From fba055ce5aa0955e22bac2413c33493b10ae6532 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 5 May 2015 14:21:39 +0530 Subject: add books --- .../Chapter_08_Magnetic_Properties.ipynb | 323 +++++++++++++++++++++ 1 file changed, 323 insertions(+) create mode 100755 Applied_Physics/Chapter_08_Magnetic_Properties.ipynb (limited to 'Applied_Physics/Chapter_08_Magnetic_Properties.ipynb') diff --git a/Applied_Physics/Chapter_08_Magnetic_Properties.ipynb b/Applied_Physics/Chapter_08_Magnetic_Properties.ipynb new file mode 100755 index 00000000..353fc099 --- /dev/null +++ b/Applied_Physics/Chapter_08_Magnetic_Properties.ipynb @@ -0,0 +1,323 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:aecad4e644a378cab0352aa29e9045a53c52646739e4f4bd6cdff80f1d0741e6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8:Magnetic Properties" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1 , Page no:236" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "X=-0.5E-5; #magnetic susceptibility of silicon\n", + "H=0.9E4; #in A/m (magnetic field intensity)\n", + "mu0=4*3.14*1E-7; #in H/m (absolute permeability)\n", + "\n", + "#calculate\n", + "I=X*H; #calculation of intensity of magnetism\n", + "B=mu0*H*(1+X); #calculation of magnetic flux density\n", + "\n", + "#result\n", + "print\"The intensity of magnetism is I=\",I,\"A/m\";\n", + "print\"The magnetic flux density is B=\",round(B,3),\"Wb/m^2\";\n", + "print \"NOTE: The answer in the textbook is wrong\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The intensity of magnetism is I= -0.045 A/m\n", + "The magnetic flux density is B= 0.011 Wb/m^2\n", + "NOTE: The answer in the textbook is wrong\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2 , Page no:236" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "r=0.052; #in nm (radius of orbit)\n", + "B=1; #in Wb/m^2 (magnetic field of induction)\n", + "e=1.6E-19; #in C (charge of electron)\n", + "m=9.1E-31; #in Kg (mass of electron)\n", + "\n", + "#calculate\n", + "r=0.052*1E-9; #changing unit from nm to m\n", + "d_mu=(e**2*r**2*B)/(4*m); #calculation of change in magnetic moment\n", + "\n", + "#result\n", + "print\"The change in magnetic moment is =\",d_mu,\"Am^2\";\n", + "print \"NOTE: The answer in the textbook is wrong\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The change in magnetic moment is = 1.90171428571e-29 Am^2\n", + "NOTE: The answer in the textbook is wrong\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3 , Page no:236" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "H=220; #in A/m (magnetic field intensity)\n", + "I=3300; #in A/m (intensity of magnetisation)\n", + "\n", + "#calculate\n", + "mu_r=1+(I/H); #calculation of relative permeability\n", + "\n", + "#result\n", + "print\"The relative permeability of a ferromagentic material is =\",mu_r;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The relative permeability of a ferromagentic material is = 16.0\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4 , Page no:236" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "I=3000; #in A/m (intensity of magnetisation)\n", + "B=0.005; #in Wb/m^2 (magnetic flus intensity)\n", + "pi=3.14; #value of pi used in the solution\n", + "mu0=4*pi*1E-7; #in H/m (absolute permeability)\n", + "\n", + "#calculate\n", + "H=(B/mu0)-I; #calculation of magnetic force\n", + "mu_r=(I/H)+1; #calculation of relative permeability\n", + "\n", + "#result\n", + "print\"The magnetic force is H=\",H;\n", + "print\"The relative permeability is =\",mu_r;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic force is H= 980.891719745\n", + "The relative permeability is = 4.05844155844\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.5 , Page no:237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "H=4E3; #in A/m (magnetic field intensity)\n", + "N=60; #number of turns\n", + "l=12; #in cm (length of solenoid)\n", + "\n", + "#calculate\n", + "n=N/(l*1E-2); #calculation of number of turns per unit metre\n", + "#Snice H=n*i;\n", + "i=H/n; #calculation of current through the solenoid\n", + "\n", + "#result\n", + "print\"The current through the solenoid is i=\",i,\"A\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current through the solenoid is i= 8.0 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.6 , Page no:237" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "l=30; #in cm (length of solenoid)\n", + "A=1; #in cm^2 (cross-sectional area)\n", + "N=300; #number of turns\n", + "i=0.032; #in A (current through the winding)\n", + "phi_B=2E-6; #in Wb (magnetic flux)\n", + "pi=3.14; #value of pi used in the solution\n", + "mu0=4*pi*1E-7; #in H/m (absolute permeability)\n", + "\n", + "#calculate\n", + "l=l*1E-2; #changing unit from cm to m\n", + "A=A*1E-4; #changing unit from cm^2 to m^2\n", + "B=phi_B/A; #calculation of flux density\n", + "H=N*i/l; #calculation of magnetic intensity\n", + "mu=B/H; #calcluation of absolute permeability of iron\n", + "mu_r=mu/mu0; #calcluation of relative permeability of iron\n", + "\n", + "#result\n", + "print\"The flux density is B=\",B,\"Wb/m^2\";\n", + "print\"The magnetic intensity is H=\",H,\"A-turns/m\";\n", + "print\"The relative permeability of iron is =\",round(mu_r),\" (roundoff error)\";\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The flux density is B= 0.02 Wb/m^2\n", + "The magnetic intensity is H= 32.0 A-turns/m\n", + "The relative permeability of iron is = 498.0 (roundoff error)\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.7 , Page no:238" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#given\n", + "A=100; #in m^2 (area of Hysteresis loop)\n", + "B=0.01; #in Wb/m^2 (unit space along vertical axis or magnetic flux density)\n", + "H=40; #in A/m (unit space along horizontal axis or magnetic fild ntensity)\n", + "\n", + "#calculate\n", + "H_L=A*B*H; #calculation of magnetic intensity\n", + "\n", + "#result\n", + "print\"The Hystersis loss per cycle is =\",round(H_L),\"J/m^2\";" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Hystersis loss per cycle is = 40.0 J/m^2\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit