From 206d0358703aa05d5d7315900fe1d054c2817ddc Mon Sep 17 00:00:00 2001 From: Jovina Dsouza Date: Wed, 18 Jun 2014 12:43:07 +0530 Subject: adding book --- .../ch21.ipynb | 246 +++++++++++++++++++++ 1 file changed, 246 insertions(+) create mode 100644 Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb (limited to 'Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb') diff --git a/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb b/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb new file mode 100644 index 00000000..741dcc7d --- /dev/null +++ b/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb @@ -0,0 +1,246 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 21 : Energy Terminology Concepts and Units" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 21.1 Page no : 616" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Calculation of Mechanical work by a gas on a piston showing how the path affects the value of the work\n", + "\n", + "from scipy.integrate import quad\n", + "\n", + "# Variables\n", + "V1 = 0.1 ;\t\t\t# Volume of gas initially -[cubic metres]\n", + "V2 = 0.2 ;\t\t\t# Volume of gas finally -[cubic metres]\n", + "T1 = 300 ;\t\t\t# Temperature of gas initially -[K]\n", + "P1 = 200 ;\t\t\t# Pressure of gas finally -[kPa]\n", + "R = 8.314 ;\t\t\t# Universal gas constant \n", + "n = (P1*V1)/(T1*R) ;\t\t\t# Moles of gas taken-[kg mol]\n", + "#You are asked to calculate work by eqn. 21.1 , but you do not know the F(force) exerted by gas , so write F = P.A, multiply divide A and eqn 21.1 reduces to W= integate(P.dv)\n", + "\n", + "# Calculations and Results\n", + "# Isobaric process see fig E21.1b to see the path followed\n", + "def f(V):\n", + " return -(P1)\n", + "W= quad(f,V1,V2)[0] ;\t\t\t# Work done by gas on piston -[kJ]\n", + "print ' (a)Work done by gas on piston for isobaric process is %.0f kJ . ',W\n", + "\n", + "def f1(V):\n", + " return -(T1*R*n/V)\n", + "W= quad(f1,V1,V2)[0] ;\t\t\t# Work done by gas on piston -[kJ]\n", + "print '(b)Work done by gas on piston for isothermal process is %.2f kJ . ',W\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " (a)Work done by gas on piston for isobaric process is %.0f kJ . -20.0\n", + "(b)Work done by gas on piston for isothermal process is %.2f kJ . -13.8629436112\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 21.2 page no. 624\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Calculation of Specific Kinetic energy for a Flowing fluid\n", + "\n", + "# Variables\n", + "id_ = 3. ;\t\t\t# Internal diameter of tube-[cm]\n", + "Vf = 0.001 ;\t\t\t# Volume flow rate of water in tube-[cubic meter/s]\n", + "rho = 1000. ;\t\t\t# Assumed density of water-[kg/cubic meter] \n", + "\n", + "# Calculations\n", + "rad = id_/2. ;\t\t\t# Radius of tube -[ cm]\n", + "a = 3.14*rad**2 ;\t\t\t# Area of flow of tube -[squqre centimeter]\n", + "v = Vf*(100)**2/a ;\t\t\t# Velocity of water in tube - [m/s]\n", + "KE = v**2/2. ;\t\t\t# Specific(mass=1kg) kinetic energy of water in tube -[J/kg]\n", + "\n", + "# Results\n", + "print 'Specific kinetic energy of water in tube is %.2f J/kg . '%KE\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Specific kinetic energy of water in tube is 1.00 J/kg . \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + " Example 21.3 page no. 626\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Calculation of potential Energy change of water\n", + "\n", + "# Variables\n", + "# Let water level in first reservoir be the reference plane\n", + "h = 40. ;\t\t\t# Difference of water-[ft]\n", + "g = 32.2 ;\t\t\t# acceleration due to gravity-[ft/square second]\n", + "\n", + "# Calculations\n", + "PE=g*h/(32.2*778.2) ;\t\t\t#\t\t\t# Specific(mass=1kg) potential energy of water -[Btu/lbm]\n", + "\n", + "# Results\n", + "print 'Specific potential energy of water is %.4f Btu/lbm . '%PE\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Specific potential energy of water is 0.0514 Btu/lbm . \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 21.4 page no : 629" + ] + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "# Calculation of an internal energy change using the heat capacity\n", + "\n", + "# Variables\n", + "#Constant volume process \n", + "mol_air = 10. ;\t\t\t# Moles of air-[kg mol]\n", + "T1 = 60.+273 ;\t\t\t# Initial temperature of air-[K]\n", + "T2 = 30.+273 ;\t\t\t# final temperature of air-[K]\n", + "# Additional data needed\n", + "Cv = 2.1*10.**4 ; \t\t\t# Specific heat capacity of air at constant volume-[J/(kg mol*C)]\n", + "\n", + "# Calculations\n", + "def f(T):\n", + " return mol_air*Cv\n", + "del_U = quad(f,T1,T2)[0] ;\t\t\t#Change in internal energy-[J]\n", + "\n", + "# Results\n", + "print 'Change in internal energy is %.1e J . '%del_U\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Change in internal energy is -6.3e+06 J . \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 21.7 page no : 633" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Calculation of Enthalpy change\n", + "\n", + "# Variables\n", + "#Constant pressure process \n", + "mol_air = 10. ;\t\t\t# Moles of air-[kg mol]\n", + "T1 = 60+273 ;\t\t\t# Initial temperature of air-[K]\n", + "T2 = 30+273 ;\t\t\t# final temperature of air-[K]\n", + "\n", + "# Calculations\n", + "# Additional data needed\n", + "Cp = 2.9*10**4 ;\t\t\t# Specific heat capacity of air at constant pressure-[J/(kg mol*C)]\n", + "# Use eqn. 21.11 for del_H\n", + "def f(T):\n", + " return mol_air*Cp\n", + "\n", + "del_H = quad(f,T1,T2)[0] ;\t\t\t#Change in enthalpy-[J]\n", + "print 'Change in enthalpy is %.1e J . '%del_H\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Change in enthalpy is -8.7e+06 J . \n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit