From c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Digital_Communications/Chapter3.ipynb | 2238 +++++++++++++++++++++++++++++++++ 1 file changed, 2238 insertions(+) create mode 100755 Digital_Communications/Chapter3.ipynb (limited to 'Digital_Communications/Chapter3.ipynb') diff --git a/Digital_Communications/Chapter3.ipynb b/Digital_Communications/Chapter3.ipynb new file mode 100755 index 00000000..805bc62b --- /dev/null +++ b/Digital_Communications/Chapter3.ipynb @@ -0,0 +1,2238 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Chpater 3: WAVEFORM CODING TECHNIQUES

" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3,1 Page No 110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print('This is a Theoretical example')\t" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "This is a theoretcal example\n" + ] + } + ], + "prompt_number": 104 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3,2,i, Page No 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "#find code word length\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "bandwidth=4.2*10**6\n", + "fm=bandwidth\n", + "q=512 #Quantization levels\n", + "#q=2^v\n", + "\n", + "#Calculation\n", + "v=math.log10(512)/math.log10(2)\n", + "\n", + "#Result\n", + "print(\"The code word legth is = %.f bits\" %v)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The code word legth is = 9 bits\n" + ] + } + ], + "prompt_number": 105 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.2.ii, Page No 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#find The transmission Bandwidth\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "bandwidth=4.2*10**6\n", + "fm=bandwidth\n", + "q=512.0 #Quantization levels\n", + "v=9.0\n", + "\n", + "#Calculation\n", + "bw=v*fm*10**-6\n", + "\n", + "#Result\n", + "print(\"The transmission Bandwidth is = %.1f MHz\" %bw)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The transmission Bandwidth is = 37.8 MHz\n" + ] + } + ], + "prompt_number": 106 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.2.iii, Page No 111 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#find Final Bit rate\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "bandwidth=4.2*10**6\n", + "fm=bandwidth\n", + "q=512.0 #Quantization levels\n", + "v=9.0\n", + "\n", + "#Calculation\n", + "fs=2*fm\n", + "r=v*fs #signaling rate\n", + "\n", + "#Result\n", + "print(\"Final Bit rate =%.1f x 10^6 bits/sec\" %(r/(10**6)))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Final Bit rate =75.6 x 10^6 bits/sec\n" + ] + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.2.iv, Page No 111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#find Output signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "bandwidth=4.2*10**6\n", + "fm=bandwidth\n", + "q=512 #Quantization levels\n", + "v=9.0\n", + "\n", + "#Calculation\n", + "sn=4.8+6*v #noise in dB\n", + "\n", + "\n", + "print(\"Output signal to noise ratio is = %.1f dB\" %sn)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output signal to noise ratio is = 58.8 dB\n" + ] + } + ], + "prompt_number": 108 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.3.i, Page No 112" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#find bits per sample\n", + "\n", + "#Variable Declaration\n", + "fmax=4*10**3\n", + "xmax=3.8\n", + "snr=100\n", + "\n", + "#Calculation\n", + "P=30*10**-3\n", + "v=(math.log10(((snr*xmax**2)/(3*P)))/(2*math.log10(2)))\n", + "\n", + "#Result\n", + "print(\"Number of bits required per sample are = %.2f bits\" %v)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Number of bits required per sample are = 6.98 bits\n" + ] + } + ], + "prompt_number": 109 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.3.ii, Page No 168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Find Transmission Bandwith\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "fm=4*10**3 #Bandwidth of PCM\n", + "xmax=3.8\n", + "snr=100 #Signal to Noise Ratio\n", + "outputs=30.0\n", + "v=7.0\n", + "\n", + "#Calculation\n", + "bw=outputs*v*fm \n", + "r=bw*2\n", + "bw=bw/10**3\n", + "\n", + "#Result\n", + "print('Transmission Bandwith R = %.f kHz' %bw)\n", + "r=r/1000\n", + "print('Signaling rate R = %.f bits/sec' %r)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Transmission Bandwith R = 840 kHz\n", + "Signaling rate R = 1680 bits/sec\n" + ] + } + ], + "prompt_number": 110 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.4, Page No 112" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#find sampling rate,number of bits,bit rate,bandwidht\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "emax=0.001\n", + "de=2*emax\n", + "fm=100.0\n", + "xmax=10.0\n", + "\n", + "#Calculation\n", + "q=(2*xmax)/de\n", + "fs=2*fm\n", + "v=(math.log10(q))/math.log10(2)\n", + "v=math.ceil(v)\n", + "r=v*fs\n", + "\n", + "#Result\n", + "print('1. sampling Frequncy = %.f Hz ' %fs) \n", + "print('2. No.of bits in PCM = %.f bits ' %v) \n", + "print('3. sampling rate = %.f bits per second ' %r)\n", + "r=r/2\n", + "print('4. Transmission Bandwidth = %.f Hz ' %r) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1. sampling Frequncy = 200 Hz \n", + "2. No.of bits in PCM = 14 bits \n", + "3. sampling rate = 2800 bits per second \n", + "4. Transmission Bandwidth = 1400 Hz \n" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.5, Page No 113 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Bandwidth,Sampling Rate\n", + "\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "fm=3.4*10**3\n", + "N=24\n", + "r=1.5*10**6\n", + "encoder=8\n", + "\n", + "#Calculation\n", + "BW=N*fm\n", + "BW=BW/10**3\n", + "r1=r/N\n", + "fs=r1/encoder\n", + "\n", + "#Result\n", + "print(\"i. Channel Bandwith is = %.2f kHz\" %BW)\n", + "print(\"ii. Sampling frequency is = %.2f Hz or samples per second.\" %fs)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i. Channel Bandwith is = 81.60 kHz\n", + "ii. Sampling frequency is = 7812.50 Hz or samples per second.\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.6, Page No 114 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Find Signal Bandwidth,Noise Ratio\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "v=7\n", + "r=50*10**6\n", + "\n", + "#Calculation\n", + "#fs=2*fm\n", + "fm=r/(2*v)\n", + "snr=1.8+(6*v);\n", + "fm=fm*10**-6\n", + "\n", + "#Result\n", + "print('i. Maximum message Bandwidth is = %.2f MHz ' %fm)\n", + "print('ii. signal to quantization niose ration = %.2f dB ' %snr)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i. Maximum message Bandwidth is = 3.57 MHz \n", + "ii. signal to quantization niose ration = 43.80 dB \n" + ] + } + ], + "prompt_number": 113 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.7, Page No 114" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#find i)bits per sample,ii)transmission rate\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "fm=3*10**3\n", + "q=16\n", + "\n", + "#Calculation\n", + "v=(math.log10(q))/math.log10(2)\n", + "\n", + "#Result\n", + "print('i) Bits in code word= %.f bits' %v)\n", + "fs=2*fm\n", + "r=v*fs\n", + "print('ii) it trasmission rate= %.f x 10^3 bits per second' %(r/(10**3)))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Bits in code word= 4 bits\n", + "ii) it trasmission rate= 24 x 10^3 bits per second\n" + ] + } + ], + "prompt_number": 114 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.8, Page No 115" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Find signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "fm=3.5*10**3\n", + "r=50*10**3\n", + "\n", + "#Calculation\n", + "fs=2*fm\n", + "rms=0.2\n", + "xmax=2\n", + "v=r/fs #signaling rate r=v*fs\n", + "v=math.ceil(v)\n", + "P=(rms**2)/1\n", + "SNR=((3*P*2**(2*v))/(xmax**2))\n", + "SN=10*math.log10(SNR)\n", + "SN=math.ceil(SN)\n", + "\n", + "#Result\n", + "print(\"signal to niose ratio =%.f dB\" %SN)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "signal to niose ratio =33 dB\n" + ] + } + ], + "prompt_number": 115 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.10, Page No 117 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find i)noise ratio ii)bits\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "Am=3.0\n", + "v=10.0\n", + "\n", + "#Calculation\n", + "SNR=1.8+6*v #noise ratio \n", + "SN=40\n", + "v=(SN-1.8)/6\n", + "\n", + "#Result\n", + "print(\"i) Signal to Quantization noise ratio = %.1f dB\" %SNR)\n", + "print(\"ii) Bits required to get signal to niose ratio of 40dB = %.f \" %math.ceil(v))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Signal to Quantization noise ratio = 61.8 dB\n", + "ii) Bits required to get signal to niose ratio of 40dB = 7 \n" + ] + } + ], + "prompt_number": 116 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.11, Page No 117 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Maximum frequency\n", + "\n", + "#Variable Declaration\n", + "#Given data\n", + "v=7\n", + "SNR=1.8+6*v\n", + "r=56*10**3\n", + "\n", + "#Calculation\n", + "fs=r/v #r=v*fs signaling rate\n", + "fm=fs/2 #Nquset rate\n", + "\n", + "#Result\n", + "fm=fm/10**3\n", + "print(\"Maximum frequency is = %.f kHz\" %fm)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum frequency is = 4 kHz\n" + ] + } + ], + "prompt_number": 117 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.14, Page No 129 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Maximum Amplitude\n", + "\n", + "#Variable Declaration\n", + "fm=3*10**3.0\n", + "\n", + "#Calculation\n", + "Nyquistrate=2*fm #Nyquistrate\n", + "fs=5*Nyquistrate #Samplingfrquency\n", + "Ts=1/fs #Sampling Interval\n", + "de=0.25 #step size\n", + "fm1=2*10**3.0\n", + "Am=de/(2*math.pi*fm1*Ts)\n", + "\n", + "#Result\n", + "print(\"Maximum Amplitude = %.4f Volts\" %Am)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum Amplitude = 0.5968 Volts\n" + ] + } + ], + "prompt_number": 118 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.16, Page No 130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find signaling rate\n", + "\n", + "#Variable Declaration\n", + "fs1=8*10**3.0\n", + "de=31.25*10**-3\n", + "q=64.0\n", + "\n", + "#Calculation\n", + "v=math.log(q,2)\n", + "r=v*fs1 #signaling rate\n", + "fm=3*10**3.0\n", + "A=1\n", + "fs2=(2*math.pi*fm*A)/(de)\n", + "\n", + "#Result\n", + "r=r*10**-3\n", + "print(\"Signaling rate of PCM is = %.f kHz\" %r)\n", + "fs2=fs2*10**-3\n", + "print(\"The signaling rate of DM is = %.2f kHz\" %fs2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Signaling rate of PCM is = 48 kHz\n", + "The signaling rate of DM is = 603.19 kHz\n" + ] + } + ], + "prompt_number": 119 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.17, Page No 131" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "fs=64.0*10**3 #frequency\n", + "fm=2.0*10**3 #Sinosoidal input signal sample \n", + "fM=4.0*10**3 #bandwidth\n", + "\n", + "#Calculation\n", + "SNR=(3*fs**3)/(8*math.pi**2*fm**2*fM) #Signal to noise ratio\n", + "SNRO=10*math.log10(SNR)\n", + "\n", + "#Result\n", + "print(\"Output signal to noise ratio = %.2f dB\" %SNRO)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output signal to noise ratio = 27.94 dB\n" + ] + } + ], + "prompt_number": 120 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.18, Page No 131" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find signal to Quatization noise ratio \n", + "\n", + "#Variable Declaration\n", + "fs=8.0*10**3 #Sampling frequency\n", + "r=64.0*10**3 #Data Rate\n", + "N=8 #number of bits\n", + "\n", + "#Calculation\n", + "SNR=(1.8+6*N) #signal to Quatization noise ratio\n", + "\n", + "#Result\n", + "print(\"Signal to Quatization noise ratio of PCM system is = %.f dB\" %SNR)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Signal to Quatization noise ratio of PCM system is = 50 dB\n" + ] + } + ], + "prompt_number": 121 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.20, Page No 149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Find sampling rate,quantizing level\n", + "\n", + "#Variable Declaration\n", + "r=36000\n", + "fm=3.2*10**3\n", + "\n", + "#Calculation\n", + "fs=2*fm #Nquest rate\n", + "v=r/fs #r=v*fs signaling rate\n", + "v=math.floor(v)\n", + "q=2**v\n", + "fs1=r/v\n", + "\n", + "#Result\n", + "print(\"Quantizing level q = %.f \" %q)\n", + "fs1=fs1/1000\n", + "print(\"sampling rate fs = %.1f kHz \" %fs1)\n", + "print(\"Number of binary digits = %.f \" %v)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Quantizing level q = 32 \n", + "sampling rate fs = 7.2 kHz \n", + "Number of binary digits = 5 \n" + ] + } + ], + "prompt_number": 122 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.21, Page No 149" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find time duration of 1bit binary encoded signal\n", + "\n", + "#Variable Declaration\n", + "fs=input(\"Enter the Nyquist rate of Signal fs(Hz)=\")\n", + "q=input(\"Enter the Quantization levels q =\")\n", + "\n", + "#Calculation\n", + "v=math.log(q,2) #binary pulses transmitted per second\n", + "t=1.0/(v*fs) #Nyquist interval\n", + "\n", + "#Result\n", + "print('Time duration of binary signal t = %.4f sec ' %t)\n", + "#output\n", + "#Enter the Nyquist rate fs(Hz)=3\n", + "#Enter the Quantization levels q =5\n", + "#time duration of 1bit binary signal \n", + "#t=0.1435589 sec" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "stream": "stdout", + "text": [ + "Enter the Nyquist rate of Signal fs(Hz)=23\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "stream": "stdout", + "text": [ + "Enter the Quantization levels q =34\n" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Time duration of binary signal t = 0.0085 sec \n" + ] + } + ], + "prompt_number": 123 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.23, Page No 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#find signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "SNR=40\n", + "SNRO=10**(SNR/10)\n", + "\n", + "#SNR=3(q**2)/2, Signal to Quantization noise ratio\n", + "\n", + "#Calculation\n", + "q=math.sqrt((2*SNRO)/3)\n", + "q=math.ceil(q)\n", + "v=math.log(q,2) #q=2**v Quantization levels\n", + "v=math.ceil(v)\n", + "snr=1.76+6.02*v #output Signal to Quantization noise ratio\n", + "\n", + "#Result\n", + "print(\"Output Signal to Quantization noise ratio = %.1f dB\" %snr)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output Signal to Quantization noise ratio = 43.9 dB\n" + ] + } + ], + "prompt_number": 124 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.24.i, Page No 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Quantizing levels,minimum number of bits per sample\n", + "\n", + "#Variable Declaration\n", + "SNRO=30.0\n", + "fmin=300.0\n", + "fmax=3300.0\n", + "fs=80000.0\n", + "\n", + "#Calculation\n", + "#SNRO=1.76+20log10(q)\n", + "q=10**((SNRO-1.76)/20)\n", + "q=math.ceil(q)\n", + "v=math.log(q,2)\n", + "\n", + "#Result\n", + "print('Quantizing levels required is =%.f' %q)\n", + "print('minimum number of bits per sample are=%.1f that is approximately 5' %v)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Quantizing levels required is =26\n", + "minimum number of bits per sample are=4.7 that is approximately 5\n" + ] + } + ], + "prompt_number": 125 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.24.ii, Page No 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find minimum required bandwidth\n", + "\n", + "#Variable Declaration\n", + "SNRO=30.0 #Signal to quantisizing noise ratio\n", + "fmin=300.0 #min frequency band\n", + "fmax=3300.0 #max frequency band\n", + "fs=8000.0 #Sampling rate\n", + "v=5.0 #Minimum number of bits per sample\n", + "\n", + "#Calculation\n", + "fPCM=(v*fs)/2\n", + "fPCM=fPCM/1000\n", + "\n", + "#Result\n", + "print('minimum required bandwidth =%.f kHz' %fPCM)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum required bandwidth =20 kHz\n" + ] + } + ], + "prompt_number": 126 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.24.iii, Page No 150" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Quantizing levels,minimum number of bits per sample and bandwidth\n", + "\n", + "#Variable Declaration\n", + "SNRO=30.0 #Signal to quantisizing noise ratio\n", + "fmin=300.0 #min frequency band\n", + "fmax=3300.0 #max frequency band\n", + "fs=8000.0 #Sampling rate\n", + "\n", + "#Calculation\n", + "q=10**((SNRO+10.1)/20)\n", + "q=math.ceil(q)\n", + "v=math.log(q,2)\n", + "v=math.ceil(v)\n", + "\n", + "#Result\n", + "print('Quantizing levels need is =%.f' %q)\n", + "print('minimum number of bits per sample is =%.f' %v)\n", + "fPCM=(v*fs)/2\n", + "fPCM=fPCM/1000\n", + "print('minimum required bandwidth =%.f Khz' %fPCM)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Quantizing levels need is =102\n", + "minimum number of bits per sample is =7\n", + "minimum required bandwidth =28 Khz\n" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.27, Page No 152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#determine the Maximum Amplitude,\n", + "\n", + "#Variable Declaration\n", + "de=250*10**-3\n", + "wm=2*math.pi*1000 \n", + "fs=3*10**3\n", + "Ts=1/fs\n", + "\n", + "#Calculation\n", + "Amax=(de*3*fs*2)/(wm) #Amplitude\n", + "SNR=(3.0*((3*6*(10**3))**3))/((8*(math.pi**2)*(10**3)**3))\n", + "\n", + "#Result\n", + "print('Maximum Amplitude= %.1f mV' %(Amax*(10**2)))\n", + "print('Signal to noise ratio = %.2f dB' %(10*math.log10(SNR)))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum Amplitude= 71.6 mV\n", + "Signal to noise ratio = 23.46 dB\n" + ] + } + ], + "prompt_number": 128 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.29, Page No 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find number of bits per sample\n", + "\n", + "#Variable Declaration\n", + "SNR=20\n", + "averagepower=30*10**-3\n", + "SNRO=10**(SNR/10)\n", + "A=3.8\n", + "\n", + "#SNRO=average signal power/Quatizing power\n", + "#de=(2*A)/L\n", + "\n", + "#Calculation\n", + "L=math.sqrt((SNRO*A**2)/(3*averagepower))\n", + "n=math.log(L,2)\n", + "n=math.ceil(n)\n", + "\n", + "#Result\n", + "print('Bits required per sample =%.f' %n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Bits required per sample =7\n" + ] + } + ], + "prompt_number": 129 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.30.i, Page No 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Normalized power for quantization noise\n", + "\n", + "#Variable Declaration\n", + "fm=3.0*10.0**3\n", + "v=8.0\n", + "VH=5.0\n", + "VL=-5.0\n", + "q=2**v\n", + "\n", + "#Calculation\n", + "de=(VH-VL)/q\n", + "Nq=de**2/12.0 #quantization noise\n", + "\n", + "#Result\n", + "print('Normalized power for quantization noise =%.2f x 10^-6 W' %(Nq*(10**6)))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Normalized power for quantization noise =127.16 x 10^-6 W\n" + ] + } + ], + "prompt_number": 130 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.30.ii, Page No 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find bit transmission rate\n", + "\n", + "#Variable Declaration\n", + "fm=3*10.0**3\n", + "v=8.0\n", + "VH=5.0\n", + "VL=-5\n", + "q=2**v\n", + "\n", + "#Calculation\n", + "fs=2*fm #Nyquist rate\n", + "r=8*fs/1000\n", + "\n", + "#Result\n", + "print('bit transmission rate %.f K bits/s' %r)\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "bit transmission rate 48 K bits/s\n" + ] + } + ], + "prompt_number": 131 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.30.iii, Page No 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Signal to quantization noise ratio\n", + "\n", + "#Variable Declaration\n", + "Nq=127.15*10**-6\n", + "Meansignal=2\n", + "\n", + "#Calculation\n", + "P=Meansignal/1\n", + "SNR=P/Nq\n", + "SNRq=10*math.log10(SNR)\n", + "\n", + "#Result\n", + "print('Signal to quantization noise ratio %.2f dB ' %SNRq)\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Signal to quantization noise ratio 41.97 dB \n" + ] + } + ], + "prompt_number": 132 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.31, Page No 154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find i)SNR ii)output bit rate iii)no.of bits recorded\n", + "\n", + "#Variable Declaration\n", + "N=16.0\n", + "v=16.0\n", + "fs=44.1*10**3\n", + "\n", + "#Calculation\n", + "SNR=1.76+6*N\n", + "bitrate=2*v*fs\n", + "outputbitrate=2*bitrate*10**-6 #including addtional 100% over head\n", + "CD=outputbitrate*3600*10**-3\n", + "\n", + "#Result\n", + "print('i)Out put signal noise ratio =%.2f dB' %SNR)\n", + "print('ii)output bit rate =%.3f Mbits/sec' %outputbitrate)\n", + "print('iii)no.of bits recorded in CD =%.2f gigabits' %CD)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)Out put signal noise ratio =97.76 dB\n", + "ii)output bit rate =2.822 Mbits/sec\n", + "iii)no.of bits recorded in CD =10.16 gigabits\n" + ] + } + ], + "prompt_number": 133 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.32, Page No 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find output SNR\n", + "#Variable Declaration\n", + "fm=1*10.0**3\n", + "fs=32*10**3\n", + "\n", + "#Calculation\n", + "FM=4*10**3 #Bandwidth\n", + "SNR=(3*fs**3)/(8*math.pi**2*fm**2*FM) #SNR\n", + "SNRO=10*math.log10(SNR)\n", + "\n", + "#Result\n", + "print('Output signal to noise ratio %.2f dB' %SNRO)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output signal to noise ratio 24.93 dB\n" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.33.i, Page No 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find step size\n", + "\n", + "#Variable Declaration\n", + "fs=64000.0 #samples/sec\n", + "Amax=1.0 #Maximum signal amplitude\n", + "fm=3500.0 #Sample Rate\n", + "\n", + "#Calculation\n", + "de=(2*math.pi*fm*Amax)/fs*1000\n", + "\n", + "#Result\n", + "print('Step Size %.2f mV ' %de)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Step Size 343.61 mV \n" + ] + } + ], + "prompt_number": 135 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.33ii, Page No 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Quantizatio noise power \n", + "#Variable Declaration\n", + "fs=64000.0 #sample Rate\n", + "Amax=1.0 #Maximum signal Amplitude\n", + "fm=3500.0\n", + "\n", + "#Calculation\n", + "de=343.6117*10**-3 #step size\n", + "Nq=de**2/3.0 #Quantizatio noise power\n", + "Nqd=Nq*(fm/fs)*1000\n", + "\n", + "#Result\n", + "print('Quantizatio noise power %.3f mW' %Nqd)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Quantizatio noise power 2.152 mW\n" + ] + } + ], + "prompt_number": 136 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.33iii, Page No 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find SNR\n", + "\n", + "#Variable Declaration\n", + "fs=64000.0\n", + "Amax=1.0\n", + "fm=3500.0\n", + "Nqd=2.1522995*10**-3\n", + "\n", + "#Calculation\n", + "So=Amax**2/2\n", + "SNR=So/Nqd\n", + "SNRO=10*math.log10(SNR)\n", + "\n", + "#Result\n", + "print('Output signal noise ratio dB %.3f dB' %SNRO)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output signal noise ratio dB 23.661 dB\n" + ] + } + ], + "prompt_number": 137 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.34, Page No 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Assuming signal is sampled at the rate 20% above Nyquist rate\n", + "\n", + "#Variable Declaration\n", + "fm=4.5*10**6\n", + "q=1024.0\n", + "\n", + "#Calculation\n", + "fs=1.2*2*fm #20% above Nyquist rate\n", + "v=math.log(q,2)\n", + "r=v*fs/10**6\n", + "\n", + "#Result\n", + "print('no.of bits/sec = %.f M bit/sec' %r)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "no.of bits/sec = 108 M bit/sec\n" + ] + } + ], + "prompt_number": 138 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.35, Page No 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#assume bandwidth of the singal is 4kHz\n", + "\n", + "#Variable Declaration\n", + "fs=32000.0\n", + "A=2.0\n", + "fm=4000.0\n", + "BW=4000.0\n", + "\n", + "#Calculation\n", + "de=(2*math.pi*fm*A)/fs\n", + "Nq=de**2/3\n", + "SNR=(3*fs**3)/(8*math.pi**2*fm**2*BW)\n", + "\n", + "#Result\n", + "print('i)step size = %.3f M Volt' %de)\n", + "print('ii)noise power = %.3f W' %Nq)\n", + "print('iii)SNR= = %.3f ' %SNR)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)step size = 1.571 M Volt\n", + "ii)noise power = 0.822 W\n", + "iii)SNR= = 19.454 \n" + ] + } + ], + "prompt_number": 139 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.36, Page No 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#assuming signal is sampled at the rate 20% above Nyquist rate\n", + "\n", + "#Variable Declaration\n", + "fm=15*10**3\n", + "fs=1.2*2*fm\n", + "q=65536\n", + "\n", + "#Calculation\n", + "v=math.log(q,2)\n", + "r=v*fs/1000\n", + "BW=r/2\n", + "\n", + "#Result\n", + "print('i)signaling rate,= %.f K bits/sec ' %r)\n", + "print('ii)bandwidth BW min = %.f kHz ' %BW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)signaling rate,= 576 K bits/sec \n", + "ii)bandwidth BW min = 288 kHz \n" + ] + } + ], + "prompt_number": 140 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.37, Page No 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find step size,noise power\n", + "\n", + "#Variable Declaration\n", + "fs=64*10**3\n", + "fm=3500.0\n", + "A=1.0\n", + "\n", + "#Calculation\n", + "de=(2*math.pi*fm*A)/fs #step size\n", + "Nq=(de**2/3)*(fm/fs) #Granular noise power\n", + "\n", + "#Result\n", + "print('i)step size = %.3f Volts' %de)\n", + "print('ii)Nq= %.5f W' %Nq)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)step size = 0.344 Volts\n", + "ii)Nq= 0.00215 W\n" + ] + } + ], + "prompt_number": 141 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.40, Page No 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find step Nr,Transmission Bandwidth, SNR\n", + "\n", + "#Variable Declaration\n", + "fs=4 #kHz\n", + "N=12\n", + "\n", + "#Calculation\n", + "Nr=2*fs #Nyquest rate\n", + "Bt=1.0/2*N*fs #Transmission Bandwidth\n", + "SNR=1.8+(6*N) \n", + "\n", + "\n", + "#Result\n", + "print('i)Nyquest rate = %.1f kHz' %Nr)\n", + "print('ii)Transmission Bandwidth = %.1f kHz' %Bt)\n", + "print('iii)SNR = %.1f dB' %SNR)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)Nyquest rate = 8.0 kHz\n", + "ii)Transmission Bandwidth = 24.0 kHz\n", + "iii)SNR = 73.8 dB\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.41, Page No 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find step size,noise power\n", + "\n", + "#Variable Declaration\n", + "fm=3.5*10**3\n", + "fs=64*10**3\n", + "A=2.0\n", + "\n", + "#Calculation\n", + "de=(2*math.pi*fm*A)/fs #step size\n", + "Nq=(de**2/3)*(fm/fs) #Granular noise power\n", + "\n", + "#Result\n", + "print('i)step size = %.3f Volts' %de)\n", + "print('ii)Nq= %.1f X 10^-3 W' %(Nq*10**3))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)step size = 0.687 Volts\n", + "ii)Nq= 8.6 X 10^-3 W\n" + ] + } + ], + "prompt_number": 143 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.42, Page No 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find number of binay pulse per word, Bit rate, Bandwidth\n", + "\n", + "#Variable Declaration\n", + "W=4.5 * 10**6 #khz\n", + "Nr = 2 * W #Nyquist Rate\n", + "Q = 1024\n", + "fs=10.8\n", + "\n", + "#Calculation\n", + "N = math.log(Q,2) #number of binay pulse per word\n", + "Br= N*fs #Bit rate\n", + "Bw= 1.0/2*Br #Bandwidth\n", + "\n", + "#Result\n", + "print('i) Number of binay pulse per word = %.1f k bits/sec' %N)\n", + "print('ii) Bit rate = %.1f k bits/sec' %Br)\n", + "print('iii)Bandwidth= %.1f X 10^-3 kHz' %Bw)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Number of binay pulse per word = 10.0 k bits/sec\n", + "ii) Bit rate = 108.0 k bits/sec\n", + "iii)Bandwidth= 54.0 X 10^-3 kHz\n" + ] + } + ], + "prompt_number": 144 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.43, Page No 160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find number of binay pulse per word, Bit rate, Bandwidth\n", + "\n", + "#Variable Declaration\n", + "W=15 #khz\n", + "Nr = 2*W #Nyquist Rate\n", + "Q = 65.53\n", + "fs=44.1 # Sampling rate kHz\n", + "N=16\n", + "\n", + "#Calculation\n", + "Br= N*fs #Bit rate\n", + "Bw= 1.0/2*Br #Bandwidth\n", + "\n", + "#Result\n", + "print('i) Number of binay pulse per word = %.3f bits' %N)\n", + "print('ii) Bit rate = %.1f k bits/sec' %Br)\n", + "print('iii)Bandwidth= %.1f kHz' %Bw)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Number of binay pulse per word = 16.000 bits\n", + "ii) Bit rate = 705.6 k bits/sec\n", + "iii)Bandwidth= 352.8 kHz\n" + ] + } + ], + "prompt_number": 145 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.44, Page No 160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Number of binay pulse per word\n", + "\n", + "#Variable Declaration\n", + "W=3.3 #khz\n", + "fm = 1*10**3 #kHz\n", + "de = 250 #mV\n", + "fs=19.8 # Sampling rate kHz\n", + "\n", + "#Calculation\n", + "A=(de*fs)/(2*math.pi*fm)\n", + "\n", + "#Result\n", + "print('i) Number of binay pulse per word = %.3f' %A)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Number of binay pulse per word = 0.788\n" + ] + } + ], + "prompt_number": 146 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.45, Page No 160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find number of binay pulse per word, Signaling rate, Bandwidth\n", + "\n", + "#Variable Declaration\n", + "W=3.3 #khz\n", + "fm = 3300 #Hz\n", + "Snq = 40 #dB\n", + "fs= 8000 # Samples/sec\n", + "\n", + "#Calculation \n", + "N=math.ceil((Snq-4.8)/6) # Number of bits per word\n", + "Q=2**N #\n", + "r=N*fs #Signaling rate k bits/sec\n", + "Bw=1.0/2*r\n", + "\n", + "#Result\n", + "print('i) Number of bits per word = %.1f' %N)\n", + "print('ii) Signaling rate rate = %.1f k bits/sec' %(r/10**3))\n", + "print('iii)Bandwidth= %.1f kHz' %(Bw/10**3))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Number of bits per word = 6.0\n", + "ii) Signaling rate rate = 48.0 k bits/sec\n", + "iii)Bandwidth= 24.0 kHz\n" + ] + } + ], + "prompt_number": 147 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.46, Page No 161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find the maximun frequency with 1 volt amplitude\n", + "\n", + "#Variable Declaration\n", + "de=256*10**-3 #V\n", + "Ts = 10*10**-6 #kHz\n", + "fm = 10 #kHz\n", + "fs= 100 # kHz\n", + "A=1 #V\n", + "\n", + "#Calculation \n", + "wm=(de/A*Ts)*10**7\n", + "\n", + "#Result\n", + "print('i) maximun frequency = %.1f X 10^3 rad/sec' %wm)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) maximun frequency = 25.6 X 10^3 rad/sec\n" + ] + } + ], + "prompt_number": 148 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.47, Page No 162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find the Signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "Q=256 \n", + "m=255\n", + "\n", + "#Calculation \n", + "SNR=(3*Q**2)/(math.log((1+m),math.e))**2 #dB\n", + "Gc=m/(math.log(1+m)) #Companding gain\n", + "Gc=20*math.log(Gc,10)\n", + "\n", + "#Result\n", + "print('i) The Signal to noise ratio= %.1f dB' %SNR)\n", + "print('ii) The Companding gain = %.1f dB' %Gc)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) The Signal to noise ratio= 6394.0 dB\n", + "ii) The Companding gain = 33.3 dB\n" + ] + } + ], + "prompt_number": 149 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.48, Page No 162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find number of binay pulse per word, Signaling rate, Bandwidth\n", + "\n", + "#Variable Declaration\n", + "fm=15*10**3 #kHz\n", + "Q=200\n", + "fs=2*fm\n", + "\n", + "#Calculation \n", + "N=math.ceil(math.log(Q,2))\n", + "tr=N*fs #Transmission rate kbps\n", + "Bw=1.0/2*tr\n", + "\n", + "#Result\n", + "print('i) Number of bits per Samples = %.1f' %N)\n", + "print('ii) Signaling rate = %.1f k bits/sec' %(tr/10**3))\n", + "print('iii)Bandwidth= %.1f kHz' %(Bw/10**3))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Number of bits per Samples = 8.0\n", + "ii) Signaling rate = 240.0 k bits/sec\n", + "iii)Bandwidth= 120.0 kHz\n" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.49, Page No 162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find number of quantization level\n", + "\n", + "#Variable Declaration\n", + "tr=36.0 #kbps\n", + "fm=3.4 #kHz\n", + "fs=8\n", + "\n", + "#Calculation \n", + "N=math.ceil(tr/fs)\n", + "Q=2**N\n", + "\n", + "\n", + "#Result\n", + "print('i) number of quantization level = %.1f' %Q)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) number of quantization level = 32.0\n" + ] + } + ], + "prompt_number": 151 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.50, Page No 162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find delta modulation\n", + "\n", + "#Variable Declaration\n", + "A=1 #V\n", + "fm=3.4 #kHz\n", + "fs=20\n", + "\n", + "#Calculation \n", + "de=1*2*math.pi*(fm/fs)\n", + "\n", + "\n", + "#Result\n", + "print('i) delta modulation = %.2f V' %de)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) delta modulation = 1.07 V\n" + ] + } + ], + "prompt_number": 152 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.51, Page No 163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "W=3.5 #kHz\n", + "r=50.0 #kbps\n", + "Vpp=4 #V\n", + "fs=8\n", + "\n", + "#Calculation \n", + "N=r/fs\n", + "SNR=4.8+(6.8*N)\n", + "\n", + "#Result\n", + "print('i) Signal to noise ratio = %.2f V' %SNR)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Signal to noise ratio = 47.30 V\n" + ] + } + ], + "prompt_number": 153 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.52, Page No 163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#Find Signal to noise ratio\n", + "\n", + "#Variable Declaration\n", + "W=1 #MHz\n", + "fs1=3 #MHz\n", + "fs2=2.4 #MHz\n", + "Q=256\n", + "m=255\n", + "\n", + "#Calculation \n", + "SNR=((3*Q**2)/(math.log((1+m),math.e))**2)\n", + "SNR1=63095.73 #SNR=38+10\n", + "Q1=math.sqrt((SNR1*((math.log(256,math.e))**2))/3)\n", + "N1=math.ceil(math.log(Q1,2))\n", + "r=N1*fs2\n", + "Bw=1.0/2*r\n", + "\n", + "#Result\n", + "print('i) Number of bits/word = %.2f ' %N1)\n", + "print('ii) Bit rate = %.1f Mb/s' %r)\n", + "print('iii) Bandwidth = %.1f Mb/s' %Bw)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) Number of bits/word = 10.00 \n", + "ii) Bit rate = 24.0 Mb/s\n", + "iii) Bandwidth = 12.0 Mb/s\n" + ] + } + ], + "prompt_number": 154 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit