From c8733e4b6b4bffcddf7eb45ff1c72ccc837aa3af Mon Sep 17 00:00:00 2001 From: Jovina Dsouza Date: Tue, 22 Jul 2014 00:00:04 +0530 Subject: adding book --- .../chapter_25-checkpoint_3.ipynb | 643 +++++++++++++++++++++ 1 file changed, 643 insertions(+) create mode 100755 Electrical_Circuit_Theory_And_Technology/chapter_25-checkpoint_3.ipynb (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_25-checkpoint_3.ipynb') diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_25-checkpoint_3.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_25-checkpoint_3.ipynb new file mode 100755 index 00000000..592a4669 --- /dev/null +++ b/Electrical_Circuit_Theory_And_Technology/chapter_25-checkpoint_3.ipynb @@ -0,0 +1,643 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:9b0edaefe058f9c7f8efe48336cbbb08a13cafea026561f6301c02956a595ae7" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Chapter 25: Application of complex numbers to parallel a.c. circuits

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 1, page no. 446

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "Z1 = 0 - 5j;# in ohms\n", + "Z2 = 25 + 40j;# in ohms\n", + "Z3 = 3 - 2j;# in ohms\n", + "r4 = 50;# in ohms\n", + "theta4 = 40;# in degrees\n", + "\n", + "#calculation:\n", + " #admittance Y\n", + "Y1 = 1/Z1\n", + " #conductance, G\n", + "G1 = Y1.real\n", + " #Suspectance, Bc\n", + "Bc1 = abs(Y1.imag)\n", + " #admittance Y\n", + "Y2 = 1/Z2\n", + " #conductance, G\n", + "G2 = Y2.real\n", + " #Suspectance, Bc\n", + "Bc2 = abs(Y2.imag)\n", + " #admittance Y\n", + "Y3 = 1/Z3\n", + " #conductance, G\n", + "G3 = Y3.real\n", + " #Suspectance, Bc\n", + "Bc3 = abs(Y3.imag)\n", + "Z4 = r4*math.cos(theta4*math.pi/180) + 1j*r4*math.sin(theta4*math.pi/180)\n", + " #admittance Y\n", + "Y4 = 1/Z4\n", + " #conductance, G\n", + "G4 = Y4.real\n", + " #Suspectance, Bc\n", + "Bc4 = abs(Y4.imag)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)admittance Y is (\",round(Y1.real,2),\" + (\",round(Y1.imag,2),\")i) S, \"\n", + "print \" conductance, G is \",round(G1,2),\" S, susceptance,Bc is \",round(Bc1,2),\" S\\n\"\n", + "print \"\\n (b)admittance Y is (\",round(Y2.real,2),\" + (\",round(Y2.imag,2),\")i) S, \"\n", + "print \" conductance, G is \",round(G2,2),\" S, susceptance,Bc is \",round(Bc2,2),\" S\\n\"\n", + "print \"\\n (c)admittance Y is (\",round(Y3.real,2),\" + (\",round(Y3.imag,2),\")i) S, \"\n", + "print \" conductance, G is \",round(G3,2),\" S, susceptance,Bc is \",round(Bc3,2),\" S\\n\"\n", + "print \"\\n (d)admittance Y is (\",round(Y4.real,2),\" + (\",round(Y4.imag,2),\")i) S, \"\n", + "print \" conductance, G is \",round(G4,2),\" S, susceptance,Bc is \",round(Bc4,2),\" S\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)admittance Y is ( -0.0 + ( 0.2 )i) S, \n", + " conductance, G is -0.0 S, susceptance,Bc is 0.2 S\n", + "\n", + "\n", + " (b)admittance Y is ( 0.01 + ( -0.02 )i) S, \n", + " conductance, G is 0.01 S, susceptance,Bc is 0.02 S\n", + "\n", + "\n", + " (c)admittance Y is ( 0.23 + ( 0.15 )i) S, \n", + " conductance, G is 0.23 S, susceptance,Bc is 0.15 S\n", + "\n", + "\n", + " (d)admittance Y is ( 0.02 + ( -0.01 )i) S, \n", + " conductance, G is 0.02 S, susceptance,Bc is 0.01 S\n", + "\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 2, page no. 447

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "Y2 = 0.001 - 0.002j;# in S\n", + "Y3 = 0.05 + 0.08j;# in S\n", + "r1 = 0.004;# in S\n", + "theta1 = 30;# in degrees\n", + "\n", + " #calculation:\n", + " #impedance, Z\n", + "Z2 = 1/Y2\n", + "Z3 = 1/Y3\n", + "Y1 = r1*math.cos(theta1*math.pi/180) + 1j*r1*math.sin(theta1*math.pi/180)\n", + "Z1 = 1/Y1\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Impedance,Z is (\",round(Z1.real,2),\" + (\",round( Z1.imag,2),\")i) ohm\\n\"\n", + "print \"\\n (b)Impedance,Z is (\",round(Z2.real,2),\" + (\",round( Z2.imag,2),\")i) ohm\\n\"\n", + "print \"\\n (c)Impedance,Z is (\",round(Z3.real,2),\" + (\",round( Z3.imag,2),\")i) ohm\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Impedance,Z is ( 216.51 + ( -125.0 )i) ohm\n", + "\n", + "\n", + " (b)Impedance,Z is ( 200.0 + ( 400.0 )i) ohm\n", + "\n", + "\n", + " (c)Impedance,Z is ( 5.62 + ( -8.99 )i) ohm" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 3, page no. 448

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "Y = 0.040 - 1j*0.025;# in S\n", + "\n", + "#calculation:\n", + " #impedance, Z\n", + "Z = 1/Y\n", + " #conductance, G\n", + "G = Y.real\n", + " #Suspectance, Bc\n", + "Bc = abs(Y.imag)\n", + " #parallrl \n", + " #resistance, R\n", + "Rp = 1/G\n", + " #capacitive reactance\n", + "Xcp = 1/Bc\n", + " #series\n", + " #resistance, R\n", + "Rs = Z.real\n", + " #capacitive reactance\n", + "Xcs = abs(Z.imag)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)for parallel, resistance,R is \",round(Rp,2),\" ohm and capacitive reactance, Xc is \",round(Xcp,2),\" ohm\\n\"\n", + "print \"\\n (b)forseries, resistance,R is \",round(Rs,2),\" ohm and capacitive reactance, Xc is \",round(Xcs,2),\" ohm\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)for parallel, resistance,R is 25.0 ohm and capacitive reactance, Xc is 40.0 ohm\n", + "\n", + "\n", + " (b)forseries, resistance,R is 17.98 ohm and capacitive reactance, Xc is 11.24 ohm" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 4, page no. 449

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "R1 = 8;# in ohm\n", + "R = 5;# in ohm\n", + "R2 = 6;# ohm\n", + "rv = 50;# in volts\n", + "thetav = 0;# in degrees\n", + "\n", + "#calculation:\n", + " #voltage,V\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #circuit impedance, ZT\n", + "ZT = R + (R1*1j*R2/(R1 + 1j*R2))\n", + " #Current I\n", + "I = V/ZT\n", + " #current,I1\n", + "I1 = I*(1j*R2/(R1 + 1j*R2))\n", + " #current, I2\n", + "I2 = I*(R1/(R1 + 1j*R2))\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n current, I = \",round(abs(I),2),\"/_\",round(cmath.phase(complex(I.real, I.imag))*180/math.pi,2),\"deg A,\"\n", + "print \"current,I1 = \",round(abs(I1),2),\"/_\",round(cmath.phase(complex(I1.real, I1.imag))*180/math.pi,2),\"deg A, \"\n", + "print \"current, I2 = \",round(abs(I2),2),\"/_\",round(cmath.phase(complex(I2.real, I2.imag))*180/math.pi,2),\"deg A\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " current, I = 5.7 /_ -25.98 deg A,\n", + "current,I1 = 3.42 /_ 27.15 deg A, \n", + "current, I2 = 4.56 /_ -62.85 deg A\n", + "\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 5, page no. 450

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "R1 = 5;# in ohm\n", + "R2 = 3;# in ohm \n", + "R3 = 8;# ohm\n", + "Xc = 4;# in ohms\n", + "XL = 12;# in Ohms\n", + "V = 40;# in volts\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + "Z1 = R1 + 1j*XL\n", + "Z2 = R2 - 1j*Xc\n", + "Z3 = R3\n", + " #circuit admittance, YT = 1/ZT\n", + "YT = (1/Z1) + (1/Z2) + (1/Z3)\n", + " #Current I\n", + "I = V*YT\n", + "I1 = V/Z1\n", + "I2 = V/Z2\n", + "I3 = V/Z2\n", + "thetav = 0\n", + "thetai = cmath.phase(complex(I.real, I.imag))*180/math.pi\n", + "phi = thetav - thetai \n", + "if (phi>0):\n", + " a = \"lagging\"\n", + "else:\n", + " a = \"leading\"\n", + "\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n current, I is (\",round(I.real,2),\" + (\",round(I.imag,2),\")i) A,\"\n", + "print \"and its phase relative to the 40 V supply is \",a,\"s by \",round(abs(phi),2),\"deg\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " current, I is ( 10.98 + ( 3.56 )i) A,\n", + "and its phase relative to the 40 V supply is leading s by 17.96 deg\n", + "\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 6, page no. 451

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "L = 0.07958;# in Henry\n", + "R = 18;# in ohm\n", + "C = 64.96E-6;# in Farad\n", + "rv = 250;# in volts\n", + "thetav = 0;# in degrees\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + " #Inductive reactance\n", + "XL = 2*math.pi*f*L\n", + " #capacitive reactance\n", + "Xc = 1/(2*math.pi*f*C)\n", + " #impedance of the coil,\n", + "Zcoil = R + 1j*XL\n", + " #impedance presented by the capacitor,\n", + "Zc = -1j*Xc\n", + " #Total equivalent circuit impedance,\n", + "ZT = Zcoil*Zc/(Zcoil + Zc)\n", + " #voltage\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #current, I\n", + "I = V/ZT\n", + "thetai = cmath.phase(complex(I.real,I.imag))*180/math.pi\n", + "phi = thetav - thetai\n", + "if (phi>0):\n", + " a = \"lagging\"\n", + "else:\n", + " a = \"leading\"\n", + "\n", + " #Current in the coil, ICOIL\n", + "Icoil = V/Zcoil\n", + " #Current in the capacitor, IC\n", + "Ic = V/Zc\n", + "\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)the circuit impedance is \",round(ZT.real,2),\" + (\",round( ZT.imag,2),\")i ohm\\n\"\n", + "print \"\\n (b)supply current, I = \",round(abs(I),2),\"/_\",round(cmath.phase(complex(I.real, I.imag))*180/math.pi,2),\"deg A\\n\"\n", + "print \"\\n (c)circuit phase relative is \",a,\"s by \",round(abs(phi),2),\"deg\\n\"\n", + "print \"\\n (d)current in coil, Icoil = \",round(abs(Icoil),2),\"/_\",round(cmath.phase(complex(Icoil.real, Icoil.imag))*180/math.pi,2),\"deg A\\n\"\n", + "print \"\\n (e)current in capacitor, Ic = \",round(abs(Ic),2),\"/_\",round(cmath.phase(complex(Ic.real, Ic.imag))*180/math.pi,2),\"deg A\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)the circuit impedance is 48.02 + ( 15.03 )i ohm\n", + "\n", + "\n", + " (b)supply current, I = 4.97 /_ -17.38 deg A\n", + "\n", + "\n", + " (c)circuit phase relative is lagging s by 17.38 deg\n", + "\n", + "\n", + " (d)current in coil, Icoil = 8.12 /_ -54.25 deg A\n", + "\n", + "\n", + " (e)current in capacitor, Ic = 5.1 /_ 90.0 deg A" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 7, page no. 452

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "RL = 6j;# in ohm\n", + "R2 = 8;# in ohm\n", + "Z3 = 10;# in ohm\n", + "rv = 50;# in volts\n", + "thetav = 30;# in degrees\n", + "ri = 31.4;# in amperes\n", + "thetai = 52.48;# in degrees\n", + "f = 5000;# in Hz\n", + "\n", + "#calculation:\n", + " #impedance, Z2\n", + "Z2 = R2 + RL\n", + " #voltage\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #current, I\n", + "I = ri*math.cos(thetai*math.pi/180) + 1j*ri*math.sin(thetai*math.pi/180)\n", + " #Total circuit admittance,\n", + "YT = I/V\n", + " #admittance, Y3\n", + "Y3 = 1/Z3\n", + " #admittance, Y2\n", + "Y2 = 1/Z2\n", + " #admittance, Y1\n", + "Y1 = YT - Y2 - Y3\n", + " #impedance, Z1\n", + "Z1 = 1/Y1\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)the impedance Z1 is \",round(Z1.real,2),\" + (\",round( Z1.imag,2),\")i ohm\\n\"\n", + "\n", + " #resistance, R1\n", + "R1 = Z1.real\n", + "X1 = Z1.imag \n", + "if ((R1>0)&(X1<0)):\n", + " C1 = -1/(2*math.pi*f*X1)\n", + " print \"\\n (b)The series circuit thus consists of a resistor of resistance \",round(R1,2),\" ohm\"\n", + " print \" and a capacitor of capacitance \",round(C1*1E6,2),\"uFarad\\n\"\n", + "elif ((R1>0)&(X1>0)):\n", + " L1 = 2*math.pi*f*X1\n", + " print \"\\n (b)The series circuit thus consists of a resistor of resistance \",round(R1,2),\" ohm \"\n", + " print \" and a inductor of insuctance \",round(L1*1000,2),\"mHenry\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)the impedance Z1 is 1.6 + ( -1.2 )i ohm\n", + "\n", + "\n", + " (b)The series circuit thus consists of a resistor of resistance 1.6 ohm\n", + " and a capacitor of capacitance 26.55 uFarad\n", + "\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 8, page no. 453

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "#initializing the variables:\n", + "RL1 = 1.02j;# in ohm\n", + "R1 = 1.65;# in ohm\n", + "RLa = 7j;# in ohm\n", + "Ra = 5;# in ohm\n", + "Rcb = -1j*15;# in ohm\n", + "Rb = 4;# in ohm\n", + "rv = 91;# in volts\n", + "thetav = 0;# in degree\n", + "\n", + "#calculation:\n", + " #voltage\n", + "V = rv*math.cos(thetav*math.pi/180) + 1j*rv*math.sin(thetav*math.pi/180)\n", + " #impedance, Z1\n", + "Z1 = R1 + RL1\n", + " #impedance, Za\n", + "Za = Ra + RLa\n", + " #impedance, Zb\n", + "Zb = Rb + Rcb\n", + " #impedance, Z, of the two branches connected in parallel\n", + "Z = Za*Zb/(Za + Zb)\n", + " #Total circuit impedance\n", + "ZT = Z1 + Z\n", + " #Supply current, I\n", + "I = V/ZT\n", + "thetai = cmath.phase(complex(I.real, I.imag))*180/math.pi\n", + "phi = thetav - thetai \n", + "if (phi>0):\n", + " a = \"lagging\"\n", + "else:\n", + " a = \"leading\"\n", + "\n", + " #Voltage V1\n", + "V1 = I*Z1\n", + " #Voltage V2\n", + "V2 = I*Z\n", + " #current Ia\n", + "Ia = V2/Za\n", + " #Current Ib\n", + "Ib = V2/Zb\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)equivalent series circuit impedance is \",round(ZT.real,2),\" + (\",round( ZT.imag,2),\")i ohm\\n\"\n", + "print \"\\n (b)supply current, I is \",round(I.real,2),\" + (\",round( I.imag,2),\")i A\\n\"\n", + "print \"\\n (c)circuit phase relative is \",a,\" by \",round(abs(phi),2),\"deg\\n\"\n", + "print \"\\n (d)voltage, V1 is (\",round(V1.real,2),\" + (\",round(V1.imag,2),\")i) V and V2 is(\",round(V2.real,2),\" + (\",round( V2.imag,2),\")i) V\\n\"\n", + "print \"\\n (e)current, Ia is (\",round(Ia.real,2),\" + (\",round( Ia.imag,2),\")i) A and Ib is(\",round(Ib.real,2),\" + (\",round( Ib.imag,2),\")i) A\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)equivalent series circuit impedance is 12.0 + ( 5.0 )i ohm\n", + "\n", + "\n", + " (b)supply current, I is 6.46 + ( -2.69 )i A\n", + "\n", + "\n", + " (c)circuit phase relative is lagging by 22.61 deg\n", + "\n", + "\n", + " (d)voltage, V1 is ( 13.41 + ( 2.15 )i) V and V2 is( 77.59 + ( -2.15 )i) V\n", + "\n", + "\n", + " (e)current, Ia is ( 5.04 + ( -7.49 )i) A and Ib is( 1.42 + ( 4.79 )i) A" + ] + } + ], + "prompt_number": 8 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit