From a4206084fd8c2bd696ea4ae4012aa83534979456 Mon Sep 17 00:00:00 2001 From: Jovina Dsouza Date: Tue, 22 Jul 2014 00:00:04 +0530 Subject: adding book --- .../chapter_26-checkpoint_2.ipynb | 496 +++++++++++++++++++++ 1 file changed, 496 insertions(+) create mode 100755 Electrical_Circuit_Theory_And_Technology/chapter_26-checkpoint_2.ipynb (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_26-checkpoint_2.ipynb') diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_26-checkpoint_2.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_26-checkpoint_2.ipynb new file mode 100755 index 00000000..4edde932 --- /dev/null +++ b/Electrical_Circuit_Theory_And_Technology/chapter_26-checkpoint_2.ipynb @@ -0,0 +1,496 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Chapter 26: Power in a.c. circuits

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 1, page no. 466

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the active power in the circuit\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "RL = 12j;# in ohm\n", + "R = 5;# in ohm\n", + "rv = 52;# in volts\n", + "thetav = 30;# in degree\n", + "\n", + "#calculation:\n", + " #voltage\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #impedance, Z\n", + "Z = R + RL\n", + " #current\n", + "I = V/Z\n", + " #Active power, P\n", + "Pa = V.real*I.real + V.imag*I.imag\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\nthe active power in the circuit \",Pa,\" W\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + "the active power in the circuit 80.0 W" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 2, page no. 467

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine (a) the active power, and (b) the reactive power.\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "V = 120 + 200j;# in volts\n", + "I = 15 + 8j;# in amperes\n", + "\n", + "#calculation:\n", + " #Active power, P\n", + "Pa = V.real*I.real + V.imag*I.imag\n", + " #Reactive power, Q\n", + "Q = V.imag*I.real - V.real*I.imag\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a) the active power in the circuit \",Pa,\" W\\n\"\n", + "print \"\\n (b) the reactive power in the circuit \",Q,\" var\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a) the active power in the circuit 3400.0 W\n", + "\n", + "\n", + " (b) the reactive power in the circuit 2040.0 var" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 3, page no. 468

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#determine (a) the current flowing and its phase, (b) the value of resistance R, and (c) the value of capacitance C.\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "Vm = 141.4;# in volts\n", + "w = 10000;# in rad/sec\n", + "phiv = math.pi/9;# in radian\n", + "Pd = 1732;# in Watts\n", + "pf = 0.866;# power fctr\n", + "\n", + "#calculation:\n", + " #the rms voltage,\n", + "Vrms = 0.707*Vm\n", + " #Power P = V*I*cos(phi)\n", + " #current magnitude, Irms\n", + "Irms = Pd/(Vrms*pf)\n", + "phid = math.acos(pf)\n", + " #current phase angle\n", + "phii = phiv + phid\n", + "phiid = phii*180/math.pi# in degrees\n", + " #Voltage, V\n", + "V = Vrms*math.cos(phiv) + 1j*Vrms*math.sin(phiv)\n", + " #current, I\n", + "I = Irms*math.cos(phii) + 1j*Irms*math.sin(phii)\n", + " #Impedance, Z\n", + "Z = V/I\n", + " #resistance, R\n", + "R = Z.real\n", + " #capacitive reactance, Xc\n", + "Xc = abs(Z.imag)\n", + " #capacitance, C\n", + "C = 1/ (w*Xc)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)the current flowing and Circuit phase angle is \",round(Irms,2),\"/_\",round(phiid,2),\"deg A\\n\"\n", + "print \"\\n (b) the resistance is \",round(R,2),\" ohm\\n\"\n", + "print \"\\n (c) the capacitance is \",round(C*1E6,2),\"uF\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)the current flowing and Circuit phase angle is 20.01 /_ 50.0 deg A\n", + "\n", + "\n", + " (b) the resistance is 4.33 ohm\n", + "\n", + "\n", + " (c) the capacitance is 40.02 uF" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 4, page no. 468

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#determine the active power developed between points (a) A and B, (b) C and D, (c) E and F.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "rv = 100;# in volts\n", + "thetav = 0;# in degrees\n", + "R = 5;# in ohm\n", + "R1 = 3;# in ohms\n", + "RL = 4j;# in ohm\n", + "Rc = -10j;# in ohms\n", + "\n", + "#calculation:\n", + " #impedance, Z1\n", + "Z1 = R1 + RL\n", + " #impedance, Zc\n", + "Zc = Rc\n", + " #Circuit impedance, Z\n", + "Z = R + (Z1*Zc/(Z1 + Zc))\n", + " #voltage\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + "I = V/Z\n", + "Imag = ((I.real)**2 + (I.imag)**2)**0.5\n", + " #Active power developed between points A and B\n", + "Pab = (Imag**2)*R\n", + " #Active power developed between points C and D\n", + "Pcd = (Imag**2)*Zc.real\n", + " #Current, I1\n", + "I1 = I*Zc/(Zc + Z1)\n", + "I1mag = ((I1.real)**2 + (I1.imag)**2)**0.5\n", + " #active power developed between points E and F\n", + "Pef = (I1mag**2)*Z1.real\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Active power developed between points A and B is \",round(Pab,2),\" W\\n\"\n", + "print \"\\n (b)Active power developed between points C and D is \",round(Pcd,2),\" W\\n\"\n", + "print \"\\n (c)Active power developed between points E and F is \",round(Pef,2),\" W\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Active power developed between points A and B is 339.62 W\n", + "\n", + "\n", + " (b)Active power developed between points C and D is 0.0 W\n", + "\n", + "\n", + " (c)Active power developed between points E and F is 452.83 W" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 5, page no. 469

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine (a) the apparent power, (b) the reactive power, \n", + "#(c) the value and phase of current I, and (d) the value of impedance Z.\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "Pa = 400;# in Watts\n", + "rv = 100;# in volts\n", + "thetav = 30;# in degrees\n", + "R = 4;# in ohm\n", + "pf = 0.766;# power factor\n", + "\n", + " #calculation:\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #magnitude of apparent power,S = V*I\n", + "S = Pa/pf\n", + "phi = math.acos(pf)\n", + "theta = phi*180/math.pi# in degrees\n", + " #Reactive power Q\n", + "Q = S*math.sin(phi)\n", + " #magnitude of current\n", + "Imag = S/rv\n", + "thetai = thetav - theta\n", + "I = Imag*math.cos(thetai*math.pi/180) + 1j*Imag*math.sin(thetai*math.pi/180)\n", + " #Total circuit impedance ZT\n", + "ZT = V/I\n", + " #impedance Z\n", + "Z = ZT - R\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)apparent power is \",round(S,2),\" VA\\n\"\n", + "print \"\\n (b)reactive power is \",round(Q,1),\" var lagging\\n\"\n", + "print \"\\n (c)the current flowing and Circuit phase angle is \",round(Imag,2),\"/_\",round(thetai,2),\"deg A\\n\"\n", + "print \"\\n (d)impedance, Z is \",round(Z.real,2),\" + (\",round( Z.imag,2),\")i ohm\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)apparent power is 522.19 VA\n", + "\n", + "\n", + " (b)reactive power is 335.7 var lagging\n", + "\n", + "\n", + " (c)the current flowing and Circuit phase angle is 5.22 /_ -10.0 deg A\n", + "\n", + "\n", + " (d)impedance, Z is 10.67 + ( 12.31 )i ohm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 6, page no. 471

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the rating (in kilovars) of the capacitors required.\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "S = 300000;# in VA\n", + "pf1 = 0.70;# in power factor\n", + "pf2 = 0.90;# in power factor\n", + "\n", + "#calculation:\n", + " #active power, P\n", + "Pa = S*pf1\n", + "phi1 = math.acos(pf1)\n", + "phi1d = phi1*180/math.pi\n", + " #Reactive power, Q\n", + "Q = S*math.sin(phi1)\n", + "phi2 = math.acos(pf2)\n", + "phi2d = phi2*180/math.pi\n", + " #The capacitor rating needed to improve the power factor to 0.90\n", + " #the capacitor rating,\n", + "Pr = Q - (Pa*math.tan(phi2))\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n the rating (in kilovars) of the capacitors is \",round((Pr/1E3),2),\" kvar leading\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " the rating (in kilovars) of the capacitors is 112.54 kvar leading" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 7, page no. 471

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine (a) the supply current, (b) the active, apparent and reactive power,\n", + "#(c) the rating of a capacitor (d) the value of capacitance\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "Z = 3 + 4j;# in ohms\n", + "rv = 50;# in volts\n", + "thetav = 30;# in Degrees\n", + "f = 1500;# in Hz\n", + "pf1 = 0.966;# in power factor\n", + "\n", + "#calculation:\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #Supply current, I\n", + "I = V/Z\n", + "Istr = I.real - 1j*I.imag\n", + " #Apparent power, S\n", + "S = V*Istr\n", + " #active power, Pa\n", + "Pa = S.real\n", + "#reactive power, Q\n", + "Q = abs(S.imag)\n", + " #apparent power, S\n", + "S = (S.real**2 + S.imag**2)**0.5\n", + "phi1 = math.acos(pf1)\n", + "phi1d = phi1*180/math.pi\n", + " #rating of the capacitor \n", + "Pr = Q - Pa*math.tan(phi1)\n", + " #Current in capacitor, Ic\n", + "Ic = Pr/rv\n", + " #Capacitive reactance, Xc\n", + "Xc = rv/Ic\n", + "C = 1/(2*math.pi*f*Xc)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)supply current, I is \",round(I.real,2),\" + (\",round( I.imag,2),\")i A\\n\"\n", + "print \"\\n (b)active power is \",round(Pa,2),\" W, apparent power is \",round( S,2),\" W \"\n", + "print \"and reactive power is \",round( Q,2),\" W lagging\\n\"\n", + "print \"\\n (c)the rating of the capacitors is \",round(Pr,2),\" var leading\\n\"\n", + "print \"\\n (d)value of capacitance needed to improve the power factor to 0.966 lagging is \",round( C*1E6,2),\"uF\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)supply current, I is 9.2 + ( -3.93 )i A\n", + "\n", + "\n", + " (b)active power is 300.0 W, apparent power is 500.0 W and reactive power is 400.0 W lagging\n", + "\n", + "\n", + " (c)the rating of the capacitors is 319.71 var leading\n", + "\n", + "\n", + " (d)value of capacitance needed to improve the power factor to 0.966 lagging is 13.57 uF" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit