From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb | 539 --------------------- 1 file changed, 539 deletions(-) delete mode 100755 Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb (limited to 'Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb') diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb deleted file mode 100755 index 4b69efa5..00000000 --- a/Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb +++ /dev/null @@ -1,539 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:6842d52576d3b9ad2f67a766b452c0923d9dd92086292bc410d0942900230b04" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter11-Chemical Rocket and Hypersonic propulsion " - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex1-pg644" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#calcualte Diameter of the SSME nozzle exit area\n", - "print(\"Example 11.1\")\n", - "\n", - "Ts=470000. ##in lb\n", - "Tv=375000. ##in lb\n", - "A2=(Ts-Tv)/(14.7*144.)\n", - "D=(4.*A2/math.pi)**(1./2.)\n", - "print'%s %.1f %s'%(\"Diameter of the SSME nozzle exit area :\",D,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.1\n", - "Diameter of the SSME nozzle exit area : 7.6 \n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2-pg644" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "print(\"Example 11.2\")\n", - "#calculate rocket thurst and effective thurst\n", - "m=1000 ##in kg/s\n", - "g=9.8 ##m/s**2\n", - "Is=340. ##in s\n", - "F=m*g*Is\n", - "print'%s %.1f %s'%(\"(a)Rocket thrust F in N :\",F,\"\")\n", - "c=F/m\n", - "print'%s %.1f %s'%(\"(b)Effective exhaust velocity c in m/s :\",c,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.2\n", - "(a)Rocket thrust F in N : 3332000.0 \n", - "(b)Effective exhaust velocity c in m/s : 3332.0 \n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Ex3-pg646" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "print(\"Example 11.3\")\n", - "#calculate optimum thurst and nozzle exit mach number and nozzle area exapnsion\n", - "pc=200. ##in atm\n", - "p2=1. ##in atm\n", - "gm=1.3\n", - "Ath=25. ##in m**2\n", - "Cf=((2.*gm**2.)/(gm-1.)*(2./(gm+1.))**((gm+1.)/(gm-1.))*(1.-(p2/pc)**((gm-1.)/gm)))**(1/2.)\n", - "print'%s %.1f %s'%(\"(a)Optimum thrust coefficient Cf,opt :\",Cf,\"\")\n", - "pc=200.*101. ##converting to MPa\n", - "F=Ath*Cf*pc\n", - "print'%s %.1f %s'%(\"(b)thrust F in N\",F,\"\")\n", - "pc=200.\n", - "M2=((2./(gm-1.))*((pc/p2)**((gm-1.)/gm)-1.))**(1/2.)\n", - "print'%s %.1f %s'%(\"(c)Nozzle exit Mach no. M2 :\",M2,\"\")\n", - "A=1./M2*(2./(gm+1)*(1+(gm-1.)/2.*M2**2.))**((gm+1.)/(2.*(gm-1.)))\n", - "print'%s %.1f %s'%(\"(d)Nozzle area expansion ratio A2/Ath :\",A,\"\")\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.3\n", - "(a)Optimum thrust coefficient Cf,opt : 1.7 \n", - "(b)thrust F in N 833262.4 \n", - "(c)Nozzle exit Mach no. M2 : 4.0 \n", - "(d)Nozzle area expansion ratio A2/Ath : 15.9 \n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex4-pg648" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "print(\"Example 11.4\")\n", - "#estimate combustion gas constant and moleculare weight \n", - "Tc=2999 ##in K\n", - "Ccr=2432 ##in m/s\n", - "gm=1.26\n", - "f=4.02\n", - "R=((Ccr*gm*(2./(gm+1))**((gm+1.)/(2.*(gm-1))))**2.)/(gm*Tc)\n", - "print'%s %.1f %s'%(\"Combustion gas constant R in J/kg.K:\",R,\"\")\n", - "RU=8314.6 ##in j/kmol.K\n", - "MW=RU/R\n", - "print'%s %.1f %s'%(\"Molecular weight of the mixture in kg/kmol :\",MW,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.4\n", - "Combustion gas constant R in J/kg.K: 858.9 \n", - "Molecular weight of the mixture in kg/kmol : 9.7 \n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex5-pg648" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#calcualte The oxidizer-to-fuel mixture ratio and The molecular weight of the mixture of gases in the product of combustion in kg/kmol\n", - "import math\n", - "print(\"Example 11.5\")\n", - "\n", - "f=4.\n", - "MW=(2.*18+2*2)/4. ##from equation\n", - "print'%s %.1f %s'%(\"(a)The oxidizer-to-fuel mixture ratio :\",f,\"\")\n", - "print'%s %.1f %s'%(\"(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol:\",MW,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.5\n", - "(a)The oxidizer-to-fuel mixture ratio : 4.0 \n", - "(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol: 10.0 \n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex6-pg651" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "print(\"Example 11.6\")\n", - "#calculate imporvement in Delv\n", - "g=9.8 ##in m/s**2\n", - "Is=400. ##in s\n", - "\n", - "delv1=g*Is*math.log(1./0.1) ##for pmf=0.9\n", - "delv2=g*Is*math.log(1./0.05) ##for pmf=0.95\n", - "delp=(delv2-delv1)/delv1*100.\n", - "print'%s %.1f %s'%(\"% improvement in delv :\",delp,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.6\n", - "% improvement in delv : 30.1 \n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7-pg653" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#calcualte reduction in terminal speed\n", - "print(\"Example 11.7\")\n", - "\n", - "g=9.8 ##in m/s**2\n", - "Is=420. ##in s\n", - "the=90. ##in degree\n", - "tb=30. ##in s\n", - "gavg=9.65 ##in m/s**2\n", - "MR=0.1\n", - "delv1=-g*Is*math.log(MR) ##in m/s\n", - "delv2=-g*Is*math.log(MR)-gavg*tb\n", - "delp=abs(delv2-delv1)/delv1*100\n", - "print'%s %.1f %s'%(\"% reduction in terminal speed :\",delp,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.7\n", - "% reduction in terminal speed : 3.1 \n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex8-pg656" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "print(\"Example 11.8\")\n", - "#calculate Terminal speed of rocket vehical excluding gravitatinal effect in m/s\n", - "mf=0.8\n", - "g=9.8 ##in m/s**2\n", - "Is=345. ##in s\n", - "delvt=-g*Is*math.log(1-mf)\n", - "m=500000. ##in kg\n", - "q0=100000. ##in Pa\n", - "tb=60. ##in s\n", - "Af=20.##in m**2\n", - "Cd=0.3 ##mean drag coefficient\n", - "delvd=math.log(1-mf)*(Af/m)*q0*(tb/(1-mf))*Cd\n", - "delv=delvt+delvd\n", - "print'%s %.1f %s'%(\"Terminal speed of rocket vehical excluding gravitatinal effect in m/s :\",delv,\"\")\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.8\n", - "Terminal speed of rocket vehical excluding gravitatinal effect in m/s : 4862.1 \n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex9-pg660" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#calcualte Effective exhaust speed and propulsive efficiency and Overall efficiency\n", - "print(\"Example 11.9\")\n", - "g=9.8 ##in m/s**2\n", - "Is=421. ##in s\n", - "Qr=120000000.\n", - "v=5000. ##in m/s\n", - "c=g*Is\n", - "print'%s %.1f %s'%(\"(a)Effective exhaust speed c in m/s :\",c,\"\")\n", - "ep=2.*(v/c)/(1.+(v/c)**2.)\n", - "print'%s %.1f %s'%(\"(b)propulsive efficiency :\",ep,\"\")\n", - "eo=c*v/Qr\n", - "print'%s %.1f %s'%(\"(c)Overall efficiency :\",eo,\"\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.9\n", - "(a)Effective exhaust speed c in m/s : 4125.8 \n", - "(b)propulsive efficiency : 1.0 \n", - "(c)Overall efficiency : 0.2 \n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex11-pg671" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "print(\"Example 11.11\")\n", - " #calcualte the new chamber pressure and burning rate and the corresponding reduction in burn time\n", - "p=7. ##in MPa, \n", - "n=0.5 ##and \n", - "a=5. ##cm/s \n", - "Tdg=15. ##in degree C\n", - "Td=15+273 ##in K\n", - "br=0.002 ##per degree C\n", - "pk=0.004 ##per degree C\n", - "t=60.##s, \n", - "\n", - "DT=30. ## temp difference in degree C\n", - "pc=p*(1.+pk*DT)\n", - "print'%s %.1f %s'%(\"(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa\",pc,\"\")\n", - "r=a*(pc/p)**n\n", - "r=r*(1+br*DT) ##correcting for the effect of the grain temperature on burning rate.\n", - "print'%s %.1f %s'%(\"Burning rate when grain temp. is 45 degree C\",r,\"\")\n", - "L=a*t/100.\n", - "tb=L*100./r ##time to burn 3m of end burning grain at 5.61cm/s\n", - "tbn=t*(p/pc) ##burn time for a constant total impulse\n", - "\n", - "dt=t-tb\n", - "print'%s %.1f %s'%(\"(b)The corresponding reduction in burn time in seconds:\",dt,\"\")\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.11\n", - "(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa 7.8 \n", - "Burning rate when grain temp. is 45 degree C 5.6 \n", - "(b)The corresponding reduction in burn time in seconds: 6.5 \n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex12-pg678" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#calculate heat flux and total heat flux and convection heat flux and wall temperature on the gas side \n", - "print(\"Example 11.12\")\n", - "Tg=2750. ##in K\n", - "Ttg=Tg\n", - "Tc=300. ## coolant bulk temp. in K\n", - "tw=0.002 ##Wall thickness in m\n", - "kw=43. ##thermal conductivity of the wall in W/m.C\n", - "hg=657. ##Gas side film coefficient in W/m**2K\n", - "hc=26000. ##Coolant side film coefficient in W/m**2K\n", - "eg=0.05 ##emissivity of the gas \n", - "sigma=5.67*10**(-8)##in W/m**2K\n", - "Taw=Ttg\n", - "\n", - "rhf=eg*sigma*Tg**4/1000.\n", - "print'%s %.1f %s'%(\"(a)The radiation heat flux in kW/m**2 :\",rhf,\"\")\n", - "qw=(Ttg-Tc+(rhf*1000./hg))/((1./hg)+(tw/kw)+(1./hc))/1000.\n", - "print'%s %.1f %s'%(\"(b)The total heat flux in kW/m**2:\",qw,\"\")\n", - "qc=qw-rhf\n", - "print'%s %.1f %s'%(\"(c)The convection heat in kW/m**2:\",qc,\"\")\n", - "Twg=Taw-qc*1000./hg\n", - "print'%s %.1f %s'%(\"(d)Wall temp. on the gas side in K:\",Twg,\"\")\n", - "Twc=Tc+(qw*1000./hc)\n", - "print'%s %.1f %s'%(\"(e)Wall temp. on the coolant side in K:\",Twc,\"\")\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.12\n", - "(a)The radiation heat flux in kW/m**2 : 162.1 \n", - "(b)The total heat flux in kW/m**2: 1678.1 \n", - "(c)The convection heat in kW/m**2: 1516.0 \n", - "(d)Wall temp. on the gas side in K: 442.6 \n", - "(e)Wall temp. on the coolant side in K: 364.5 \n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Ex13-pg690" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#calculate ratio of specific impulse\n", - "print(\"Example 11.13\")\n", - "\n", - "Cpg=2006. ##in J/kg.K\n", - "Cs=903. ##J/kg.K\n", - "X1=0.18\n", - "X2=0.16\n", - "Tr=1.057\n", - "Ir=(((1.-X1)*Cpg+X1*Cs)*Tr/((1.-X2)*Cpg+X2*Cs))**(1/2.) ##Ratio of specific impulse \n", - "print'%s %.3f %s'%(\"Raio of specific impulse :\",Ir,\"\")\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Example 11.13\n", - "Raio of specific impulse : 1.022 \n" - ] - } - ], - "prompt_number": 14 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit