit impedance at the \u00033 dB frequencies\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "R = 150;# in ohms\n", - "L = 0.120;# IN Henry\n", - "V = 20;#in volts\n", - "fr = 4000;# in Hz\n", - "\n", - "#calculation:\n", - " #capacitance, C\n", - "C = 1/(L*((2*math.pi*fr)**2 + ((R**2)/(L**2))))\n", - "Rd = L/(C*R)\n", - " #Current at resonance\n", - "Ir = V/Rd\n", - "wr = 2*math.pi*fr\n", - " #Q-factor at resonance, Q = wr*L/R\n", - "Qr = wr*L/R\n", - " #bandwidth,.(f2 \u2212 f1)\n", - "bw = fr/Qr\n", - " #upper half-power frequency, f2\n", - "f2 = (bw + ((bw**2) + 4*(fr**2))**0.5)/2\n", - " #lower half-power frequency, f1\n", - "f1 = f2 - bw\n", - " #impedance at the \u22123 dB frequencies\n", - "Z = Rd/(2**0.5)\n", - "\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n (a)the capacitance of the capacitor,C is \",round(C*1E6,2),\"uF\"\n", - "print \"\\n (b)dynamic resistance \",round(Rd,2),\"ohm\\n\"\n", - "print \"\\n (c)Current at resonance, Ir is \",round(Ir*1000,2),\"mA\\n\"\n", - "print \"\\n (d)Q-factor at resonance is \",round(Qr,2),\"\\n\"\n", - "print \"\\n (e)bandwidth is \",round(bw,2),\" Hz\\n\"\n", - "print \"\\n (f)the upper half-power frequency, f2 is \",round(f2,2),\" Hz and \"\n", - "print \" the lower half-power frequency, f1 is \",round(f1,2),\" Hz\\n\"\n", - "print \"\\n (g)impedance at the -3 dB frequencies is \",round(Z,2),\" ohm\\n\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " (a)the capacitance of the capacitor,C is 0.01 uF\n", - "\n", - " (b)dynamic resistance 60788.85 ohm\n", - "\n", - "\n", - " (c)Current at resonance, Ir is 0.33 mA\n", - "\n", - "\n", - " (d)Q-factor at resonance is 20.11 \n", - "\n", - "\n", - " (e)bandwidth is 198.94 Hz\n", - "\n", - "\n", - " (f)the upper half-power frequency, f2 is 4100.71 Hz and \n", - " the lower half-power frequency, f1 is 3901.76 Hz\n", - "\n", - "\n", - " (g)impedance at the -3 dB frequencies is 42984.21 ohm\n", - "\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 4, page no. 525

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine the resonant frequency of the network.\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "RL = 5;# in ohms\n", - "L = 0.002;# IN Henry\n", - "C = 25e-6;# IN fARADS\n", - "Rc = 3;# in ohms\n", - "\n", - "#calculation:\n", - " #Resonant frequency, for parallel\n", - "fr = (1/(2*math.pi*((L*C)**0.5)))*((RL**2 - (L/C))/(Rc**2 - (L/C)))**0.5\n", - "\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n resonant frequency, fr is \",round(fr,2),\" Hz\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " resonant frequency, fr is 626.45 Hz" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 5, page no. 525

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine for the parallel network the values of inductance L\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "RL = 3;# in ohms\n", - "fr = 1000;# in Hz\n", - "Xc = 10;# IN ohms\n", - "Rc = 4;# in ohms\n", - "\n", - "#calculation:\n", - "XL1 = (((Rc**2 + Xc**2)/Xc) + ((((Rc**2 + Xc**2)/Xc)**2) - 4*(RL**2))**0.5)/2\n", - "XL2 = (((Rc**2 + Xc**2)/Xc) - ((((Rc**2 + Xc**2)/Xc)**2) - 4*(RL**2))**0.5)/2\n", - "wr = 2*math.pi*fr\n", - " #inductance\n", - "L1 = XL1/wr\n", - "L2 = XL2/wr\n", - "\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n inductance is either \",round(L1*1000,2),\"mH or \",round(L2*1000,2),\"mH\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " inductance is either 1.71 mH or 0.13 mH" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 6, page no. 526

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine the overall Q-factor of the parallel combination.\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "QL = 60;# Q-factor\n", - "Qc = 300;# Q-factor\n", - "\n", - "#calculation:\n", - "QT = QL*Qc/(QL + Qc)\n", - "\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n the overall Q-factor is \",round(QT,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " the overall Q-factor is 50.0" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Example 7, page no. 527

" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Determine for the circuit (a) the Q-factor, (b) the dynamic resistance, and\n", - "#(c) the magnitude of the impedance when the supply frequency is 0.4% greater than the tuned frequency.\n", - "from __future__ import division\n", - "import math\n", - "import cmath\n", - "#initializing the variables:\n", - "C = 10.61E-9;# in Farad\n", - "bw = 500;# in Hz\n", - "fr = 150000;# in Hz\n", - "x = 0.004\n", - "\n", - "#calculation:\n", - " #Q-factor\n", - "Q = fr/bw\n", - "wr = 2*math.pi*fr\n", - " #dynamic resistance, RD\n", - "Rd = Q/(C*wr)\n", - "de = x\n", - "Z = Rd/(1 + (2*de*Q*1j))\n", - "\n", - "#Results\n", - "print \"\\n\\n Result \\n\\n\"\n", - "print \"\\n (a)Q-factor \",round(Q,2),\"\"\n", - "print \"\\n (b)dynamic resistance \",round(Rd,2),\"ohm\"\n", - "print \"\\n (c)magnitude of the impedance \",round(abs(Z),2),\"ohm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - " Result \n", - "\n", - "\n", - "\n", - " (a)Q-factor 300.0 \n", - "\n", - " (b)dynamic resistance 30000.93 ohm\n", - "\n", - " (c)magnitude of the impedance 11538.82 ohm" - ] - } - ], - "prompt_number": 8 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit