From fba055ce5aa0955e22bac2413c33493b10ae6532 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 5 May 2015 14:21:39 +0530 Subject: add books --- Applied_Physics/Chapter_10_Superconductivity.ipynb | 316 +++++++++++++++++++++ 1 file changed, 316 insertions(+) create mode 100755 Applied_Physics/Chapter_10_Superconductivity.ipynb (limited to 'Applied_Physics/Chapter_10_Superconductivity.ipynb') diff --git a/Applied_Physics/Chapter_10_Superconductivity.ipynb b/Applied_Physics/Chapter_10_Superconductivity.ipynb new file mode 100755 index 00000000..7b7470a8 --- /dev/null +++ b/Applied_Physics/Chapter_10_Superconductivity.ipynb @@ -0,0 +1,316 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:03ee5374207ea96e9a4f31e16f771d187a11f07daf287d94fc54e352b5db8bff" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10:Superconductivity" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.1 , Page no:313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "Tc=7.2; #in K (critical temperature)\n", + "T=5; #in K (given temperature)\n", + "H0=6.5E3; #in A/m (critical magnetic field at 0K)\n", + "\n", + "#calculate\n", + "Hc=H0*(1-(T/Tc)**2); #calculation of magnitude of critical magnetic field\n", + "\n", + "#result\n", + "print\"The magnitude of critical magnetic field is Hc=\",round(Hc,2),\"A/m\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnitude of critical magnetic field is Hc= 3365.35 A/m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.2 , Page no:313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "r=0.02; #in m (radius of ring)\n", + "Hc=2E3; #in A/m (critical magnetic field at 5K)\n", + "pi=3.14; #value of pi used in the solutiion\n", + "\n", + "#calculate\n", + "Ic=2*pi*r*Hc; #calculation of critical current value\n", + "\n", + "#result\n", + "print\"The critical current value is Ic=\",Ic,\"A\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The critical current value is Ic= 251.2 A\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.3 , Page no:313" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "M1=199.5; #in amu (isotropic mass at 5K)\n", + "T1=5; #in K (first critical temperature)\n", + "T2=5.1; #in K (second critical temperature)\n", + "#calculate\n", + "#since Tc=C*(1/sqrt(M)\n", + "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n", + "#therefore we have M2=(T1/T2)^2*M1\n", + "M2=(T1/T2)**2*M1; #calculation of isotropic mass at 5.1K\n", + "\n", + "#result\n", + "print\"The isotropic mass at 5.1K is M2=\",round(M2,3),\"a.m.u.\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The isotropic mass at 5.1K is M2= 191.753 a.m.u.\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.4 , Page no:314" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "T=6; #in K (given temperature)\n", + "Hc=5E3; #in A/m (critical magnetic field at 5K)\n", + "H0=2E4; #in A/m (critical magnetic field at 0K)\n", + "\n", + "#calculate\n", + "#since Hc=H0*(1-(T/Tc)^2)\n", + "#therefor we have Tc=T/sqrt(1-(Hc/H)^2)\n", + "Tc=T/math.sqrt(1-(Hc/H0)); #calculation of transition temperature\n", + "\n", + "#result\n", + "print\"The transition temperature is Tc=\",round(Tc,3),\"K\";\n", + "print \"NOTE: The answer in the textbook is wrong\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The transition temperature is Tc= 6.928 K\n", + "NOTE: The answer in the textbook is wrong\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.5 , Page no:314" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "T=5; #in K (given temperature)\n", + "d=3; #in mm (diameter of the wire)\n", + "Tc=8; #in K (critical temperature for Pb)\n", + "H0=5E4; #in A/m (critical magnetic field at 0K)\n", + "pi=3.14; #value of pi used in the solution\n", + "\n", + "#calculate\n", + "Hc=H0*(1-(T/Tc)**2); #calculation of critical magnetic field at 5K\n", + "r=(d*1E-3)/2; #calculation of radius in m\n", + "Ic=2*pi*r*Hc; #calculation of critical current at 5K\n", + "\n", + "#result\n", + "print\"The critical magnetic field at 5K is Hc=\",Hc,\"A/m\";\n", + "print\"The critical current at 5K is Ic=\",Ic,\"A\";\n", + "print \" (roundoff error)\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The critical magnetic field at 5K is Hc= 30468.75 A/m\n", + "The critical current at 5K is Ic= 287.015625 A\n", + " (roundoff error)\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.6 , Page no:314" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "V=8.50; #in micro V (voltage across Josephson junction )\n", + "e=1.6E-19; #in C (charge of electron)\n", + "h=6.626E-34; #in J/s (Planck\u2019s constant)\n", + "\n", + "#calculate\n", + "V=V*1E-6; #changing unit from V to microVolt\n", + "v1=2*e*V/h; #calculation of frequency of EM waves\n", + "\n", + "#result\n", + "print\"The frequency of EM waves is v=\",v1,\"Hz\";\n", + "print \"NOTE: The answer in the textbook is wrong\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The frequency of EM waves is v= 4105040748.57 Hz\n", + "NOTE: The answer in the textbook is wrong\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.7 , Page no:315" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "M1=200.59; #in amu (average atomic mass at 4.153K)\n", + "Tc1=4.153; #in K (first critical temperature)\n", + "M2=204; #in amu (average atomic mass of isotopes)\n", + "\n", + "#calculate\n", + "#since Tc=C*(1/sqrt(M)\n", + "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n", + "#therefore we have Tc2=Tc1*sqrt(M1/M2)\n", + "Tc2=Tc1*math.sqrt(M1/M2); #calculation of transition temperature of the isotopes\n", + "\n", + "#result\n", + "print\"The transition temperature of the isotopes is Tc2=\",round(Tc2,3),\"K\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The transition temperature of the isotopes is Tc2= 4.118 K\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit