From 67068710030ddd6b6c809518c34af2e04e0bf7ca Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 16:05:18 +0530 Subject: add book --- Chemistry/Chapter_16.ipynb | 584 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 584 insertions(+) create mode 100755 Chemistry/Chapter_16.ipynb (limited to 'Chemistry/Chapter_16.ipynb') diff --git a/Chemistry/Chapter_16.ipynb b/Chemistry/Chapter_16.ipynb new file mode 100755 index 00000000..96bc5bbb --- /dev/null +++ b/Chemistry/Chapter_16.ipynb @@ -0,0 +1,584 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 16:Acid-Base Equilibria and Solubility Equilibria" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.1,Page no:715" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "InitCH3COOH1=0.2 #Initial concentration of CH3COOH solution, M\n", + "#Let 'x' be the equilibrium concentration of the [H+] and [CH3COO-] ions after dissociation of [CH3COOH], M\n", + "Ka=1.8*10**-5 #equilibrium constant of acid, M\n", + "InitCH3COONa=0.3 #Initial concentration of CH3COONa solution and is equal to conc of Na+ and CH3COO- as it completely dissociates, M\n", + "InitCH3COOH2=0.2 #Initial concentration of CH3COOH solution, M\n", + "\n", + "#Calculation\n", + "#(a)\n", + "import math\n", + "x1=math.sqrt(Ka*InitCH3COOH1) #from the definition of ionisation constant Ka=[H+]*[CH3COO-]/[CH3COOH]=x*x/(0.2-x), which reduces to x*x/0.2, as x<<0.2 (approximation)\n", + "pH1=-math.log10(x1) #since x is the conc. of [H+] ions\n", + "\n", + "#(b)\n", + "#Let 'x' be the equilibrium concentration of the [H+] and hence conc of [CH3COO-] ions is '0.3 + x', M\n", + "x2=Ka*InitCH3COOH2/InitCH3COONa #from the definition of ionisation constant Ka=[H+]*[CH3COO-]/[CH3COOH]=x*(0.3+x)/(0.2-x), which reduces to x*0.3/0.2(approximation)\n", + "pH2=-math.log10(x2) #since x is the conc. of [H+] ions\n", + "\n", + "#Result\n", + "print\"(a) the pH of CH3COOH solution is \",round(pH1,2)\n", + "print\"(b) the pH of CH3COOH and CH3COONa solution is :\",round(pH2,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) the pH of CH3COOH solution is 2.72\n", + "(b) the pH of CH3COOH and CH3COONa solution is : 4.92\n" + ] + } + ], + "prompt_number": 92 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.3,Page no:719" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Ka=1.8*10**-5 #ionisation constant of acid\n", + "InitCH3COONa=1 #Initial concentration of CH3COONa solution and is equal to conc of Na+ and CH3COO- as it completely dissociates, M\n", + "InitCH3COOH=1 #Initial concentration of CH3COOH solution, M\n", + "HCl=0.1 #moles of HCl added to 1L solution\n", + "\n", + "#Calculation\n", + "import math\n", + "#(a)\n", + "x=Ka*InitCH3COOH/InitCH3COONa #from the definition of ionisation constant Ka=[H+]*[CH3COO-]/[CH3COOH]=x*(1+x)/(1-x), which reduces to x(approximation)\n", + "pH=-math.log10(x) #since x is the conc. of [H+] ions\n", + "#(b)\n", + "CH3COO=InitCH3COONa-HCl #conc of CH3COO- ions, M\n", + "CH3COOH=InitCH3COOH+HCl #conc of CH3COOH, M\n", + "x2=Ka*CH3COOH/CH3COO #from the definition of ionisation constant Ka=[H+]*[CH3COO-]/[CH3COOH]=x*(0.9+x)/(1.1-x), which reduces to x*0.9/1.1(approximation)\n", + "pH2=-math.log10(x2) #since x is the conc. of [H+] ions\n", + "\n", + "#Result\n", + "print\"(a) the pH of CH3COOH and CH3COONa solution is :\",round(pH,2)\n", + "print\"(b) the pH of solution after adding HCl is :\",round(pH2,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) the pH of CH3COOH and CH3COONa solution is : 4.74\n", + "(b) the pH of solution after adding HCl is : 4.66\n" + ] + } + ], + "prompt_number": 93 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.5,Page no:728" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "InitCH3COOH=0.1 #Initial concentration of CH3COOH solution, M\n", + "VCH3COOH=25 #volumeof CH3COOH, mL\n", + "nCH3COOH=InitCH3COOH*VCH3COOH/1000 \n", + "Ka=1.8*10**-5 #equilibrium constant of acid, M\n", + "Kb=5.6*10**-10 #equilibrium constant of base, M\n", + "N=0.1 #Initial concentration of NaOH solution, M\n", + "V=10 #Initial volume of NaOH solution, mL\n", + "\n", + "\n", + "#Calculation\n", + "#(a)\n", + "n=N*V/1000 #Initial moles of NaOH solution\n", + "import math\n", + "nCH3COOH_tit=nCH3COOH-n #moles of CH3COOH after titration\n", + "nCH3COO=n #moles of CH3COO after titration\n", + "H=nCH3COOH_tit*Ka/nCH3COO #conc of H+ ions, M\n", + "pH=-math.log10(H) #since H is the conc. of [H+] ions\n", + "\n", + "#Result\n", + "print\"(a) the pH of the solution is :\",round(pH,2)\n", + "\n", + "\n", + "#Calculation\n", + "#(b)\n", + "V2=25.0 #Initial volume of NaOH solution, mL\n", + "n2=N*V2/1000.0 #Initial moles of NaOH solution\n", + "nCH3COOH_tit2=nCH3COOH-n2 #moles of CH3COOH after titration\n", + "nCH3COO2=n2 #moles of CH3COO- ions after titration\n", + "V_total=V2+VCH3COOH #total volume after titration\n", + "CH3COO=nCH3COO2/V_total*1000 #conc of CH3COO- ions, M\n", + "x=math.sqrt(Kb*CH3COO) #from the definition of ionisation constant Kb=[OH-]*[CH3COOH]/[CH3COO-]=x*x/(0.05-x), which reduces to x*x/0.05, as x<<0.05 (approximation)\n", + "pOH=-math.log10(x) #since x is the conc. of [OH-] ions\n", + "pH2=14.0-pOH \n", + "\n", + "#Result\n", + "print\"(b) the pH of the solution is :\",round(pH2,2)\n", + "\n", + "#Calculation\n", + "#(c)\n", + "N=0.1 #Initial concentration of NaOH solution, M\n", + "V=35 #Initial volume of NaOH solution, mL\n", + "n=N*V/1000 #Initial moles of NaOH solution\n", + "n_tit=n-nCH3COOH #moles of NaOH after titration\n", + "nCH3COO=nCH3COOH #moles of CH3COO- ions after titration\n", + "V_total=V+VCH3COOH #total volume\n", + "OH=n_tit/V_total*1000 #conc of OH- ions, M\n", + "pOH=-math.log10(OH) #since OH is the conc. of [OH-] ions\n", + "pH=14-pOH \n", + "\n", + "#Result\n", + "print\"(c) the pH of the solution is :\",round(pH,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) the pH of the solution is : 4.57\n", + "(b) the pH of the solution is : 8.72\n", + "(c) the pH of the solution is : 12.22\n" + ] + } + ], + "prompt_number": 94 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.6,Page no:730" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "InitNH3=0.1 #Initial concentration of NH3 solution, M\n", + "VNH3=25 #volume of NH3, mL\n", + "nNH3=InitNH3*VNH3/1000 \n", + "Ka=5.6*10**-10 #equilibrium constant of acid, M\n", + "N=0.1 #Initial concentration, M\n", + "\n", + "#Calculation\n", + "import math\n", + "V=VNH3/InitNH3*N #Initial volume, mL\n", + "V_total=V+VNH3 #total volume of the mixture, mL\n", + "n_NH4Cl=nNH3 #moles of NH4Cl\n", + "NH4Cl=n_NH4Cl/V_total*1000 #conc of NH4+ ions formed, M\n", + "x=math.sqrt(Ka*NH4Cl) #from the definition of ionisation constant Ka=[H+]*[NH3]/[NH4+]=x*x/(NH4+-x), which reduces to x*x/NH4+, as x<Ksp): #determination of precipitation\n", + " print\"Q>Ksp, The solution is supersaturated and hence a precipitate will form\"\n", + "else: \n", + " print\"QKsp, The solution is supersaturated and hence a precipitate will form\n" + ] + } + ], + "prompt_number": 99 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.11,Page no:743" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "Br=0.02 #conc of Ag+ ions, M\n", + "Ksp1=7.7*10**-13 #solubility product of AgBr\n", + "Ksp2=1.6*10**-10 #solubility product of AgCl\n", + "Cl=0.02 #conc of Cl- ions, M\n", + "\n", + "#Calculation\n", + "#for Br\n", + "Ag1=Ksp1/Br #conc of Ag+ ions at saturated state, M\n", + "#for Cl\n", + "Ag2=Ksp2/Cl #conc of Ag+ ions at saturated state, M\n", + "\n", + "#Result\n", + "print \"[Ag+]=\",Ag2,\"M\"\n", + "print\"To precipitate Br- without precipitating Cl- the concentration of Ag must be greater than %.1e\"%Ag1,\"M but less than\",Ag2,\"M\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "[Ag+]= 8e-09 M\n", + "To precipitate Br- without precipitating Cl- the concentration of Ag must be greater than 3.9e-11 M but less than 8e-09 M\n" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.12,Page no: 745" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "N_AgNO3=6.5*10**-3 #normality of AgNO3, M\n", + "AgCl=143.4 #mol mass of AgCl, g\n", + "Ksp=1.6*10**-10 #solubility product of AgCl\n", + "\n", + "#Calculation\n", + "Ag=N_AgNO3 #conc of Ag+ ions as 's' is negligible, M\n", + "s=Ksp/Ag #as Ksp=[Ag+][Cl-], molar solubility of AgCl, M\n", + "solubility=s*AgCl #solubility of AgCl in AgBr solution, g/L\n", + "\n", + "#Result\n", + "print\"The solubility of AgCl in AgBr solution is :%.2e\"%solubility,\"g/L\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The solubility of AgCl in AgBr solution is :3.53e-06 g/L\n" + ] + } + ], + "prompt_number": 101 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.14,Page no:748" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "FeCl2=0.003 #normality of FeCl2, M\n", + "Fe=FeCl2 #as Fe2+ is strong electrolyte, conc of Fe2+=conc of FeCl2, M\n", + "Ksp=1.6*10**-14 #solubility product of FeCl2\n", + "Kb=1.8*10**-5 #ionisation constant of base\n", + "\n", + "#Calculation\n", + "import math\n", + "OH=math.sqrt(Ksp/Fe) #as Ksp=[Fe2+][OH-]**2, conc of OH- ions, M\n", + "x=(OH**2)/Kb+OH #as Kb=[NH4+][OH-]/[NH3]\n", + "\n", + "#Result\n", + "print\"To initiate precipitation the conc of NH3 must be slightly greater than :%.1e\"%x,\"M\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "To initiate precipitation the conc of NH3 must be slightly greater than :2.6e-06 M\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.15,Page no:750" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "CuSO4=0.2 #normality of CuSO4, M\n", + "NH3=1.2 #initial conc of NH3, M\n", + "VNH3=1 #volume of NH3, L\n", + "Kf=5*10**13 #formation constant\n", + "\n", + "#Calculation\n", + "CuNH34=CuSO4 #conc of Cu(NH3)4 2+, M\n", + "NH3=NH3-4*CuNH34 #conc of NH3 after formation of complex, as 4 moles of NH3 react to form 1 mole complex, M\n", + "x=CuNH34/(NH3**4*Kf) #as Kf=[Cu(SO4)3 2+]/[Cu2+][NH3]**4\n", + "\n", + "#Result\n", + "print\"The conc of Cu2+ ions in equilibrium is :%.1e\"%x,\"M\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The conc of Cu2+ ions in equilibrium is :1.6e-13 M\n" + ] + } + ], + "prompt_number": 103 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:16.16,Page no:751" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "InitNH3=1 #initial conc of NH3, M\n", + "Ksp=1.6*10**-10 #solubility product of AgCl\n", + "Kf=1.5*10**7 #formation constant of complex\n", + "\n", + "#Calculation\n", + "K=Ksp*Kf #overall equilibrium constant\n", + "import math\n", + "s=math.sqrt(K)/(1+2*InitNH3*math.sqrt(K)) #molar solubility of AgCl, M\n", + "\n", + "#Result\n", + "print\"Amount of AgCl which can be dissolved in 1 L of 1 M NH3 sol in equilibrium is :\",round(s,3),\"M\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Amount of AgCl which can be dissolved in 1 L of 1 M NH3 sol in equilibrium is : 0.045 M\n" + ] + } + ], + "prompt_number": 91 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit