From 4a1f703f1c1808d390ebf80e80659fe161f69fab Mon Sep 17 00:00:00 2001 From: Thomas Stephen Lee Date: Fri, 28 Aug 2015 16:53:23 +0530 Subject: add books --- .../Chapter1_5.ipynb | 811 +++++++++++++++++++++ 1 file changed, 811 insertions(+) create mode 100644 ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb (limited to 'ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb') diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb new file mode 100644 index 00000000..7a93f17f --- /dev/null +++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb @@ -0,0 +1,811 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Chapter 1:Crystal Structure,Bonding and Defects in solids" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 1.1,Page No:1.8" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lattice Constant a = 4.00 Å\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "\n", + "p = 6250; # Density of crystal in kg/m**3\n", + "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n", + "M = 60.2; #molecular weight per mole\n", + "n = 4; #No. of atoms per unit cell for FCC\n", + "\n", + "#Calculations\n", + "\n", + "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n", + "\n", + "#result\n", + "\n", + "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2,Page No:1.8" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "d100 = 6.30 Å\n", + "d110 = 4.45 Å\n", + "d111 = 3.64 Å\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "h1 = 1; #miller indice\n", + "k1 = 1; # miller indice\n", + "l1 = 1; # miller indice\n", + "h0 = 0; # miller indice\n", + "k0 = 0; # miller indice\n", + "l0 = 0; # miller indice\n", + "p = 1980; # Density of KCl in kg/m**3\n", + "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n", + "M = 74.5; # molecular weight of KCl\n", + "n = 4; # No. of atoms per unit cell for FCC\n", + "\n", + "# calculations\n", + "a = ((n*M)/float(N*p))**(1/float(3));\n", + "\n", + "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n", + "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n", + "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n", + "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n", + "\n", + "# Output\n", + "print'd100 = %3.2f'%(d100*10**10),'Å';\n", + "print'd110 = %3.2f'%(d110*10**10),'Å';\n", + "print'd111 = %3.2f'%(d111*10**10),'Å';\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3,Page No:1.9" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "miller indices = 1 4 2\n" + ] + } + ], + "source": [ + "import math\n", + "import fractions\n", + "\n", + "#variable declaration\n", + "h = 4; #miller indices\n", + "k = 1; #miller indices\n", + "l = 2; #miller indices\n", + " \n", + "#calculation\n", + "d = fractions.gcd(h,k);\n", + "lcm = (h*k)/float(d);\n", + "e = fractions.gcd(lcm,l);\n", + "lc = (lcm*l)/float(e); #finding lcm\n", + "h1 =1/float(h); \n", + "k1 =1/float(k);\n", + "l1 =1/float(l);\n", + "a = h1*lc; #miller indices\n", + "b = k1*lc; #miller indices\n", + "c = l1*lc; #miller indices\n", + "\n", + "#result\n", + "print'miller indices = %d '%a,'%d'%b,'%d'%c;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4,Page No:1.10" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "miller indices = 4 3 6\n" + ] + } + ], + "source": [ + "import fractions\n", + "\n", + "#variable declaration\n", + "#intercepts given are 3a,4b,2c\n", + "#from the law of rational indices\n", + "#3a:4b:2c=a/h:b/k:c/l\n", + "\n", + "#Variable Declaration\n", + "h1 = 3; #miller indices\n", + "k1 = 4; #miller indices\n", + "l1 = 2; #miller indices\n", + " \n", + "#calculation\n", + "d = fractions.gcd(h1,k1);\n", + "lcm = (h1*k1)/float(d);\n", + "e = fractions.gcd(lcm,l1);\n", + "lc = (lcm*l1)/float(e); #finding lcm\n", + "\n", + "h = lc*1/float(h1); #miller indices \n", + "k = lc*1/float(k1); #miller indices\n", + "l= lc*1/float(l1); #miller indices\n", + "\n", + "#result\n", + "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n", + " \n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5,Page No:1.10" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "miller indices = 6 3 -4\n" + ] + } + ], + "source": [ + "import fractions\n", + "\n", + "#variable declaration\n", + "#intercepts given are a,2b,-3c/2\n", + "#from the law of rational indices\n", + "#a:2b:-3c/2=a/h:b/k:c/l\n", + "\n", + "\n", + "#variable declaration\n", + "h1 = 1; #miller indices\n", + "k1 = 2; #miller indices\n", + "l1 = 3; #miller indices \n", + "\n", + "#calculation\n", + "d = fractions.gcd(h1,k1);\n", + "lcm = (h1*k1)/float(d);\n", + "e = fractions.gcd(lcm,l1);\n", + "lc = (lcm*l1)/float(e);\n", + "h2 = 1;\n", + "k2 = 1/float(k1);\n", + "l2 = -2/float(l1)\n", + "h = h2*lc; #miller indices \n", + "k = (k2)*(lc); #miller indices \n", + "l = (l2)*(lc); #miller indices \n", + "\n", + "#result\n", + "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6,Page No:1.11" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "miller indices = 1 1 2\n", + "Note:printing mistake of miller indices in textbook \n", + "\n", + "\n", + "miller indices = 1 2 0\n", + "\n", + "miller indices = 1 2 1\n", + "Note:calculation mistake in textbook\n", + "\n" + ] + } + ], + "source": [ + "import fractions\n", + "\n", + "#variable declaration\n", + "#intercepts given are 3a,3b,2c\n", + "#from the law of rational indices\n", + "#3a:3b:2c=a/h:b/k:c/l\n", + "#variable declaration\n", + "a = 4;\n", + "b = 4;\n", + "c = 2;\n", + "a1 = 2;\n", + "b1 = 1;\n", + "c1 = 1;\n", + "a3 = 1;\n", + "b3 = 1;\n", + "c3 = 1;\n", + "h12 = 1/float(2); #miller indices\n", + "k12 = 1; #miller indices\n", + "#l12 = 1/math.inf; #miller indices\n", + "l12 =0;\n", + "h13 = 1; #miller indices\n", + "k13 = 2; #miller indices\n", + "l13 = 1; #miller indices\n", + "\n", + "\n", + "#calculation\n", + "d = fractions.gcd(a,b);\n", + "lcm = (a*b)/float(d);\n", + "e = fractions.gcd(lcm,c);\n", + "lc = (lcm*c)/float(e); #finding lcm \n", + "h1 = 1/float(4); #miller indices\n", + "k1 = 1/float(4); #miller indices\n", + "l1 = 1/float(2); #miller indices\n", + "h = h1*(lc); #miller indices\n", + "k = (k1)*(lc); #miller indices\n", + "l = (l1)*(lc); #miller indices\n", + "\n", + "d = fractions.gcd(a1,b1);\n", + "lcm = (a1*b1)/float(d);\n", + "e = fractions.gcd(lcm,c1);\n", + "lc1 = (lcm*c1)/float(e);\n", + "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n", + "h3 = h12*(lc1); #miller indices\n", + "k3 = (k12)*(lc1); #miller indices\n", + "l3 = (l12)*(lc1); #miller indices\n", + "\n", + "\n", + "d = fractions.gcd(a3,b3);\n", + "lcm = (a3*b3)/float(d);\n", + "e = fractions.gcd(lcm,c3);\n", + "lc2 = (lcm*c3)/float(e);\n", + "h4 = h13*(lc2); #miller indices\n", + "k4 = k13*(lc2); #miller indices\n", + "l4 = l13*(lc2); #miller indices\n", + "\n", + "\n", + "\n", + "#result\n", + "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n", + "print'Note:printing mistake of miller indices in textbook \\n';\n", + "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n", + "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n", + "print'Note:calculation mistake in textbook\\n';\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.7,Page No:1.16" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "d100 = 1.00 a\n", + "d111 = 0.58 a\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "h = 1; #miller indices\n", + "k = 0; #miller indices\n", + "l = 0; #miller indices\n", + "h1 = 1; #miller indices\n", + "k1 = 1; #miller indices\n", + "l1 = 1; #miller indices\n", + "\n", + "#calculations\n", + "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n", + "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n", + "\n", + "#result\n", + "print'd100 = %3.2f a'%d100;\n", + "print'd111 = %3.2f a'%d111;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8,Page No:1.16" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "miller indices = 2 1 0\n", + "interplanar distance is =4.47 Å\n" + ] + } + ], + "source": [ + "import fractions\n", + "\n", + "#variable declaration\n", + "#intercepts given are a,2b,-3c/2\n", + "#from the law of rational indices\n", + "#a:2b:-3c/2=a/h:b/k:c/l\n", + "\n", + "\n", + "#variable declaration\n", + "h1 = 1;\n", + "k1 = 2;\n", + "l1 = 1;\n", + "a = 10*10**-9; \n", + "\n", + "#calculation\n", + "h12 = 1; #miller indices\n", + "k12 = 1/float(k1); #miller indices\n", + "l12 = 0; #miller indices\n", + "\n", + "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n", + "d = fractions.gcd(h1,k1);\n", + "lcm = (h1*k1)/float(d);\n", + "e = fractions.gcd(lcm,l1);\n", + "lc = (lcm*l1)/float(e);\n", + "h = h12*(lcm); #miller indices\n", + "k = (k12)*(lcm); #miller indices\n", + "l = (l12)*(lcm); #miller indices\n", + "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n", + "\n", + "\n", + "#result\n", + "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n", + "print'interplanar distance is =%3.2f'%(d*10**9),'Å';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.9,Page No:1.17" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inter planar spacing =1.32e-10 m/n\n", + "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable Declaration\n", + "\n", + "r = 0.175*10**-9; #radius in m\n", + "h = 2; #miller indices\n", + "k = 3; #miller indices\n", + "l = 1; #miller indices\n", + "\n", + "#calculation\n", + "a = (4*r)/math.sqrt(2);\n", + "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n", + " \n", + "#result\n", + "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n", + "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.10,Page No:1.17" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance between two atoms =1.732 Å\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "a = 4; #lattice constant in Å\n", + "\n", + "#calculation\n", + "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n", + " \n", + "#result\n", + "print'distance between two atoms =%3.3f'%d,'Å';" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "##Example 1.11,Page No:1.20" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength=0.431 Å\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "d = 1.41; #lattice constant in Å\n", + "theta = 8.8; # angle in degrees\n", + "n = 1;\n", + "\n", + "#calculation\n", + "\n", + "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n", + "\n", + "\n", + "#result\n", + "print'wavelength=%3.3f'%lamda,'Å';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.12,Page No:1.21" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength =0.7822 Å\n", + "glancing angle =18.2 °\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "d = 2.5; #spacing in angstroms\n", + "theta = 9; #glancing angle in degrees\n", + "n1 = 1;\n", + "n2 = 2;\n", + "\n", + "\n", + "#calculation\n", + "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n", + "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n", + "\n", + "#result\n", + "print'wavelength =%3.4f'%lamda,'Å';\n", + "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.13,Page No:1.21" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice constant=1.15 Å\n", + "note:printing mistake in textbook in calculation part,n value is printed as 2\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "lamda = 2; #wavelength in angstroms\n", + "theta1 = 60; #angle in degrees\n", + "n = 1;\n", + " \n", + "#formula\n", + "#2*d*math.sin(theta)=n*lamda\n", + "#calculation\n", + "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n", + "\n", + "#result\n", + "print'lattice constant=%3.2f'%d,'Å';\n", + "print'note:printing mistake in textbook in calculation part,n value is printed as 2';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.14,Page No:1.21" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angle=37.32 °\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "lamda = 1.4*10**-10; #wavelength in angstroms\n", + "a = 2*10**-10; #lattice parameter in angstroms\n", + "h = 1; #miller indices\n", + "k = 1; #miller indices\n", + "l = 1; #miller indices\n", + "n = 1;\n", + "#formula\n", + "#2*d*math.sin(theta)=n*lamda\n", + "\n", + "#calculation\n", + "\n", + "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n", + "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n", + "\n", + "#result\n", + "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.15,Page No:1.22" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of neutron =7.33e+02 m/n\n", + " Note:calculation mistake in text book in calculating wavelength \n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variabledeclaration\n", + "d = 3.84 *10**-10; #spacing between planes in m\n", + "theta = 45; #glancing angle in degrees\n", + "m = 1.67*10**-27; #mass ef electron\n", + "h = 6.62*10**-34; #planck's constant\n", + "n = 1; #braggg reflextion \n", + "v = 5.41*10**-10;\n", + " \n", + "#calculation\n", + "#lamda = 2*d*(1/math.sqrt(2));\n", + "lamda = (n*h)/float(m*v); #wavelength of neutron\n", + "\n", + "#result\n", + "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n", + "print' Note:calculation mistake in text book in calculating wavelength ';" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example 1.16,Page No:1.22" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice parameter = 2 Å\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#variable declaration\n", + "m = 9.1*10**-31; # mass of electron in kilograms\n", + "e = 1.6*10**-19; #charge of electron in coulombs\n", + "n = 1; #bragg's reflection\n", + "h1 = 6.62*10**-34; #planck's constant J.s\n", + "n = 1; #bragg reflecton \n", + "V = 200; #voltage in V\n", + "theta = 22; #observed reflection\n", + " \n", + "#calculation\n", + "\n", + "lamda = h1/math.sqrt(2*m*e*V);\n", + "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n", + "a = dhkl*math.sqrt(3); #lattice parameter in Å\n", + " \n", + "#result\n", + " \n", + "print'lattice parameter =%3.0f'%(a*10**10),'Å';" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit