From c8733e4b6b4bffcddf7eb45ff1c72ccc837aa3af Mon Sep 17 00:00:00 2001 From: Jovina Dsouza Date: Tue, 22 Jul 2014 00:00:04 +0530 Subject: adding book --- .../chapter_15-checkpoint_2.ipynb | 1677 ++++++++++++++++++++ 1 file changed, 1677 insertions(+) create mode 100755 Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_2.ipynb (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_2.ipynb') diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_2.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_2.ipynb new file mode 100755 index 00000000..e7b68d8a --- /dev/null +++ b/Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_2.ipynb @@ -0,0 +1,1677 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Chapter 15: Single-phase series a.c. circuits

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 1, page no. 214

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#(a) Calculate the reactance of a coil \n", + "#(b) Determine the inductance of the coil.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 0.32;# in Henry\n", + "f1 = 50;# in Hz\n", + "f2 = 5000;# in Hz\n", + "Z = 124;# in ohms\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f1*L\n", + "L = Z/(2*math.pi*f2)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Inductive reactance, XL = \",round(XL,2),\" ohms \\n\"\n", + "print \"\\n (b)Inductance L = \",round((L/1E-3),2),\" mH \\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Inductive reactance, XL = 100.53 ohms \n", + "\n", + "\n", + " (b)Inductance L = 3.95 mH " + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 2, page no. 214

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate its inductive reactance and the resulting current if connected to\n", + "#(a) a 240 V, 50 Hz supply, and (b) a 100 V, 1 kHz supply.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 0.040;# in Henry\n", + "V1 = 240;# in volts\n", + "V2 = 100;# in volts\n", + "f1 = 50;# in Hz\n", + "f2 = 1000;# in Hz\n", + "\n", + "#calculation:\n", + "XL1 = 2*math.pi*f1*L\n", + "I1 = V1/XL1\n", + "XL2 = 2*math.pi*f2*L\n", + "I2 = V2/XL2\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Inductive reactance, XL = \",round( XL1,2),\" ohms and current I = \",round( I1,2),\" A\\n\"\n", + "print \"\\n (b)Inductive reactance, XL = \",round( XL2,2),\" ohms and current I = \",round( I2,2),\" A\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Inductive reactance, XL = 12.57 ohms and current I = 19.1 A\n", + "\n", + "\n", + " (b)Inductive reactance, XL = 251.33 ohms and current I = 0.4 A" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 3, page no. 215

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the capacitive reactance of a capacitor of 10 \u03bcF when connected to a circuit of frequency (a) 50 Hz (b) 20 kHz\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "C = 10E-6;# in Farads\n", + "f1 = 50;# in Hz\n", + "f2 = 20000;# in Hz\n", + "\n", + "#calculation:\n", + "Xc1 = 1/(2*math.pi*f1*C)\n", + "Xc2 = 1/(2*math.pi*f2*C)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Capacitive reactance, Xc = \",round( Xc1,2),\" ohms \"\n", + "print \"\\n (b)Capacitive reactance, Xc = \",round( Xc2,2),\" ohms \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Capacitive reactance, Xc = 318.31 ohms \n", + "\n", + " (b)Capacitive reactance, Xc = 0.8 ohms " + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 4, page no. 215

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the value of its capacitance.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "Z = 40;# in ohms\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + "C = 1/(2*math.pi*f*Z)\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n Capacitance,C = \",round((C/1E-6),2),\" uF \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " Capacitance,C = 79.58 uF " + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 5, page no. 215

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate the current taken by a 23 \u03bcF capacitor when connected to a 240 V, 50 Hz supply.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "C = 23E-6;# in Farads\n", + "f = 50;# in Hz\n", + "V = 240;# in volts\n", + "\n", + "#calculation:\n", + "Xc = 1/(2*math.pi*f*C)\n", + "I = V/Xc\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n current I = \",round(I,2),\" A \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " current I = 1.73 A " + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 6, page no. 216

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Find the supply voltage and the phase angle between current and voltage\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "Vr = 12;# in volts\n", + "Vl = 5;# in volts\n", + "\n", + "#calculation:\n", + "V = (Vr**2 + Vl**2)**0.5\n", + "phi = math.atan(Vl/Vr)\n", + "phid = phi*180/math.pi\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n supply voltage V = \",V,\" V, phase angle between current and voltage is \", round(phid,2),\"deg lagging\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " supply voltage V = 13.0 V, phase angle between current and voltage is 22.62 deg lagging" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 7, page no. 216

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate (a) the reactance, (b) the impedance, and (c) the current taken from a 240 V, 50 Hz supply. \n", + "#Determine also the phase angle between the supply voltage and current\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "V = 240;# in volts\n", + "R = 4;# in ohms\n", + "L = 0.00955;# in Henry\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "Z = (R**2 + XL**2)**0.5\n", + "I = V/Z\n", + "phid = math.atan(XL/R)*180/math.pi\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Inductive reactance, XL = \",round(XL,2),\" ohms\"\n", + "print \"\\n (b)Impedance, Z = \",round(Z,2),\" ohms\"\n", + "print \"\\n (c)Current, I = \",round(I,2),\" A\"\n", + "print \"\\n (d)phase angle between the supply voltage and current is \",round(phid,2),\"deg lagging\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Inductive reactance, XL = 3.0 ohms\n", + "\n", + " (b)Impedance, Z = 5.0 ohms\n", + "\n", + " (c)Current, I = 48.0 A\n", + "\n", + " (d)phase angle between the supply voltage and current is 36.87 deg lagging\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 8, page no. 217

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate the resistance, impedance, inductive reactance and inductance of the coil.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "Vdc = 12;# in volts\n", + "Vac = 240;# in volts\n", + "Iac = 20;# in Amperes\n", + "Idc = 2;# in Amperes\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + "R = Vdc/Idc\n", + "Z = Vac/Iac\n", + "XL = (Z**2 - R**2)**0.5\n", + "L = XL/(2*math.pi*f)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Resistance, R = \",R,\" ohms\"\n", + "print \"\\n (b)Impedance, Z = \",Z,\" ohms\"\n", + "print \"\\n (c)Inductive reactance, XL = \",round(XL,2),\" ohms\"\n", + "print \"\\n (d)Inductance, L = \",round(L,2),\" H\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Resistance, R = 6.0 ohms\n", + "\n", + " (b)Impedance, Z = 12.0 ohms\n", + "\n", + " (c)Inductive reactance, XL = 10.39 ohms\n", + "\n", + " (d)Inductance, L = 0.03 H" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 9, page no. 217

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate (a) the inductive reactance of the coil, \n", + "#(b) the impedance of the circuit, \n", + "#(c) the current in the circuit, \n", + "#(d) the p.d. across each component, and \n", + "#(e) the circuit phase angle.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 200;# in ohms\n", + "L = 0.3183;# in henry\n", + "V = 240;# in volts\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "Z = (R**2 + XL**2)**0.5\n", + "I = V/Z\n", + "VL = I*XL\n", + "VR = I*R\n", + "phid = math.atan(XL/R)*180/math.pi\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Inductive reactance, XL = \",round(XL,2),\" ohms\"\n", + "print \"\\n (b)Impedance, Z = \",round(Z,2),\" ohms\"\n", + "print \"\\n (c)current, I = \",round(I,2),\" A\"\n", + "print \"\\n (d)p.d. across Inductor, VL = \",round(VL,2),\" V and p.d. across resistance, VR = \",round(VR,2),\" V\"\n", + "print \"\\n (e)circuit phase angle is \",round(phid,2),\" deg lagging\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Inductive reactance, XL = 100.0 ohms\n", + "\n", + " (b)Impedance, Z = 223.61 ohms\n", + "\n", + " (c)current, I = 1.07 A\n", + "\n", + " (d)p.d. across Inductor, VL = 107.33 V and p.d. across resistance, VR = 214.66 V\n", + "\n", + " (e)circuit phase angle is 26.56 deg lagging\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 10, page no. 218

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate (a) the circuit impedance, \n", + "#(b) the current flowing, \n", + "#(c) the p.d. across the resistance, \n", + "#(d) the p.d. across the inductance and \n", + "#(e) the phase angle between voltage and current.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 100;# in ohms\n", + "L = 0.2;# in henry\n", + "Vmax = 200;# in volts\n", + "w = 500;# in rad/sec\n", + "\n", + "#calculation:\n", + "Vrms = 0.707*Vmax\n", + "f = w/(2*math.pi)\n", + "XL = 2*math.pi*f*L\n", + "Z = (R**2 + XL**2)**0.5\n", + "I = Vrms/Z\n", + "VL = I*XL\n", + "VR = I*R\n", + "phid = math.atan(XL/R)*180/math.pi\n", + "\n", + "\\\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Impedance, Z = \",round(Z,2),\" ohms\"\n", + "print \"\\n (b)current, I = \",round(I,2),\" A\"\n", + "print \"\\n (c)p.d. across resistance, VR = \",round(VR,2),\" V\"\n", + "print \"\\n (d)p.d. across Inductor, VL = \",round(VL,2),\" V\"\n", + "print \"\\n (e)circuit phase angle is \",phid,\"deg\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Impedance, Z = 141.42 ohms\n", + "\n", + " (b)current, I = 1.0 A\n", + "\n", + " (c)p.d. across resistance, VR = 99.98 V\n", + "\n", + " (d)p.d. across Inductor, VL = 99.98 V\n", + "\n", + " (e)circuit phase angle is 45.0 deg" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 11, page no. 218

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#determine the value of the supply voltage and the voltage across the 1.273 mH inductance.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 30;# in ohms\n", + "L = 1.2273E-3;# in henry\n", + "f = 5000;# in Hz\n", + "VR = 6;# in volts\n", + "\n", + "#calculation:\n", + "I =VR/R\n", + "XL = 2*math.pi*f*L\n", + "Z = (R**2 + XL**2)**0.5\n", + "V = I*Z\n", + "VL = I*XL\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)supply voltage = \",round(V,2),\" Volts\"\n", + "print \"\\n (b)p.d. across Inductor, VL = \",round(VL,2),\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)supply voltage = 9.77 Volts\n", + "\n", + " (b)p.d. across Inductor, VL = 7.71 V" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 12, page no. 219

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine (a) the impedance of the circuit, \n", + "#(b) the current in the circuit, \n", + "#(c) the circuit phase angle, \n", + "#(d) the p.d. across the 60 ohm resistor\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 60;# in ohms\n", + "Rc = 20;# in ohms\n", + "L = 159.2E-3;# in henry\n", + "f = 50;# in Hz\n", + "V = 240;# in volts\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "Rt = R + Rc\n", + "Z = (Rt**2 + XL**2)**0.5\n", + "I = V/Z\n", + "phid = math.atan(XL/Rt)*180/math.pi\n", + "VR = I*R\n", + "Zc = (Rc**2 + XL**2)**0.5\n", + "Vc = I*Zc\n", + "VL = I*XL\n", + "VRc = I*Rc\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Impedance, Z = \",round(Z,2),\" ohms\"\n", + "print \"\\n (b)current, I = \",round(I,3),\" A\"\n", + "print \"\\n (c)circuit phase angle is \",round(phid,0),\"deg lagging\"\n", + "print \"\\n (d)p.d. across resistance, VR = \",round( VR,1),\" V\"\n", + "print \"\\n (e)p.d. across coil, Vc = \",round(Vc,1),\" V\"\n", + "print \"\\n (f1)p.d. across Inductor, VL = \",round(VL,2),\" V\"\n", + "print \"\\n (f2)p.d. across coil resistance, VRc = \",round(VRc,2),\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Impedance, Z = 94.35 ohms\n", + "\n", + " (b)current, I = 2.544 A\n", + "\n", + " (c)circuit phase angle is 32.0 deg lagging\n", + "\n", + " (d)p.d. across resistance, VR = 152.6 V\n", + "\n", + " (e)p.d. across coil, Vc = 137.0 V\n", + "\n", + " (f1)p.d. across Inductor, VL = 127.23 V\n", + "\n", + " (f2)p.d. across coil resistance, VRc = 50.88 V" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 13, page no. 220

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate (a) the impedance, and (b) the current taken from a 240 V, 50 Hz supply. \n", + "#Find also the phase angle between the supply voltage and the current.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 25;# in ohms\n", + "C = 45E-6;# in Farads\n", + "f = 50;# in Hz\n", + "V = 240;# in volts\n", + "\n", + "#calculation:\n", + "Xc = 1/(2*math.pi*f*C)\n", + "Z = (R**2 + Xc**2)**0.5\n", + "I = V/Z\n", + "phid = math.atan(Xc/R)*180/math.pi\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Impedance, Z = \",round(Z,2),\" ohms\"\n", + "print \"\\n (b)current, I = \",round(I,2),\" A\"\n", + "print \"\\n (c)phase angle between the supply voltage and current is \",round(phid,2),\"deg leading\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Impedance, Z = 75.02 ohms\n", + "\n", + " (b)current, I = 3.2 A\n", + "\n", + " (c)phase angle between the supply voltage and current is 70.54 deg leading" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 14, page no. 221

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate: (a) the value of capacitance, C, \n", + "#(b) the supply voltage, \n", + "#(c) the phase angle between the supply voltage and current, \n", + "#(d) the p.d. across the resistor, and\n", + "#(e) the p.d. across the capacitor\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 40;# in ohms\n", + "f = 60;# in Hz\n", + "I = 3;#in amperes\n", + "Z = 50;# in ohms\n", + "\n", + "#calculation:\n", + "Xc = (Z**2 - R**2)**0.5\n", + "C = 1/(2*math.pi*f*Xc)\n", + "V = I*Z\n", + "phid = math.atan(Xc/R)*180/math.pi\n", + "VR = I*R\n", + "Vc = I*Xc\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)capacitance, C = \",round((C/1E-6),2),\" uF\"\n", + "print \"\\n (b)Voltage, V = \",V,\" Volts\"\n", + "print \"\\n (c)phase angle between the supply voltage and current is \",round(phid,2),\"deg leading\"\n", + "print \"\\n (d)p.d. across resistance, VR = \", VR,\" V\"\n", + "print \"\\n (e)p.d. across Capacitor, Vc = \",Vc,\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)capacitance, C = 88.42 uF\n", + "\n", + " (b)Voltage, V = 150 Volts\n", + "\n", + " (c)phase angle between the supply voltage and current is 36.87 deg leading\n", + "\n", + " (d)p.d. across resistance, VR = 120 V\n", + "\n", + " (e)p.d. across Capacitor, Vc = 90.0 V" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 15, page no. 222

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate (a) the current flowing, \n", + "#(b) the phase difference between the supply voltage and current, \n", + "#(c) the voltage across the coil and \n", + "#(d) the voltage across the capacitor\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 5;# in ohms\n", + "C = 100E-6;# in Farads\n", + "L = 0.12;# in Henry\n", + "f = 50;# in Hz\n", + "V = 300;# in volts\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "Xc = 1/(2*math.pi*f*C)\n", + "X = XL - Xc\n", + " #Since XL is greater than Xc, the circuit is inductive.\n", + "Z = (R**2 + (XL-Xc)**2)**0.5\n", + "I = V/Z\n", + "phid = math.atan((XL-Xc)/R)*180/math.pi\n", + "Zcl = (R**2 + XL**2)**0.5\n", + "Vcl = I*Zcl\n", + "phidc = math.atan(XL/R)*180/math.pi\n", + "Vc = I*Xc\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Current,I = \",round(I,2),\" A\"\n", + "print \"\\n (b)phase angle between the supply voltage and current is \",round(phid,2),\"deg\"\n", + "print \"\\n (c)Voltage across the coil, Vcoil = \",round(Vcl,0),\" Volts\"\n", + "print \"\\n (d)p.d. across Capacitor, Vc = \",round(Vc,0),\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Current,I = 38.91 A\n", + "\n", + " (b)phase angle between the supply voltage and current is 49.57 deg\n", + "\n", + " (c)Voltage across the coil, Vcoil = 1480.0 Volts\n", + "\n", + " (d)p.d. across Capacitor, Vc = 1239.0 V" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 16, page no. 224

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate (a) the circuit current, \n", + "#(b) the circuit phase angle and \n", + "#(c) the voltage drop across each impedance.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R1 = 8;# in ohms\n", + "C = 0.25E-6;# in Farads\n", + "L = 130E-6;# in Henry\n", + "Rc = 5;# in ohms\n", + "R2 = 10;# in ohms\n", + "f = 20000;# in Hz\n", + "V = 40;# in volts\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "Xc = 1/(2*math.pi*f*C)\n", + "X = Xc - XL\n", + "R = R1 + R2 + Rc\n", + " #Since Xc is greater than XL, the circuit is capacitive.\n", + "Z = (R**2 + (Xc-XL)**2)**0.5\n", + "I = V/Z\n", + "phid = math.atan((Xc-XL)/R)*180/math.pi\n", + "V1 = I*R1\n", + "V2 = I*((Rc**2 + XL**2)**0.5)\n", + "V3 = I*((R2**2 + Xc**2)**0.5)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Current,I = \",round(I,2),\" A\"\n", + "print \"\\n (b)circuit phase angle is \",round(phid,2),\"deg leading\"\n", + "print \"\\n (c1)Voltage across the Resistance of 8 ohms = \",round(V1,2),\" Volts\"\n", + "print \"\\n (c2)Voltage across the coil, Vcoil = \",round(V2,2),\" Volts\"\n", + "print \"\\n (c3)p.d. across Capacitor resistance circuit = \",round(V3,2),\" Volts\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Current,I = 1.44 A\n", + "\n", + " (b)circuit phase angle is 33.97 deg leading\n", + "\n", + " (c1)Voltage across the Resistance of 8 ohms = 11.54 Volts\n", + "\n", + " (c2)Voltage across the coil, Vcoil = 24.64 Volts\n", + "\n", + " (c3)p.d. across Capacitor resistance circuit = 48.12 Volts" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 17, page no. 224

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the p.d.\u2019s V1 and V2 for the circuit\n", + "#determine the supply voltage V and the circuit phase angle.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R1 = 4;# in ohms\n", + "C = 1.273E-6;# in Farads\n", + "L = 0.286E-3;# in Henry\n", + "R2 = 8;# in ohms\n", + "f = 5000;# in Hz\n", + "I = 5;# in amperes\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "phid1 = math.atan(XL/R1)*180/math.pi\n", + "V1 = I*((R1**2 + XL**2)**0.5)\n", + "Xc = 1/(2*math.pi*f*C)\n", + "V2 = I*((R2**2 + Xc**2)**0.5)\n", + "phid2 = math.atan(Xc/R2)*180/math.pi\n", + "Z = ((R1+R2)**2 + (Xc-XL)**2)**0.5\n", + "V = I*Z\n", + "phid = math.atan((Xc-XL)/(R1+R2))*180/math.pi\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Voltage supply, V = \",round(V,2),\" V\"\n", + "print \"\\n (b)circuit phase angle is \",round(phid,2),\"deg leading\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Voltage supply, V = 100.08 V\n", + "\n", + " (b)circuit phase angle is 53.16 deg leading" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 18, page no. 226

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#At what frequency does resonance occur?\n", + "#Find the current flowing at the resonant frequency.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 10;# in ohms\n", + "C = 60E-6;# in Farads\n", + "L = 125E-3;# in Henry\n", + "V = 120;# in Volts\n", + "\n", + "#calculation:\n", + "fr = 1/(2*math.pi*(L*C)**0.5)\n", + " #At resonance, XL = Xc and impedance Z = R\n", + "I = V/R\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Resonance frequency,Fr = \",round(fr,2),\" Hz\"\n", + "print \"\\n (b)Current, I = \",round(I,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Resonance frequency,Fr = 58.12 Hz\n", + "\n", + " (b)Current, I = 12.0" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 19, page no. 226

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#find (a) the circuit resistance, and (b) the circuit capacitance.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 0.05E-3;# in Henry\n", + "fr = 200000;# in Hz\n", + "V = 0.002;# in Volts\n", + "I = 0.1E-3;# in amperes\n", + "#calculation:\n", + "# L-C-R\n", + "#At resonance, XL = Xc and impedance Z = R\n", + "R = V/I\n", + "C = 1/(L*(2*math.pi*fr)**2)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Resistance, R = \",round(R,2),\" ohms\"\n", + "print \"\\n (b)Capacitance, C = \",round((C/1E-9),2),\"nF\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Resistance, R = 20.0 ohms\n", + "\n", + " (b)Capacitance, C = 12.67 nF" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 20, page no. 227

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine (a) the resonant frequency, and \n", + "#(b) the current at resonance. \n", + "#How many times greater than the supply voltage is the voltage across the reactances at resonance?\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 80E-3;# in Henry\n", + "C = 0.25E-6;# in Farads\n", + "R = 12.5;# in ohms\n", + "V = 100;# in Volts\n", + "\n", + "#calculation:\n", + "fr = 1/(2*math.pi*((L*C)**0.5))\n", + " #At resonance, XL = Xc and impedance Z = R\n", + "I = V/R\n", + "VL = I*(2*math.pi*fr*L)\n", + "Vc = I/(2*math.pi*fr*C)\n", + "Vm = VL/V\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)the resonant frequency = \",round(fr,2),\" Hz\"\n", + "print \"\\n (b)Current, I = \",round(I,2),\"\"\n", + "print \"\\n (b)Voltage magnification at resonance = \",round(Vm,2),\" V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)the resonant frequency = 1125.4 Hz\n", + "\n", + " (b)Current, I = 8.0 \n", + "\n", + " (b)Voltage magnification at resonance = 45.25 V" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 21, page no. 228

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the Qfactor of the circuit at resonance\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 60E-3;# in Henry\n", + "C = 30E-6;# in Farads\n", + "R = 2;# in ohms\n", + "\n", + "#calculation:\n", + "Q = ((L/C)**0.5)/R\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n At resonance, Q-factor = \",round(Q,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " At resonance, Q-factor = 22.36" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 22, page no. 228

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine (a) the resonant frequency, \n", + "#(b) the current at resonance,\n", + "#(c) the voltages across the coil and the capacitor at resonance, and\n", + "#(d) the Q-factor of the circuit.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 100E-3;# in Henry\n", + "C = 2E-6;# in Farads\n", + "R = 10;# in ohms\n", + "V = 50;# in Volts\n", + "\n", + "#calculation:\n", + "fr = 1/(2*math.pi*((L*C)**0.5))\n", + " #At resonance, XL = Xc and impedance Z = R\n", + "I = V/R\n", + "VL = I*(2*math.pi*fr*L)\n", + "Vc = I/(2*math.pi*fr*C)\n", + "Q = VL/V\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)the resonant frequency = \",round(fr,2),\" Hz\"\n", + "print \"\\n (b)Current, I = \",round(I,2),\"\"\n", + "print \"\\n (c)Voltage across coil at resonance is \",round(VL,2),\"V \"\n", + "print \"and Voltage across capacitance at resonance is \",round( Vc,2),\"V\"\n", + "print \"\\n (d)At resonance, Q-factor = \",round(Q,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)the resonant frequency = 355.88 Hz\n", + "\n", + " (b)Current, I = 5.0 \n", + "\n", + " (c)Voltage across coil at resonance is 1118.03 V and Voltage across capacitance at resonance is 1118.03 V\n", + "\n", + " (d)At resonance, Q-factor = 22.36" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 23, page no. 230

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the bandwidth of the filter.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "L = 20E-3;# in Henry\n", + "R = 10;# in ohms\n", + "fr = 5000;# in Hz\n", + "\n", + "#calculation:\n", + "Qr = (2*math.pi*fr)*L/R\n", + "bw = fr/Qr\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n Bandwidth, (f2-f1) = \",round(bw,2),\" Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " Bandwidth, (f2-f1) = 79.58 Hz" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 24, page no. 231

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Find the power dissipated in the resistor.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 5000;# in ohms\n", + "Imax = 0.250;# in Amperes\n", + "\n", + "#calculation:\n", + "Irms = 0.707*Imax\n", + "P = Irms*Irms*R\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n Power, P = \",round(P,2),\" Watts\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " Power, P = 156.2 Watts" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 25, page no. 231

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate the power dissipated.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "R = 60;# in ohms\n", + "L = 75E-3;# in Henry\n", + "V = 110;# in Volts\n", + "f = 60;# in Hz\n", + "\n", + "#calculation:\n", + "XL = 2*math.pi*f*L\n", + "Z = (R**2 + XL**2)**0.5\n", + "I = V/Z\n", + "P = I*I*R\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n Power, P = \",round(P,2),\" Watts\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " Power, P = 165.02 Watts" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 26, page no. 232

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Find the value of the inductance.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "VI = 300;# in VA\n", + "V = 150;# in Volts\n", + "f = 50;# in Hz\n", + "\n", + "#calculation:\n", + "I = VI/V\n", + "XL = V/I\n", + "L = XL/(2*math.pi*f)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n Inductance = \",round(L,2),\" H\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " Inductance = 0.24 H" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 27, page no. 232

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Determine the rated power output and the corresponding reactive power.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "VI = 200000;# in VA\n", + "pf = 0.8;# power factor\n", + "\n", + "#calculation:\n", + "P = VI*pf\n", + "Q = VI*math.sin(math.acos(pf))\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n rated power output is \",round(P/1000,2),\"KW and the corresponding reactive power is \",round(Q/1000,2),\"kvar\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " rated power output is 160.0 KW and the corresponding reactive power is 120.0 kvar" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 28, page no. 233

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate (a) the resistance, \n", + "#(b) the impedance, \n", + "#(c) the reactance, \n", + "#(d) the power factor, and \n", + "#(e) the phase angle between voltage and current.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "V = 120;# in Volts\n", + "f = 50;# in Hz\n", + "P = 400;# in Watt\n", + "I = 8;# in Amperes\n", + "\n", + "#calculation:\n", + "R = P/(I*I)\n", + "Z = V/I\n", + "XL = (Z**2 - R**2)**0.5\n", + "pf = P/(V*I)\n", + "phi = math.acos(pf)*180/math.pi\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)resistance = \",round(R,2),\" ohm \"\n", + "print \"\\n (b)Impedance Z = \",round(Z,2),\" Ohm \"\n", + "print \"\\n (c)reactance = \",round(XL,2),\" ohm \"\n", + "print \"\\n (d)Power factor = \",round(pf,2),\"\"\n", + "print \"\\n (e)phase angle = \",round(phi,2),\"deg lagging\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)resistance = 6.25 ohm \n", + "\n", + " (b)Impedance Z = 15.0 Ohm \n", + "\n", + " (c)reactance = 13.64 ohm \n", + "\n", + " (d)Power factor = 0.42 \n", + "\n", + " (e)phase angle = 65.38 deg lagging" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Example 29, page no. 233

" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Find (a) the current flowing, (b) the phase angle,\n", + "#(c) the resistance, (d) the impedance, and (e) the capacitance.\n", + "from __future__ import division\n", + "import math\n", + "#initializing the variables:\n", + "V = 100;# in Volts\n", + "f = 60;# in Hz\n", + "P = 100;# in Watt\n", + "pf = 0.5;# power factor\n", + "\n", + "#calculation:\n", + "I = P/(pf*V)\n", + "phi = math.acos(pf)*180/math.pi\n", + "R = P/(I*I)\n", + "Z = V/I\n", + "Xc = (Z**2 - R**2)**0.5\n", + "C = 1/(2*math.pi*f*Xc)\n", + "\n", + "\n", + "#Results\n", + "print \"\\n\\n Result \\n\\n\"\n", + "print \"\\n (a)Current I = \",round(I,2),\" A \"\n", + "print \"\\n (b)phase angle = \",round(phi,2),\"deg leading\"\n", + "print \"\\n (c)resistance = \",round(R,2),\" ohm \"\n", + "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n", + "print \"\\n (e)capacitance = \",round((C/1E-6),2),\"uF \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "\n", + " Result \n", + "\n", + "\n", + "\n", + " (a)Current I = 2.0 A \n", + "\n", + " (b)phase angle = 60.0 deg leading\n", + "\n", + " (c)resistance = 25.0 ohm \n", + "\n", + " (d)Impedance Z = 50.0 Ohm \n", + "\n", + " (e)capacitance = 61.26 uF " + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit