From 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- Aircraft_Propulsion_by_S._Farokhi/Chapter9_1.ipynb | 296 +++++++++++++++++++++ 1 file changed, 296 insertions(+) create mode 100755 Aircraft_Propulsion_by_S._Farokhi/Chapter9_1.ipynb (limited to 'Aircraft_Propulsion_by_S._Farokhi/Chapter9_1.ipynb') diff --git a/Aircraft_Propulsion_by_S._Farokhi/Chapter9_1.ipynb b/Aircraft_Propulsion_by_S._Farokhi/Chapter9_1.ipynb new file mode 100755 index 00000000..26147862 --- /dev/null +++ b/Aircraft_Propulsion_by_S._Farokhi/Chapter9_1.ipynb @@ -0,0 +1,296 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:b0248b236fb77321aca1aa897efa31136042f1022b99d1754ff155338956fea7" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter9-Aerothermo-dynamics of Gas Turbines " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex1-pg537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calcualte inlet velocity and the exit double mach number and nozzle torque per unit mass flow rate \n", + "Tt1=1800.\n", + "M1=0.55\n", + "alfa1=0.\n", + "gm=1.33\n", + "Cp=1157.\n", + "alfa2=60.\n", + "T1=Tt1/(1.+(gm-1)*M1**2/2.)\n", + "a1=((gm-1.)*Cp*T1)**(1/2.)\n", + "C1=a1*M1\n", + "C2=C1/math.cos(alfa2/57.3)\n", + "Tt2=Tt1\n", + "T2=Tt2-C2**2/(2*Cp)\n", + "a2=((gm-1)*Cp*T2)**(1/2)\n", + "M2=C2/a2\n", + "Ct2=C1*math.tan(alfa2/57.3)\n", + "r=0.35\n", + "t=0-r*Ct2\n", + "print\"%s %.4f %s\"%(\"(a)Inlet velocity C1 in m/s :\",C1,\"\")\n", + "print\"%s %.4f %s\"%(\"(b)The exit absolute Mach no. M2 :\",M2,\"\")\n", + "print\"%s %.4f %s\"%(\"(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m :\",t,\"\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Inlet velocity C1 in m/s : 444.9857 \n", + "(b)The exit absolute Mach no. M2 : 889.8525 \n", + "(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m : -269.7102 \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex2-pg538" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate the nozzle exit flow angle\n", + "print(\"Example 9.2\")\n", + "M2=1.0 ##i.e choked\n", + "Tt2=1800.\n", + "gm=1.33\n", + "C1=445.\n", + "Cp=1157.\n", + "T2=Tt2/(1.+(gm-1.)*M2**2/2.)\n", + "a2=((gm-1.)*Cp*T2)**(1/2.) \n", + "M2=1\n", + "C2=M2*a2\n", + "alfa2=math.acos(C1/C2)*180/math.pi\n", + "print\"%s %.4f %s\"%(\"Nozzle exit flow angle if M2=1 in degrees:\",alfa2,\"\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Example 9.2\n", + "Nozzle exit flow angle if M2=1 in degrees: 54.5931 \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Ex3-pg538" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate axial velocity and rotor velocity and degree of reaction at this radius\n", + "C1=411.\n", + "alfa2=60.\n", + "C2=800.\n", + "W2=450.\n", + "alfa3=13.\n", + "C3=411.\n", + "Cz2=C2*math.cos(60/57.3)\n", + "Cz3=C3*math.cos(13/57.3)\n", + "Ct2m=Cz3*math.tan(60/57.3)\n", + "Wt2m=(450.**2.-400**2.)**(1/2.)\n", + "Um=Ct2m-Wt2m\n", + "Ct3=C3*math.sin(13/57.3)\n", + "Rm=1-(Ct2m+Ct3)/(2.*Um)\n", + "print\"%s %.4f %s\"%(\"(a)The axial velocities up- and downstream of the rotor in m/s:\",Cz2,\"c\")\n", + "print'%.4f'%(Cz3)\n", + "print\"%s %.4f %s\"%(\"(b)The rotor velocity Um in m/s:\",Um,\"\")\n", + "print\"%s %.4f %s\"%(\"(c)The degree of reaction at this radius :\",Rm,\"\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The axial velocities up- and downstream of the rotor in m/s: 400.0534 c\n", + "400.4676\n", + "(b)The rotor velocity Um in m/s: 487.3515 \n", + "(c)The degree of reaction at this radius : 0.1936 \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex4-pg553" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate the loss of turbine efficiency due to tip clearance\n", + "Cd=0.5\n", + "bm=-20.\n", + "r=1.25\n", + "phi=0.5\n", + "chi=1.\n", + "t=0.02\n", + "\n", + "De=Cd*t*r*(1-(chi/phi)*math.tan(bm/57.3))**(1/2.)\n", + "print\"%s %.4f %s\"%(\"Loss of the turbine efficiency (eta0 times) :\",De,\"\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Loss of the turbine efficiency (eta0 times) : 0.0164 \n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Ex5-pg560" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate gas static temperature and adibatic wall temperature on the nozzle for a turbulent boundary layer \n", + "Tt=1700. ##total gas temp at exit\n", + "gm=1.33 ##gamma\n", + "Cp=1157. ##in J/kg.K\n", + "M2=1. ##local gas Mach no.\n", + "Pr=0.71 ## Prandtl no.\n", + "W2=455. ## gas speed relative to rotor\n", + "Tg=Tt/(1.+(gm-1)*(M2**2)/2.)\n", + "print\"%s %.3f %s \"%(\"The gas static temperature Tg in K:\",Tg,\"\")\n", + "a2=((gm-1)*Cp*Tg)**(1/2.)\n", + "C2=a2\n", + "r=Pr**(1/3.)\n", + "Taw=Tg+Pr**(1/3.)*C2**2./(Cp)\n", + "print\"%s %.3f %s \"%(\"The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K:\",Taw,\"\")\n", + "Ttr=Tg+(W2**2)/(2*Cp)\n", + "Tawl=Tg+Pr**(1/2)*C2**2/(Cp)\n", + "print\"%s %.3f %s \"%(\"The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: \",Tawl,\"\")\n", + "print\"%s %.3f %s \"%(\"The rotor temperature of the gas on the rotor in K:\",Ttr,\"\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The gas static temperature Tg in K: 1459.227 \n", + "The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K: 1888.820 \n", + "The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: 1940.773 \n", + "The rotor temperature of the gas on the rotor in K: 1548.694 \n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6-pg564" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate cooling fraction\n", + "T0=288. ##in K\n", + "p0=100. ##in kPa\n", + "Tt3=800. ##in K\n", + "gm=1.4\n", + "Cpc=1.0045 ##kJ/Kg.K\n", + "pc=25.\n", + "ec=0.9\n", + "Tt4=2000. ##in K\n", + "gmc=1.33\n", + "Cpg=1.188 ##kJ/Kg.K\n", + "Stg=0.005 ##Gas-side Stanton no.\n", + "Taw=2000. ##in K\n", + "ptg=2.5 ##in Mpa\n", + "Tawd=1200. ## desired temp. in K\n", + "d=2. ##thickness of internally cooled wall in mm\n", + "bms=2. ##blade mean solidity in HPT\n", + "kw=14.9 ##in W/m.K\n", + "Twc=870. ##in K\n", + "S=1/2. ##S=Stc/Stg\n", + "e=(Cpc/Cpg)*S*(Twc-Tt3)/(Tt4-Tawd)\n", + "print\"%s %.4f %s\"%(\"Cooling fraction :\",e,\"\")\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cooling fraction : 0.0370 \n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit