From 206d0358703aa05d5d7315900fe1d054c2817ddc Mon Sep 17 00:00:00 2001
From: Jovina Dsouza
Date: Wed, 18 Jun 2014 12:43:07 +0530
Subject: adding book

---
 .../ch21.ipynb                                     | 246 +++++++++++++++++++++
 1 file changed, 246 insertions(+)
 create mode 100644 Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb

(limited to 'Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb')

diff --git a/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb b/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb
new file mode 100644
index 00000000..741dcc7d
--- /dev/null
+++ b/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch21.ipynb
@@ -0,0 +1,246 @@
+{
+ "metadata": {
+  "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+  {
+   "cells": [
+    {
+     "cell_type": "heading",
+     "level": 1,
+     "metadata": {},
+     "source": [
+      "Chapter 21 : Energy Terminology Concepts and Units"
+     ]
+    },
+    {
+     "cell_type": "heading",
+     "level": 3,
+     "metadata": {},
+     "source": [
+      "Example 21.1 Page no : 616"
+     ]
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "# Calculation of Mechanical work by a gas on a piston showing how the path affects the value of the work\n",
+      "\n",
+      "from scipy.integrate import quad\n",
+      "\n",
+      "# Variables\n",
+      "V1 = 0.1 ;\t\t\t# Volume of gas initially -[cubic metres]\n",
+      "V2 = 0.2 ;\t\t\t# Volume of gas finally -[cubic metres]\n",
+      "T1 = 300 ;\t\t\t# Temperature of gas initially -[K]\n",
+      "P1 = 200 ;\t\t\t# Pressure of gas finally -[kPa]\n",
+      "R = 8.314 ;\t\t\t# Universal gas constant \n",
+      "n = (P1*V1)/(T1*R) ;\t\t\t# Moles of gas taken-[kg mol]\n",
+      "#You are asked to calculate work by eqn. 21.1 , but you do not know the F(force) exerted by gas , so write F = P.A, multiply divide A and eqn 21.1 reduces to W= integate(P.dv)\n",
+      "\n",
+      "# Calculations and Results\n",
+      "# Isobaric process see fig E21.1b to see the path followed\n",
+      "def f(V):\n",
+      "    return -(P1)\n",
+      "W= quad(f,V1,V2)[0] ;\t\t\t# Work done by gas on piston -[kJ]\n",
+      "print ' (a)Work done by gas on piston for isobaric process is %.0f kJ . ',W\n",
+      "\n",
+      "def f1(V):\n",
+      "    return -(T1*R*n/V)\n",
+      "W= quad(f1,V1,V2)[0] ;\t\t\t# Work done by gas on piston -[kJ]\n",
+      "print '(b)Work done by gas on piston for isothermal process is %.2f kJ . ',W\n"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        " (a)Work done by gas on piston for isobaric process is %.0f kJ .  -20.0\n",
+        "(b)Work done by gas on piston for isothermal process is %.2f kJ .  -13.8629436112\n"
+       ]
+      }
+     ],
+     "prompt_number": 1
+    },
+    {
+     "cell_type": "heading",
+     "level": 3,
+     "metadata": {},
+     "source": [
+      "Example 21.2  page no. 624\n"
+     ]
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "# Calculation of Specific Kinetic energy for a Flowing fluid\n",
+      "\n",
+      "# Variables\n",
+      "id_ = 3. ;\t\t\t# Internal diameter of tube-[cm]\n",
+      "Vf = 0.001 ;\t\t\t# Volume flow rate of water in tube-[cubic meter/s]\n",
+      "rho = 1000. ;\t\t\t# Assumed density of water-[kg/cubic meter] \n",
+      "\n",
+      "# Calculations\n",
+      "rad = id_/2. ;\t\t\t# Radius of tube -[ cm]\n",
+      "a = 3.14*rad**2 ;\t\t\t# Area of flow of tube -[squqre centimeter]\n",
+      "v = Vf*(100)**2/a ;\t\t\t# Velocity of water in tube - [m/s]\n",
+      "KE = v**2/2. ;\t\t\t# Specific(mass=1kg) kinetic energy of water in tube -[J/kg]\n",
+      "\n",
+      "# Results\n",
+      "print 'Specific kinetic energy of water in tube is %.2f J/kg . '%KE\n"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Specific kinetic energy of water in tube is 1.00 J/kg . \n"
+       ]
+      }
+     ],
+     "prompt_number": 2
+    },
+    {
+     "cell_type": "heading",
+     "level": 3,
+     "metadata": {},
+     "source": [
+      " Example 21.3  page no. 626\n"
+     ]
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "# Calculation of potential Energy change of water\n",
+      "\n",
+      "# Variables\n",
+      "# Let water level in first reservoir be the reference plane\n",
+      "h = 40. ;\t\t\t# Difference of water-[ft]\n",
+      "g = 32.2 ;\t\t\t# acceleration due to gravity-[ft/square second]\n",
+      "\n",
+      "# Calculations\n",
+      "PE=g*h/(32.2*778.2) ;\t\t\t#\t\t\t# Specific(mass=1kg) potential energy of water -[Btu/lbm]\n",
+      "\n",
+      "# Results\n",
+      "print 'Specific potential energy of water is %.4f Btu/lbm . '%PE\n"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Specific potential energy of water is 0.0514 Btu/lbm . \n"
+       ]
+      }
+     ],
+     "prompt_number": 3
+    },
+    {
+     "cell_type": "heading",
+     "level": 3,
+     "metadata": {},
+     "source": [
+      "Example 21.4 page no : 629"
+     ]
+    },
+    {
+     "cell_type": "code",
+     "collapsed": true,
+     "input": [
+      "# Calculation of an internal energy change using the heat capacity\n",
+      "\n",
+      "# Variables\n",
+      "#Constant volume process \n",
+      "mol_air = 10. ;\t\t\t# Moles of air-[kg mol]\n",
+      "T1 = 60.+273 ;\t\t\t# Initial temperature of air-[K]\n",
+      "T2 = 30.+273 ;\t\t\t# final temperature of air-[K]\n",
+      "# Additional data needed\n",
+      "Cv = 2.1*10.**4 ; \t\t\t# Specific heat capacity of air at constant volume-[J/(kg mol*C)]\n",
+      "\n",
+      "# Calculations\n",
+      "def f(T):\n",
+      "    return mol_air*Cv\n",
+      "del_U = quad(f,T1,T2)[0] ;\t\t\t#Change in internal energy-[J]\n",
+      "\n",
+      "# Results\n",
+      "print 'Change in internal energy is %.1e J . '%del_U\n"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Change in internal energy is -6.3e+06 J . \n"
+       ]
+      }
+     ],
+     "prompt_number": 4
+    },
+    {
+     "cell_type": "heading",
+     "level": 3,
+     "metadata": {},
+     "source": [
+      "Example 21.7 page no : 633"
+     ]
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "# Calculation of Enthalpy change\n",
+      "\n",
+      "# Variables\n",
+      "#Constant pressure process \n",
+      "mol_air = 10. ;\t\t\t# Moles of air-[kg mol]\n",
+      "T1 = 60+273 ;\t\t\t# Initial temperature of air-[K]\n",
+      "T2 = 30+273 ;\t\t\t# final temperature of air-[K]\n",
+      "\n",
+      "# Calculations\n",
+      "# Additional data needed\n",
+      "Cp = 2.9*10**4  ;\t\t\t# Specific heat capacity of air at constant pressure-[J/(kg mol*C)]\n",
+      "# Use eqn. 21.11 for del_H\n",
+      "def f(T):\n",
+      "    return mol_air*Cp\n",
+      "\n",
+      "del_H = quad(f,T1,T2)[0] ;\t\t\t#Change in enthalpy-[J]\n",
+      "print 'Change in enthalpy is %.1e J . '%del_H\n"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Change in enthalpy is -8.7e+06 J . \n"
+       ]
+      }
+     ],
+     "prompt_number": 5
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [],
+     "language": "python",
+     "metadata": {},
+     "outputs": []
+    }
+   ],
+   "metadata": {}
+  }
+ ]
+}
\ No newline at end of file
-- 
cgit