From d8fc9753543b2443169b30b350d1bb57e8a6446b Mon Sep 17 00:00:00 2001
From: Trupti Kini
Date: Wed, 27 Apr 2016 23:30:26 +0600
Subject: Added(A)/Deleted(D) following books  A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_10_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_11_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_1_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_2_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_3_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_4_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_5_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_6_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_7_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_8_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_9_1.ipynb
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch1_2.png
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch3_2.png
 A 
 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch9_2.png

---
 .../Chapter_10_1.ipynb                             |  589 +++++++++++
 .../Chapter_11_1.ipynb                             |  687 ++++++++++++
 .../Chapter_1_1.ipynb                              |  282 +++++
 .../Chapter_2_1.ipynb                              | 1098 +++++++++++++++++++
 .../Chapter_3_1.ipynb                              |  980 +++++++++++++++++
 .../Chapter_4_1.ipynb                              | 1100 ++++++++++++++++++++
 .../Chapter_5_1.ipynb                              |  589 +++++++++++
 .../Chapter_6_1.ipynb                              |  623 +++++++++++
 .../Chapter_7_1.ipynb                              |  729 +++++++++++++
 .../Chapter_8_1.ipynb                              |  370 +++++++
 .../Chapter_9_1.ipynb                              |   87 ++
 .../screenshots/Ch1_2.png                          |  Bin 0 -> 98629 bytes
 .../screenshots/Ch3_2.png                          |  Bin 0 -> 70010 bytes
 .../screenshots/Ch9_2.png                          |  Bin 0 -> 51820 bytes
 14 files changed, 7134 insertions(+)
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_10_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_11_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_1_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_2_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_3_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_4_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_5_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_6_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_7_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_8_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_9_1.ipynb
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch1_2.png
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch3_2.png
 create mode 100644 Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch9_2.png

diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_10_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_10_1.ipynb
new file mode 100644
index 00000000..8cfd40f4
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_10_1.ipynb
@@ -0,0 +1,589 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 10: Columns"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 10.01, Page number 638"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Size of cross section if the column is to safetly support 100 kN = 0.100000 psi \n",
+      "Case(b): Size of cross section if the column is to safetly support 200 kN = 129 psi \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "L=2                                                                         # Length(m)\n",
+    "E=13*(pow(10,9))                                                            # Modulus of elasticity(GPa)   \n",
+    "Sall=12                                                                     # Stress(MPa)\n",
+    "FS=2.5                                                                      # Factor of safety(2.5)\n",
+    "Ld1=100                                                                     # Load force(kN)     \n",
+    "Ld2=200                                                                     # Load force(kN)  \n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "#(a) For the 100-kN Load\n",
+    "Pcr=FS*Ld1*(1000)                                                           # Pressure(kN) \n",
+    "I=(Pcr*(L**2))/(((math.pi)**2)*E)                                           # Moment of inertia(m**4)   \n",
+    "a1=round((I*12)**(1/4),1)                                                   # Side of square(mm)\n",
+    "S=(100)/((0.1)**2)                                                          # Normal stress in column(MPa) \n",
+    "\n",
+    "#(b) For the 200-kN Load \n",
+    "Pcr=FS*(Ld2)*(1000)                                                         # Pressure(kN)\n",
+    "I=(Pcr*(L**2))/(((math.pi)**2)*E)                                           # Moment of inertia(m**4)\n",
+    "a=((I)*12)**(1/4)                                                           # Side of square(mm)\n",
+    "S=(200/(0.11695)**2)                                                        # Normal stress(MPa)\n",
+    "A=(200/12)*(pow(10,-3))                                                     # Area of cross section(m**2)\n",
+    "a2=(A)**(1/2)*(1000)                                                        # Side of square(mm)\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Size of cross section if the column is to safetly support 100 kN = %lf psi '%a1)\n",
+    "print('Case(b): Size of cross section if the column is to safetly support 200 kN = %.lf psi '%a2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 10.1, Page number 643"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Ratio for most efficient design = 0.350000  \n",
+      "Case(b): Design for given data breadth = 1.619708 in \n",
+      "Case(b): Design for given data length = 0.566898 in \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "L=20                                                                             # Length of aluminium column(in)\n",
+    "E=10.1*(pow(10,6))                                                               # Modulus of elasticity(psi)\n",
+    "P=5                                                                              # Stress(kips) \n",
+    "L=symbols('L')                                                                   # Variable declaration\n",
+    "Le=symbols('Le')                                                                 # Variable declaration  \n",
+    "Le=0.7*L                                                                         # Effective length of column\n",
+    "a=symbols('a')                                                                   # Variable declaration  \n",
+    "b=symbols('b')                                                                   # Variable declaration  \n",
+    "Scr=symbols('Scr')                                                               # Variable declaration\n",
+    "ry=(b)/(sqrt(12))                                                                # Radius of gyration \n",
+    "FS=2.5                                                                           # Factor of safety\n",
+    "\n",
+    "#Calculation         \n",
+    "#Buckling in xy Plane\n",
+    "Ix=(1/12)*(a**3)*b                                                               # Moment of inertia\n",
+    "A=a*b                                                                            # Area of cross section\n",
+    "rz=sqrt(((1/12)*b*(a**3))/(a*b))                                                 # Radius of gyration\n",
+    "ESRxy=(Le)/(rz)                                                                  # Effective slenderness ratio \n",
+    "\n",
+    "\n",
+    "#Buckling in xz Plane \n",
+    "ESRxz=(Le)/(ry)                                                                  # Effective slenderness ratio\n",
+    "\n",
+    "# Case(a) Most Efficient Design\n",
+    "Ans=((0.7*L)*(sqrt(12)))/((2*L)*(sqrt(12)))                                      # Most efficient design \n",
+    "\n",
+    "# Case(b) Design for Given Data.\n",
+    "Pcr=(FS)*(P)                                                                     # Pressure(kips)\n",
+    "a=0.35*b                                                                         # Distance \n",
+    "A=a*b                                                                            # Area\n",
+    "Scr=(Pcr/A)                                                                      # Stress\n",
+    "b=(((12500)*((138.6)**2))/(0.35*10.1*(pow(10,6))*((math.pi)**2)))**(1/4)         # Distance(in)\n",
+    "\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Ratio for most efficient design = %lf  '%Ans)\n",
+    "print('Case(b): Design for given data breadth = %lf in '%b)\n",
+    "print('Case(b): Design for given data length = %lf in '%(0.35*b))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 10.2, Page number 654 "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Allowable load = 31.056698 kips\n",
+      "Case(a): Allowable stress = 8.773078 ksi \n",
+      "Case(b): The horizontal deflection of the top of the column = 0.939000 in \n",
+      "Case(b): Maximum normal stress in the column = 21.981585 ksi \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=(29*(pow(10,6)))                                                              # Modulus of elasticity(psi)\n",
+    "FS=2                                                                            # Factor of safety  \n",
+    "A=3.54                                                                          # Area of cross section(in**2) \n",
+    "I=8.00                                                                          # Moment of inertia(in**4)\n",
+    "r=1.50                                                                          # Radius(in)\n",
+    "c=2.00                                                                          # Distance(in) \n",
+    "Lab=8\n",
+    "\n",
+    "#Calculation         \n",
+    "# Effective Length\n",
+    "Le=2*(Lab)                                                                      # Effective length(in)\n",
+    "# Critical Load\n",
+    "Pcr=((((math.pi)**2)*E*(8))/(192)**2)/(1000)                                    # Critical load(kips)\n",
+    "\n",
+    "#Case(a) Allowable Load and Stress\n",
+    "Pall=Pcr/FS                                                                     # Allowable load(kips)\n",
+    "S=Pall/A                                                                        # Allowable Stress(ksi)\n",
+    "\n",
+    "#Case(b) Eccentric Load\n",
+    "ym=(0.75)*(2.252-1)                                                             # Distance(in)\n",
+    "Sm=(31.1/3.54)*(1+(0.667)*(2.252))                                              # Distance(in)\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Allowable load = %lf kips'%Pall)\n",
+    "print('Case(a): Allowable stress = %lf ksi '%S)\n",
+    "print('Case(b): The horizontal deflection of the top of the column = %lf in '%ym)\n",
+    "print('Case(b): Maximum normal stress in the column = %lf ksi '%Sm)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 10.02, Page number 664"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The longest unsupported length L = 2.318480 m\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "A=1460*(pow(10,-6))                                                       # Area of cross section(m**2)\n",
+    "rx=41.7                                                                   # Radius of gyration(mm)\n",
+    "ry=14.6                                                                   # Radius of gyration(mm)\n",
+    "P=60*(pow(10,3))                                                          # Force(N)\n",
+    "E=200*(pow(10,9))                                                         # Modulus of elasticity(GPa)\n",
+    "L=symbols('L')                                                            # Variable Declaration\n",
+    "r=symbols('r')                                                            # Variable Declaration\n",
+    "Scr=symbols('Scr')\n",
+    "\n",
+    "#Calculation         \n",
+    "Sall=(P/A)                                                                # Stress of all(Pa)\n",
+    "Scr=0.8778*((((math.pi)**2)*(E))/(L/r)**2)                                # Critical stress\n",
+    "Sall=Scr/1.67                                                             # Stress of all(Pa)\n",
+    "R1=((1.037*(pow(10,12)))/(1.41*(pow(10,6))))**(1/2)                       # Slenderness ratio\n",
+    "R1l=(4.71)*((200*(pow(10,9)))/(250*(pow(10,6))))**(1/2)                   # Slenderness ratio\n",
+    "L=158.8*(14.6*(pow(10,-3)))                                               # Choosing the smaller of the two radii of gyration\n",
+    "\n",
+    "#Result\n",
+    "print('The longest unsupported length L = %lf m'%L)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 10.3, Page number 668 "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Effective centric load P if the effective length of the column is 24 = 81.649348 kips\n",
+      "Effective centric load P if bracing is provided to prevent the movement of the midpoint C in the xz plane = 187.639873 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Sy=36                                                                       # Stress(ksi)\n",
+    "E=(29*(pow(10,6)))                                                          # Modulus of elasticity(psi)\n",
+    "A=11.5                                                                      # Area(in**2) \n",
+    "FS=2                                                                        # Factor of safety\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "ratio=(4.71)*(E/(36*(pow(10,3))))                                           # Value of the slenderness ratio\n",
+    "\n",
+    "#Case(a) Effective Length\n",
+    "Sr=(24*12)/(1.98)                                                           # Value of the slenderness ratio\n",
+    "Scr=((0.877)*((math.pi)**2)*(29*(pow(10,3))))/(145.5)**2                    # Value of the slenderness ratio\n",
+    "Sall=(Scr/1.67)                                                             # Allowable stress(ksi)\n",
+    "Pall1=Sall*A                                                                 # Pressure(kips)\n",
+    "#Case(b) Bracing at Midpoint C                                                 \n",
+    "#xz Plane\n",
+    "Elxz=(144)/(1.98)                                                           # Slenderness ratio\n",
+    "#yz Plane\n",
+    "Elyz=(288)/(4.27)                                                           # Slenderness ratio\n",
+    "\n",
+    "Se=(((math.pi)**2)*(E))/(72.7)**2                                           # Stress(ksi)\n",
+    "Scr=(0.658)**(36/54.1)*(36)                                                 # Stress(ksi) \n",
+    "\n",
+    "Sall=(Scr)/(1.67)                                                           # Allowable load(ksi)\n",
+    "Pall2=Sall*A                                                                 # Force(ksi) \n",
+    "\n",
+    "#Result\n",
+    "print('Effective centric load P if the effective length of the column is 24 = %lf kips'%Pall1)\n",
+    "print('Effective centric load P if bracing is provided to prevent the movement of the midpoint C in the xz plane = %lf ksi'%Pall2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 10.4, Page number 669 "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The smallest diameter rod that can be used to support the centric load P=60 kN if L=750 mm = 0.036628 \n",
+      "The smallest diameter rod that can be used to support the centric load P=60 kN if L=300 mm = 0.023900 \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=60                                                                                # Centric load(kN)\n",
+    "c=symbols('c')                                                                      # Variable declaration\n",
+    "I=((math.pi)/4)*(c**4)                                                              # Moment of inertia\n",
+    "A=(math.pi)*(c**2)                                                                  # Area of cross section \n",
+    "\n",
+    "#Calculation         \n",
+    "r=sqrt(I/A)                                                                         # Radius\n",
+    "\n",
+    "#Case(a) Length of 750 mm\n",
+    "c=((60*(pow(10,3))*((0.75)**2)*4)/((math.pi)*(382)*(pow(10,9))))**(1/4)\n",
+    "Sr=(750)/(18.31/2)\n",
+    "d1=2*c\n",
+    "\n",
+    "#Case(b) Length of 300 mm\n",
+    "c=11.95                                                                             # Radius(mm)\n",
+    "\n",
+    "Sr=((300)*(2))/(11.95)                                                              # Slenderness ratio\n",
+    "d2=(2*c)/(1000)                                                                     # Required diamter(mm)\n",
+    "\n",
+    "#Result\n",
+    "print('The smallest diameter rod that can be used to support the centric load P=60 kN if L=750 mm = %lf '%d1)\n",
+    "print('The smallest diameter rod that can be used to support the centric load P=60 kN if L=300 mm = %lf '%d2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 10.04, Page number 676"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The maximum load that can be safely applied is = 23.278244 kips\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "L=28                                                                           # Effective length(in)\n",
+    "P=symbols('P')\n",
+    "\n",
+    "#Calculation         \n",
+    "A=2**2                                                                         # Area of cross ection(in**2)\n",
+    "I=(1/12)*(2**4)                                                                # Moment of inertia(in**4)\n",
+    "r=(I/A)**(1/2)                                                                 # Radius(in)\n",
+    "R1=(28/0.5774)                                                                 # Ratio\n",
+    "Sall=(30.9-(0.229*48.5))                                                       # Stress for the aluminum column(ksi)  \n",
+    "P=solve((P/4)+((P*0.8*1)/(1.333))-19.79,P)                                     # Maximum load that can be safely applied(kips)\n",
+    "\n",
+    "#Result\n",
+    "print('The maximum load that can be safely applied is = %lf kips'%P[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 10.05, Page number 677"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The maximum load that can be safely applied is = 26.568262 kips\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Sallcentric=19.79                                                              # Stress all centric(ksi) \n",
+    "Sallbending=24                                                                 # Stress all bending(ksi)\n",
+    "P=symbols('P')\n",
+    "\n",
+    "#Calculation         \n",
+    "P=solve((P/4)/(19.79) + ((P*0.8*1)/(1.333*24))-1,P)\n",
+    "\n",
+    "#Result\n",
+    "print('The maximum load that can be safely applied is = %lf kips'%P[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 10.5, Page number 678"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The largest allowable load P is thus = 327.340184 kN\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=200                                                                           # Modulus of elasticity(GPa)\n",
+    "Sy=250                                                                          # Stress(MPa)\n",
+    "P=symbols('P')                                                                  # Variable declaration\n",
+    "\n",
+    "#Calculation         \n",
+    "Sall=162.2/1.67                                                                 # Allowable stress(MPa)\n",
+    "\n",
+    "P=solve(P*((1/(9.42*(pow(10,-3))))+(0.200/(1.050*(pow(10,-3)))))-97.1,P)        # Largest load P(kN)\n",
+    "\n",
+    "#Result\n",
+    "print('The largest allowable load P is thus = %lf kN'%(P[0]*1000))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 10.6, Page number 678"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The largest allowable load P is thus = 423.169834 kN\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=200                                                                           # Modulus of elasticity(GPa)\n",
+    "Sy=150                                                                          # Stress(MPa)\n",
+    "P=symbols('P')                                                                  # Variable declaration\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "P=solve(P*((1/(97.1*9.42*(pow(10,3))))+(0.200/(150*1.050*(pow(10,3)))))-1,P)    # Largest allowable load(kN)\n",
+    "\n",
+    "#Result\n",
+    "print('The largest allowable load P is thus = %lf kN'%(P[0]/1000))              "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "## SAMPLE PROBLEM 10.7, Page number 679"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Selection of Shape. The shape to be used is W8*48\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "A=symbols('A')                                                                # Variable declaration                                                                       \n",
+    "E=29*(pow(10,6))                                                              # Modulus of elasticity(psi) \n",
+    "Sy=36                                                                         # Stress(ksi) \n",
+    "SR=133.7                                                                      # Slenderness ratio\n",
+    "Scr=22.5                                                                      # Slenderness ratio\n",
+    "\n",
+    "#Calculation         \n",
+    "A=solve(22-(85/A)-((425*4)/(A*(pow(3.5,2)))),A)                               # Area of cross section(in**2) \n",
+    "\n",
+    "#Trial 1: W8*35\n",
+    "#Allowable Bending Stress\n",
+    "Sall=22                                                                       # Allowable bending stress(ksi) \n",
+    "#Allowable Concentric Stress\n",
+    "Ratio1=(8.25/13.46)+(13.62/22)                                                # Allowable concentric stress(ksi) \n",
+    "#Since 1.232 > 1.000, the requirement expressed by the interaction formula is not satisfied; we must select a larger trial shape.\n",
+    "\n",
+    "#Trial 2: W8*48\n",
+    "Ratio2=(6.03/13.76)+(9.82/22)                                                 # Allowable concentric stress(ksi)\n",
+    "#The W8*48 shape is satisfactory but may be unnecessarily large\n",
+    "\n",
+    "#Trial 3: W8*40\n",
+    "#Following again the same procedure, we find that the interaction formula is not satisfied.\n",
+    "\n",
+    "print ('Selection of Shape. The shape to be used is W8*48')"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_11_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_11_1.ipynb
new file mode 100644
index 00000000..2a70bd23
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_11_1.ipynb
@@ -0,0 +1,687 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 11: Energy Methods"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.01, Page number 699"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Strain energy :- \n",
+      "0.5*L*P**2/(A*E)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=symbols('P')                                                               # Force                                                                   \n",
+    "L=symbols('L')                                                               # Length\n",
+    "A=symbols('A')                                                               # Area  \n",
+    "E=symbols('E')                                                               # Modulus of elasticity  \n",
+    "n=symbols('n')                                                               # Value\n",
+    "\n",
+    "#Calculation         \n",
+    "Un=((P**2)*((1/2)*L))/(2*A*E) + ((P**2)*((1/2)*L))/(2*(n**2)*A*E)            # Strain energy\n",
+    "U1=Un.subs(n,1)                                                              # Strain energy\n",
+    "\n",
+    "#Result\n",
+    "print('Strain energy :- ')\n",
+    "print(U1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.02, Page number 700"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Strain energy :-\n",
+      "0.364*P**2*l/AE\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Fbc=symbols('Fbc')                                                              # Force\n",
+    "Fbd=symbols('Fbd')                                                              # Force\n",
+    "BC=symbols('BC')                                                                # Length\n",
+    "BD=symbols('BD')                                                                # Length \n",
+    "AE=symbols('AE')                                                                # Length\n",
+    "l=symbols('l')                                                                  # Length\n",
+    "P=symbols('P')                                                                  # Force\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "U=((Fbc**2)*(BC))/(2*AE)  +  ((Fbd**2)*(BD))/(2*AE)                             # Strain energy\n",
+    "SE=U.subs([(BC, (0.6*l)),(BD, (0.8*l)),(Fbc, (0.6*P)),(Fbd, (0.8*P))])          # Strain energy\n",
+    "\n",
+    "#Result\n",
+    "print('Strain energy :-')\n",
+    "print(SE)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.03, Page number 701"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Strain energy :- \n",
+      "P**2*l**3/(6*E*I)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=symbols('P')                                                          # Force\n",
+    "x=symbols('x')                                                          # Distance \n",
+    "E=symbols('E')                                                          # Modulus of elasticity\n",
+    "I=symbols('I')                                                          # Moment of inertia \n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "U=integrate(((P**2)*(x**2))/(2*E*I),(x,0,l))                            # Strain energy\n",
+    "\n",
+    "#Result\n",
+    "print('Strain energy :- ')\n",
+    "print(U)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.04, Page number 702"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Strain energy :- \n",
+      "0.5*L*T**2/(G*j)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "T=symbols('T')                                                                     # Twisting couple\n",
+    "L=symbols('L')                                                                     # Length\n",
+    "G=symbols('G')                                                                     # Modulus of elasticity\n",
+    "j=symbols('j')                                                                     # Polar moment of inertia\n",
+    "n=symbols('n')                                                                     # Value \n",
+    "\n",
+    "#Calculation         \n",
+    "Un=((T**2)*((1/2)*L))/(2*G*j) + ((T**2)*((1/2)*L))/(2*(n**4)*G*j)                  # Strain energy\n",
+    "U1=Un.subs(n,1)                                                                       # Strain energy\n",
+    "\n",
+    "#Result\n",
+    "print('Strain energy :- ')\n",
+    "print(U1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 11.1, Page number 707"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Yield strength of steel :-\n",
+      "36.2049720342386\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=29*(pow(10,6))                                                         # Elastic strain energy(psi)                           \n",
+    "A=((math.pi)/4)*(pow(0.75,2))                                            # Area of cross section(in**2)\n",
+    "L=60                                                                     # Length(in)\n",
+    "Sy=symbols('Sy')                                                         # Stress\n",
+    "\n",
+    "#Calculation         \n",
+    "#Factor Of Safety\n",
+    "U=5*120                                                                  # Strain energy(in.lb)\n",
+    "#Strain-Energy Density \n",
+    "V=A*L                                                                    # Volume(in**3)\n",
+    "u=(U/V)                                                                  # Strain energy density(in.lb/in**3)\n",
+    "#Yield Strength\n",
+    "Sy=solve(Sy**2/(2*29*pow(10,6))-22.6,Sy)                                    # Maximum stress(ksi)\n",
+    "\n",
+    "#Result\n",
+    "print('Yield strength of steel :-')\n",
+    "print(Sy[1]/1000) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 11.2, Page number 708"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Strain energy :-\n",
+      "P**2*a**2*b**2*(a + b)/(6*E*I*L**2)\n",
+      "Case(b): Evaluated Strain energy = 0.000025 psi \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=40                                                                         # Force(kips)\n",
+    "L=12                                                                         # Length(ft)\n",
+    "a=3                                                                          # Length(ft)\n",
+    "b=9                                                                          # Length(ft)\n",
+    "E=29*(pow(10,6))                                                             # Modulus of elasticity(psi)  \n",
+    "P=symbols('P')                                                               # Force\n",
+    "b=symbols('b')                                                               # Length  \n",
+    "L=symbols('L')                                                               # Length\n",
+    "P=symbols('P')                                                               # Force\n",
+    "a=symbols('a')                                                               # Length \n",
+    "x=symbols('x')                                                               # Length\n",
+    "v=symbols('v')                                                               # Length\n",
+    "E=symbols('E')                                                               # Modulus of elasticity\n",
+    "I=symbols('I')                                                               # Moment of inertia\n",
+    "\n",
+    "#Calculation         \n",
+    "#Bending Moment\n",
+    "Ra=(P*b)/L                                                                   # Reaction\n",
+    "Rb=(P*a)/L                                                                   # Reaction\n",
+    "\n",
+    "M1=((P*b)/L)*x                                                               # Bending moment\n",
+    "M2=((P*a)/L)*v                                                               # Bending moment\n",
+    "\n",
+    "# Case(a) Bending Moment\n",
+    "U=(1/(2*E*I))*(integrate(M1**2,(x,0,a))+integrate(M2**2,(v,0,b)))            # Total strain energy\n",
+    "\n",
+    "# Case(b) Evaluation of the Strain Energy\n",
+    "P=40                                                                         # Central axial load(kips)\n",
+    "a=36                                                                         # Length(in)\n",
+    "L=144                                                                        # Length(in) \n",
+    "b=108                                                                        # Length(in)\n",
+    "I=248                                                                        # Moment of inertia(in**4)\n",
+    "U=U.simplify()\n",
+    "Usubs=(40*36*108)/(6*29*248*144*(pow(10,3)))                                 # Strain energy\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Strain energy :-')\n",
+    "print(U)\n",
+    "print('Case(b): Evaluated Strain energy = %lf psi '%Usubs)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.06, Page number 717"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum value of stress in rod :-\n",
+      "1.0*(Pm**2)**0.5/A\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Pm=symbols('Pm')                                                                       # Force\n",
+    "L=symbols('L')                                                                         # Length \n",
+    "E=symbols('E')                                                                         # Modulus of elasticity\n",
+    "A=symbols('A')                                                                         # Area\n",
+    "m=symbols('m')                                                                         # Mass \n",
+    "v0=symbols('v0')                                                                       # Velocity\n",
+    "\n",
+    "#Calculation         \n",
+    "Um=(5*(Pm**2)*(L))/(16*A*E)                                                            # Strain energy\n",
+    "Pm=((16/5)*((Um*A*E)/(L)))**(1/2)                                                      # Force\n",
+    "Sm=Pm/A                                                                                # Stress \n",
+    "\n",
+    "#Result\n",
+    "print('Maximum value of stress in rod :-')\n",
+    "print(Sm)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.07, Page number 717"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum stress in the beam :-\n",
+      "L*c*(Pm**2)**0.5/I\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Pm=symbols('Pm')                                                            # Force\n",
+    "L=symbols('L')                                                              # Length\n",
+    "E=symbols('E')                                                              # Modulus of elasticity\n",
+    "I=symbols('I')                                                              # Moment of inertia  \n",
+    "m=symbols('m')                                                              # Mass\n",
+    "v0=symbols('v0')                                                            # Velocity\n",
+    "Lc=symbols('Lc')                                                            # Length\n",
+    "W=symbols('W')                                                              # Work \n",
+    "h=symbols('h')                                                              # Height\n",
+    "c=symbols('c')                                                              # Radius \n",
+    "\n",
+    "#Calculation         \n",
+    "Um=((Pm**2)*(L**3))/(6*E*I)                                                 # Strain energy\n",
+    "Pm=((6)*((Um*E*I)/(L**3)))**(1/2)                                           # Static force\n",
+    "Sm=(Pm*L*c)/(I)                                                             # Maximum stress \n",
+    "\n",
+    "#Result\n",
+    "print('Maximum stress in the beam :-')\n",
+    "print(Sm)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.08, Page number 721"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Equivalent static load :-\n",
+      "48**0.5*(E*I*m*v0**2/L**3)**0.5\n",
+      "Case(b): Maximum stress :-\n",
+      "3**0.5*(E*c**2*m*v0**2/(I*L))**0.5\n",
+      "Case(c): Maximum deflection :-\n",
+      "48**0.5*L**3*(E*I*m*v0**2/L**3)**0.5/(48*E*I)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Pm=symbols('Pm')                                                               # Force\n",
+    "L=symbols('L')                                                                 # Length \n",
+    "E=symbols('E')                                                                 # Modulus of elasticity\n",
+    "I=symbols('I')                                                                 # Moment of inertia\n",
+    "m=symbols('m')                                                                 # Mass\n",
+    "v0=symbols('v0')                                                               # Velocity\n",
+    "Lc=symbols('Lc')                                                               # Length                                                               \n",
+    "h=symbols('h')                                                                 # Height\n",
+    "c=symbols('c')                                                                 # Length\n",
+    "xm=symbols('xm')                                                               # Distance\n",
+    "\n",
+    "#Calculation         \n",
+    "Um=(1/2)*(m)*(v0**2)                                                           # Strain energy\n",
+    "Um=(1/2)*(Pm)*(xm)                                                             # Expressing Um as the work of the equivalent horizontal static load\n",
+    "xm=((Pm)*(L**3))/(48*E*I)                                                      # Deflection of c corresponding to static load Pm  \n",
+    "Um=(((Pm**2)*(L**3))/(48*E*I))*(1/2)                                           # Substituting xm in strain energy\n",
+    "Pm=((48*m*(v0**2)*(E)*I)/(L**3))**(1/2)                                        # Static load\n",
+    "Sm=(Pm*Lc)/(4*I)                                                               # Maximum stress\n",
+    "Sm=((3*m*(v0**2)*(E)*I)/(L*(I/c)**2))**(1/2)                                   # Maximum stress after sustituting for Pm\n",
+    "xm=Pm*((L**3)/(48*E*I))                                                        # Maximum deflection\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Equivalent static load :-')\n",
+    "print(Pm)\n",
+    "print('Case(b): Maximum stress :-')\n",
+    "print(Sm)\n",
+    "print('Case(c): Maximum deflection :-')\n",
+    "print(xm)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.09, Page number 723"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Vertical deflection of B :-\n",
+      "[0.728*L*P/(A*E)]\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Pm=symbols('Pm')                                                                      # Force\n",
+    "L=symbols('L')                                                                        # Length \n",
+    "E=symbols('E')                                                                        # Modulus of elasticity \n",
+    "A=symbols('A')                                                                        # Area of crosssection\n",
+    "m=symbols('m')                                                                        # Mass  \n",
+    "v0=symbols('v0')                                                                      # Velocity \n",
+    "P=symbols('P')                                                                        # Force\n",
+    "yb=symbols('yb')                                                                      # Distance\n",
+    "\n",
+    "#Calculation         \n",
+    "yb=solve(0.364*(((P**2)*L)/(A*E))-(1/2)*P*yb,yb)\n",
+    "\n",
+    "#Result\n",
+    "print('Vertical deflection of B :-')\n",
+    "print(yb)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.10, Page number 723"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Deflection of end A taking into account of normal stress only:-\n",
+      "[0.333333333333333*L**3*P/(E*I)]\n",
+      "Deflection of end A taking into account of both the normal and shearing stresses.:-\n",
+      "[0.0333333333333333*L*P**2*(3.0*E*h**2 + 10.0*G*L**2)/(E*G*I)]\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Pm=symbols('Pm')                                                                      # Force  \n",
+    "L=symbols('L')                                                                        # Length\n",
+    "E=symbols('E')                                                                        # Modulus of elasticity\n",
+    "I=symbols('I')                                                                        # Moment of inertia \n",
+    "m=symbols('m')                                                                        # Mass\n",
+    "P=symbols('P')                                                                        # Force\n",
+    "yA=symbols('yA')                                                                      # Distance\n",
+    "h=symbols('h')                                                                        # Height\n",
+    "G=symbols('G')                                                                        # Modulus of elasticity \n",
+    "\n",
+    "#Calculation         \n",
+    "yA1=solve((((P**2)*(L**3))/(6*E*I))-(1/2)*P*yA,yA)                                      # Deflection of end A  \n",
+    "yA2=solve((((P**3)*(L**3))/(6*E*I))*(1+(3*E*(h**2))/(10*(G)*(L**2)))-(1/2)*(P)*(yA),yA) # Deflection of end A\n",
+    "\n",
+    "#Result\n",
+    "print('Deflection of end A taking into account of normal stress only:-')\n",
+    "print(yA1)\n",
+    "print('Deflection of end A taking into account of both the normal and shearing stresses.:-')\n",
+    "print(yA2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 11.11, Page number 724"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Angle of twist for entire shaft:-\n",
+      "[0.53125*L*T/(G*J)]\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Pm=symbols('Pm')                                                                  # Force\n",
+    "L=symbols('L')                                                                    # Length\n",
+    "E=symbols('E')                                                                    # Modulus of elasticity\n",
+    "I=symbols('I')                                                                    # Moment of inertia\n",
+    "m=symbols('m')                                                                    # Mass\n",
+    "P=symbols('P')                                                                    # Force\n",
+    "yA=symbols('yA')                                                                  # Distance  \n",
+    "h=symbols('h')                                                                    # Height\n",
+    "G=symbols('G')                                                                    # Modulus of rigidity                                                   \n",
+    "T=symbols('T')                                                                    # Torque\n",
+    "J=symbols('J')                                                                    # Polar moment of inertia \n",
+    "phyDB=symbols('phyDB')                                                            # Angle of twist\n",
+    "\n",
+    "#Calculation         \n",
+    "phyDB=solve((17/32)*(T**2)*(L)*(1/(2*G*J))-(1/2)*(T)*(phyDB),phyDB)               # Angle of twist\n",
+    "\n",
+    "#Result\n",
+    "print('Angle of twist for entire shaft:-')\n",
+    "print(phyDB)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 11.3, Page number 725 "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum deflection of point C:-\n",
+      "10.2734993791682\n",
+      "Maximum stress:-\n",
+      "179.9296875\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "ym=symbols('ym')                                                         # Distance\n",
+    "E=symbols('E')                                                           # Modulus of elasticity\n",
+    "I=symbols('I')                                                           # Moment of inertia\n",
+    "L=symbols('L')                                                           # Length\n",
+    "W=symbols('W')                                                           # Weight  \n",
+    "h=symbols('h')                                                           # Height\n",
+    "\n",
+    "#Calculation         \n",
+    "#Principle of Work and Energy\n",
+    "Pm=(48*E*I)/(L**3)                                                       # Force                                                      \n",
+    "U2=(1/2)*Pm*ym                                                           # Strain energy\n",
+    "Eq=U2-(W*(h+ym))                                                         # Equation\n",
+    "\n",
+    "#Case(a) Maximum Deflection of Point C\n",
+    "E=73*(pow(10,9))                                                         # Modulus of elasticity(Pa) \n",
+    "I=(1/12)*((0.04)**4)                                                     # Moment of inertia(m**4)  \n",
+    "L=1                                                                      # Length(m)\n",
+    "h=0.040                                                                  # Height(m)\n",
+    "W=80*9.81                                                                # Force(N) \n",
+    "ym=solve(373.8*(pow(10,3))*(ym**2)-(784.8)*ym-31.39,ym)                  # Distance(mm)\n",
+    "\n",
+    "\n",
+    "#Case(b) Maximum Stress\n",
+    "Pm=48*(15.573*(pow(10,3)))*(0.01027)                                     # Force(N)\n",
+    "Sm=(((1/4)*(7677)*(0.020))/((1/12)*pow(0.040,4)))/(1000000)              # Stress(MPa)\n",
+    "\n",
+    "#Result\n",
+    "print('Maximum deflection of point C:-')\n",
+    "print(ym[1]*1000)\n",
+    "print('Maximum stress:-')\n",
+    "print(Sm)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_1_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_1_1.ipynb
new file mode 100644
index 00000000..fdcdcb33
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_1_1.ipynb
@@ -0,0 +1,282 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 1: Introduction—Concept of Stress\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 1.1, Page number 18 "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Shearing Stress in Pin A = 6790.6 psi\n",
+      "Case(b): Shearing Stress in Pin C = 7639 psi\n",
+      "Case(c): Largest Normal Stress in Link ABC = 2286 psi\n",
+      "Case(d): Average Shearing Stress at B = 171 psi\n",
+      "Case(e): Bearing Stress in Link at C = 6000 psi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "Fac = 750                             #Force on rod AC(lb)\n",
+    "D = 0.375                             #Diameter at the upper junction of rod ABC(in)\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a)\n",
+    "A=(1/4)*((math.pi)*pow(D,2))          #Area at the upper junction of rod ABC(in^2) \n",
+    "tA=(Fac/A)                            #Shearing Stress in Pin A(psi)   \n",
+    "#Case(b) \n",
+    "Ab=(1/4)*((math.pi)*pow(0.25,2))      #Area at the lower junction of rod ABC(in^2)\n",
+    "tC=(((1/2)*Fac)/Ab)                   #Shearing Stress in Pin C(psi)\n",
+    "#Case(c)\n",
+    "Anet=(3/8)*(1.25-0.375)               #Area of cross section at A(in^2)\n",
+    "sA=(Fac/Anet)                         #Largest Normal Stress in Link ABC(psi)\n",
+    "#Case(d)\n",
+    "F1=750/2                              #Force on each side(lb)\n",
+    "Ad=(1.25*1.75)                        #Area at junction B(in^2)\n",
+    "tB=(F1/Ad)                            #Average Shearing Stress at B\n",
+    "#Case(e)\n",
+    "Ae=0.25*0.25                          #Area at point C(in^2)\n",
+    "sB=(F1/Ae)                            #Bearing Stress in Link at C\n",
+    "\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Shearing Stress in Pin A = %.1f psi' %tA)\n",
+    "print('Case(b): Shearing Stress in Pin C = %.f psi' %tC)\n",
+    "print('Case(c): Largest Normal Stress in Link ABC = %.f psi' %sA)\n",
+    "print('Case(d): Average Shearing Stress at B = %.f psi' %tB)\n",
+    "print('Case(e): Bearing Stress in Link at C = %.f psi' %sB)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 1.2, Page number 19"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Diameter of the bolt = 28 mm\n",
+      "Case(b): Dimension b at Each End of the Bar = 62 mm\n",
+      "Case(c): Dimension h of the Bar = 34.300000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "P = 120                                             #Maximum allowable tension force \n",
+    "s = 175                                             #Maximum allowable stress\n",
+    "t = 100                                             #Maximum allowable stress\n",
+    "Sb = 350                                            #Maximum allowable stress\n",
+    "\n",
+    "\n",
+    "#Calculation\n",
+    "#Case(a)\n",
+    "F1=P/2         #Current(A)\n",
+    "d=math.sqrt(((P/2)*1000)/((22/(4*7))*(100000000)))  #Diameter of bolt(m)\n",
+    "d=d*1000                                            #Diameter of bolt(mm)\n",
+    "d=round(d,0)                                        #Rounding of the value of diameter of bolt(mm)\n",
+    "Ad=(0.020*0.028)                                    #Area of cross section of plate                                    \n",
+    "tb=((P*1000)/Ad)/(1000000)                          #Stress between between the 20-mm-thick plate and the 28-mm-diameter bolt\n",
+    "tb=round(tb,0)                                      #Rounding of the above calculated stress to check if it is less than 350\n",
+    "a=(P/2)/((0.02)*(175))                              #Dimension of cross section of ring \n",
+    "a=round(a,2)                                        #Rounding dimension of cross section of ring to two decimal places\n",
+    "b=28 + (2*(a))                                      #Dimension b at Each End of the Bar\n",
+    "b=round(b,2)                                        #Rounding the dimension b to two decimal places \n",
+    "h=(P)/((0.020)*(175))                               #Dimension h of the Bar\n",
+    "h=round(h,1)                                        #Rounding dimension h of bar to 1 decimal place\n",
+    "\n",
+    "\n",
+    "#Result\n",
+    "print ('Case(a): Diameter of the bolt = %.f mm' %d)\n",
+    "print ('Case(b): Dimension b at Each End of the Bar = %.f mm' %b)\n",
+    "print ('Case(c): Dimension h of the Bar = %f mm' %h)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 1.3, Page number 34"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Diameter of the bolt =  16.730000 mm\n",
+      "Case(a): Dimension b at Each End of the Bar =  22.000000 mm\n",
+      "Case(a): Dimension h of the Bar =  6.000000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "Su = 600    #ultimate normal stress(MPa)   \n",
+    "FS = 3.3    #Factor of safety with respect to failure\n",
+    "tU=350      #Ultimate shearing stress(MPa)\n",
+    "Cx=40       #X Component of reaction at C(kN)\n",
+    "Cy=65       #Y Component of reaction at C(kN)\n",
+    "Smax=300    #Allowable bearing stress of the steel \n",
+    "\n",
+    "#Calculation\n",
+    "C=math.sqrt((math.pow(40,2))+(math.pow(65,2)))\n",
+    "\n",
+    "#Case(a)\n",
+    "P=(15*0.6 + 50*0.3)/(0.6)  #Allowable bearing stress of the steel(MPa)\n",
+    "Sall=(Su/FS)               #Allowable Stress(MPa)\n",
+    "Sall=round(Sall,1)         #Rounding Allowable stress to 1 decimal place(MPa)\n",
+    "Areqa=(P/(Sall*(1000)))    #Cross Sectional area(m^2)\n",
+    "Areqa=round(Areqa,5)       #Rounding cross sectional area to 5 decimal places(m^2)\n",
+    "dAB=math.sqrt(((Areqa)*(4))/(22/7)) #Diameter of AB(m)\n",
+    "dAB=dAB*1000                        #Diameter of AB(mm)\n",
+    "dAB=round(dAB,2)                    #Rounding Diameter of AB(mm)\n",
+    "\n",
+    "#Case(b)\n",
+    "tALL=tU/FS                          #Stress(MPa)\n",
+    "tALL=round(tALL,1)                  #Rounding of Stress\n",
+    "AreqC=((C/2)/tALL)                  #Cross sectional area(m^2)\n",
+    "AreqC=AreqC*1000                    \n",
+    "AreqC=round(AreqC,0)                #Rounding the cross sectional area\n",
+    "dC=math.sqrt((4*AreqC)/(22/7))      #Diameter at point C\n",
+    "dC=round((dC+1),0)                  #Rounding of the diameter at C\n",
+    "\n",
+    "#Case(c)\n",
+    "\n",
+    "Areq=((C/2)/Smax)                   \n",
+    "Areq=Areq*1000                      #Cross sectional area(mm^2)\n",
+    "t=(Areq/22)                         #Thickness of the bracket\n",
+    "t=round(t,0)\n",
+    "\n",
+    "#Result\n",
+    "print ('Case(a): Diameter of the bolt = % f mm' %dAB)\n",
+    "print ('Case(a): Dimension b at Each End of the Bar = % f mm' %dC)\n",
+    "print ('Case(a): Dimension h of the Bar = % f mm' %t)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "## Example 1.4, Page number 35"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Control Rod  =  5.263672 kips\n",
+      "Case(b): Bolt at B =  5.156250 kips\n",
+      "Case(c): Bolt at D =  6.865179 kips\n",
+      "Case(d): Bolt at C =  5.238095 kips\n",
+      "Summary. We have found separately four maximum allowable values of the force C. In order to satisfy all these criteria we must choose the smallest value, namely:=  5.156250 kips\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "tU=40                                     #ultimate tensile stress\n",
+    "sU=60                                     #ultimate shearing stress\n",
+    "FS=3                                      #Mimnimum factor of safety\n",
+    "dA=(7/16)                                 #Diameter of bolt at A(in)\n",
+    "dB=3/8                                    #Diameter of bolt at B(in) \n",
+    "dD=3/8                                    #Diameter of bolt at D(in)\n",
+    "dC=1/2                                    #Diameter of bolt at C(in)\n",
+    "\n",
+    "\n",
+    "#Calculation\n",
+    "Sall=(sU/FS)                              #Total tensile stress(kips)\n",
+    "B=Sall*((1/4)*(22/7)*(pow((7/16),2)))     #Allowable force in the control rod(kips)\n",
+    "C1=1.75*(B)                               #Control Rod(kips)\n",
+    "tall=(tU/FS)                              #Total shearing stress\n",
+    "B=2*(tall*(1/4)*(22/7)*(3/8)*(3/8))       #Allowable magnitude of the force B exerted on the bolt\n",
+    "C2=1.75*B                                 #Bolt at B(kips)                       \n",
+    "D=B                                       #Bolt at D. Since this bolt is the same as bolt B, the allowable force is same(kips) \n",
+    "C3=2.33*D                                 #Bolt at D(kips)\n",
+    "C4=2*(tall*(1/4)*(22/7)*(1/2)*(1/2))      #Bolt at C(kips)      \n",
+    "list1=[C1,C2,C3,C4]                       #Adding all the maximum allowable forces on C(kips) \n",
+    "\n",
+    "\n",
+    "#Result\n",
+    "print ('Case(a): Control Rod  = % f kips' %C1)\n",
+    "print ('Case(b): Bolt at B = % f kips' %C2)\n",
+    "print ('Case(c): Bolt at D = % f kips' %C3)\n",
+    "print ('Case(d): Bolt at C = % f kips' %C4)\n",
+    "print ('Summary. We have found separately four maximum allowable values of the force C. In order to satisfy all these criteria we must choose the smallest value, namely:= % f kips' %min(list1));"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_2_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_2_1.ipynb
new file mode 100644
index 00000000..d53593ca
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_2_1.ipynb
@@ -0,0 +1,1098 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "# Chapter 2 : Stress and Strain—Axial Loading"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.01, Page number 69"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Deformation of the steel rod = 0.075900 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=29*(pow(10,6))                                                   # Modulus of elasticity(psi)                        \n",
+    "L1=12                                                              # Length(in) \n",
+    "L2=12                                                              # Length(in)\n",
+    "L3=16                                                              # Length(in)\n",
+    "A1=0.9                                                             # Area(in**2) \n",
+    "A2=0.9                                                             # Area(in**2)\n",
+    "A3=0.3                                                             # Area(in**2) \n",
+    "P1=60*(pow(10,3))                                                  # Internal force(lb)\n",
+    "P2=15*(pow(10,3))                                                  # Internal force(lb)\n",
+    "P3=30*(pow(10,3))                                                  # Internal force(lb)\n",
+    "\n",
+    "#Calculation         \n",
+    "Delta=round((1/E)*(((P1*L1)/A1)+(-(P2*L2)/A2)+((P3*L3)/A3)),4)     # deformation of the steel rod(in)\n",
+    "\n",
+    "#Result\n",
+    "print ('Deformation of the steel rod = %lf in' %Delta)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 2.1, Page number 70"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Deflection of B = -0.514286 psi\n",
+      "Case(b): Deflection of D = 0.300000 psi\n",
+      "Case(c): Deflection of E = 1.928223 psi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Eab=70*(pow(10,9))                                                 # Modulus of elasticity of AB(GPa)  \n",
+    "Aab=500*(pow(10,-6))                                               # Cross sectional area of AB(mm**2) \n",
+    "Ecd=200*(pow(10,9))                                                # Modulus of elasticity of CD(GPa)\n",
+    "Acd=600*(pow(10,-6))                                               # Cross sectional area of CD(mm**2) \n",
+    "Fe=30                                                              # Force(kN) \n",
+    "Pb=-60*(pow(10,3))                                                 # Internal force in link AB(kN)\n",
+    "n=-1\n",
+    "Pd=90*(pow(10,3))                                                  # Internal force in link CD(kN)\n",
+    "Lab=0.3                                                            # Length of AB(m)\n",
+    "Lcd=0.4                                                            # Length of CD(m)\n",
+    "x=symbols('x')                                                     # Variable declaration \n",
+    "Se=symbols('Se')                                                   # Variable declaration\n",
+    "\n",
+    "#Calculation         \n",
+    "#Free Body: Bar BDE\n",
+    "Fcd=(30*0.6)/(0.2)                                                 # Force of tension(kN)\n",
+    "Fab=n*(30*0.4)/(0.2)                                               # Force of compression(kN)\n",
+    "\n",
+    "#Case(a)\n",
+    "#Deflection of B.\n",
+    "Sb=((Pb*Lab)/(Aab*Eab))*(1000)                                              # Deflection of B(mm)\n",
+    "\n",
+    "#Case(b)\n",
+    "#Deflection of D.\n",
+    "Sd=((Pd*Lcd)/(Acd*Ecd))*(1000)                                              # Deflection of D(mm)\n",
+    "\n",
+    "#Case(c)\n",
+    "#Deflection of E.\n",
+    "x=solve(((200-x)/x)-((0.514)/(0.300)),x)                           # Distance HD(mm)\n",
+    "Se=solve(((400+73.7)/73.7)-(Se/0.300),Se)                          # Deflection of E(mm)\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Deflection of B = %1f psi' %Sb)\n",
+    "print('Case(b): Deflection of D = %lf psi' %Sd)\n",
+    "print('Case(c): Deflection of E = %lf psi' %Se[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "## SAMPLE PROBLEM 2.2, Page number 71"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Stress in rod = 10.533169 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Lb=18                                                        # Length of Bolt CD(in)\n",
+    "Pb=symbols('Pb')                                             # Force(kips)\n",
+    "Ab=((1/4)*(math.pi)*pow(0.75,2))                             # Area of cross section of CD and GH(in**2)                                                \n",
+    "Eb=(29*(pow(10,6)))                                          # Modulus of elasticity of steel(psi)\n",
+    "Lr=12                                                        # Length of Bolt EF(in)\n",
+    "Pr=symbols('Pr')                                             # Force(kips)\n",
+    "Ar=((1/4)*(math.pi)*pow(1.5,2))                              # Area of cross section of EF(in**2)                             \n",
+    "Er=((10.6)*(pow(10,6)))                                      # Modulus of elasticity of aluminium(psi)\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "# Bolts CD and GH\n",
+    "Sb=((Pb*Lb)/(Ab*Eb))                                         # Deformation        \n",
+    "\n",
+    "# Rod EF\n",
+    "Sr=n*((Pr*Lr)/(Ar*Er))                                       # Deformation\n",
+    "\n",
+    "# Displacement of D Relative to B\n",
+    "Eq=(1/4)*(0.1)-Sb+Sr                                         # Because displacements are equal to the deformations of the bolts and of the rod\n",
+    "\n",
+    "# Free Body: Casting B\n",
+    "#Pr-2*Pb=0                                                   # Submission of forces is zero\n",
+    "\n",
+    "# Forces in Bolts and Rod\n",
+    "Pb=(solve((Eq).subs(Pr,(2*Pb)))[0])/(1000)                   # Force in the bolt(kips)                                     \n",
+    "Pr=2*Pb                                                      # Force in th rod(kips) \n",
+    "\n",
+    "# Stress in Rod\n",
+    "er=Pr/Ar                                                     # Stress in rod(ksi)\n",
+    "\n",
+    "\n",
+    "#Result\n",
+    "print('Stress in rod = %1f ksi' %er)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.02, Page number 78"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Deformation in the rod :-\n",
+      "L*P/(A1*E1 + A2*E2)\n",
+      "Deformation in the tube :-\n",
+      "L*P/(A1*E1 + A2*E2)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P1=symbols('P1')                                            # Axial force \n",
+    "L=symbols('L')                                              # Length of rod\n",
+    "A1=symbols('A1')                                            # Cross section of rod\n",
+    "E1=symbols('E1')                                            # Modulus of elasticity\n",
+    "P2=symbols('P2')                                            # Axial force\n",
+    "A2=symbols('A2')                                            # Cross section of rod\n",
+    "E2=symbols('E2')                                            # Modulus of elasticity     \n",
+    "P=symbols('P')                                              # Total axial force \n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "S1=(P1*L)/(A1*E1)                                           # Deforamation in rod \n",
+    "S2=(P2*L)/(A2*E2)                                           # Deformation in rod\n",
+    "\n",
+    "P1=((P2)/(A2*E2))*(A1*E1)                                   # Equating deformations S1 and S2 \n",
+    "\n",
+    "P2=solve(P1-P+P2,P2)                                        # Solving the above equation for P2\n",
+    "P1=((P2[0]/(A2*E2))*(A1*E1))                                # Solving for P1  \n",
+    "S1=(P1*L)/(A1*E1)\n",
+    "S2=(P2[0]*L)/(A2*E2)\n",
+    "\n",
+    "#Result\n",
+    "print(\"Deformation in the rod :-\")\n",
+    "print(S1)\n",
+    "print(\"Deformation in the tube :-\")\n",
+    "print(S2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.03, Page number 79"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Stress in AC :-\n",
+      "L1*P1/(A*E)\n",
+      "Stress in BC :-\n",
+      "L2*P2/(A*E)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import *\n",
+    "\n",
+    "#Variable declaration\n",
+    "Ra=symbols('Ra')                                                # Reaction at A\n",
+    "Rb=symbols('Rb')                                                # Reaction at B\n",
+    "P=symbols('P')                                                  # Net reaction \n",
+    "S=symbols('S')                                                  # Total elongation\n",
+    "S1=symbols('S1')                                                # Elongation of AC\n",
+    "S2=symbols('S2')                                                # Elongation of BC\n",
+    "L1=symbols('L1')                                                # Length of AC\n",
+    "L2=symbols('L2')                                                # Length of BC\n",
+    "P1=symbols('P1')                                                # Internal force   \n",
+    "P2=symbols('P2')                                                # Internal force\n",
+    "A=symbols('A')                                                  # Area of cross section\n",
+    "E=symbols('E')                                                  # Modulus of elasticity \n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "S1=(P1*L1)/(A*E)                                                # Elongation of AC                                               \n",
+    "S2=(P2*L2)/(A*E)                                                # Elongation of BC\n",
+    "S=S1+S2                                                         # Total elongation of the bar \n",
+    "S=0                                                             # Total elongation of the bar is zero  \n",
+    "\n",
+    "x=solve((Ra*L1-Rb*L2, Ra+Rb-P), Ra, Rb)                         # Solving the equations to find reactions at A and B. \n",
+    "\n",
+    "e1=(x[Ra])/A                                                    # Stress in AC\n",
+    "e2=(x[Rb])/A                                                    # Stress in BC\n",
+    "\n",
+    "#Result\n",
+    "print(\"Stress in AC :-\")\n",
+    "print(S1)\n",
+    "print(\"Stress in BC :-\")\n",
+    "print(S2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.04, Page number 80"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Reaction at A = 577823.076923\n",
+      "Reaction at B = 576923.076923\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P1=0                                                                # Force in the first portion(N)       \n",
+    "P2=600*(pow(10,3))                                                  # Force in the second portion(N)\n",
+    "P3=600*(pow(10,3))                                                  # Force in the third portion(N)\n",
+    "P4=900*(pow(10,3))                                                  # Force in the forth portion(N)   \n",
+    "E=symbols('E')                                                      # Modulus of elasticity\n",
+    "Rb=symbols('Rb')                                                    # Reaction at B(N) \n",
+    "n=-1\n",
+    "\n",
+    "A1=400*(pow(10,-6))                                                 # Area of cross section of first portion(m**2)\n",
+    "A2=400*(pow(10,-6))                                                 # Area of cross section of second portion(m**2)   \n",
+    "A3=250*(pow(10,-6))                                                 # Area of cross section of third portion(m**2)\n",
+    "A4=250*(pow(10,-6))                                                 # Area of cross section of forth portion(m**2)\n",
+    "\n",
+    "L1=0.150                                                            # Length of first portion(m) \n",
+    "L2=0.150                                                            # Length of second portion(m)\n",
+    "L3=0.150                                                            # Length of third portion(m)\n",
+    "L4=0.150                                                            # Length of forth portion(m)\n",
+    "\n",
+    "#Calculation         \n",
+    "Sl=((600*(pow(10,3)))/(400*(pow(10,-6))) + (600*(pow(10,3)))/(250*(pow(10,-6))) + (900*(pow(10,3)))/(250*(pow(10,-6))))*(0.150/E)        # Deformation(m)   \n",
+    "P1=n*Rb                                                             # Force on first portion(N)  \n",
+    "P2=n*Rb                                                             # Force on second portion(N) \n",
+    "A1=400*(pow(10,-6))                                                 # Area of cross section of first portion(m**2)\n",
+    "A2=250*(pow(10,-6))                                                 # Area of cross section of second portion(m**2)\n",
+    "L1=0.300                                                            # Length of first portion(m) \n",
+    "L2=0.300                                                            # Length of second portion(m)\n",
+    "\n",
+    "Sr=(P1*L1)/(A1*E) + (P2*L2)/(A2*E)                                  # Deformation(m)\n",
+    "\n",
+    "Rb=solve(Sl+Sr,Rb)                                                  # Reaction at B(N)\n",
+    "\n",
+    "Ra=900+(Rb[0])                                                      # Reaction at A(N)    \n",
+    "\n",
+    "#Result\n",
+    "print('Reaction at A = %lf' %Ra)\n",
+    "print('Reaction at B = %lf' %Rb[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.05, Page number 81"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Reaction at A = 784.615385\n",
+      "Reaction at B = 115.384615\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=200*(pow(10,9))                                                   # Modulus of elasticity(GPa)\n",
+    "Rb=symbols('Rb')                                                    # Reaction at B(N) \n",
+    "Ra=symbols('Ra')                                                    # Reaction at A(N)\n",
+    "#Calculation         \n",
+    "Rb=(solve(((1.125*(pow(10,9)))/(200*(pow(10,9))))-(((1.95*(pow(10,3)))*Rb)/(200*(pow(10,9))))-(4.5*(pow(10,-3))),Rb))[0]/(10**3) # Solving for Rb(N)\n",
+    "Ra=solve(Ra-900+Rb,Ra)                                              # Solving for Ra(N)   \n",
+    "\n",
+    "#Result\n",
+    "print('Reaction at A = %lf' %Ra[0])\n",
+    "print('Reaction at B = %lf' %Rb)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.06, Page number 84"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Stress in portion AC = 31.416667\n",
+      "Stress in portion CB = 15.708333\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=29*(pow(10,6))                                                           # Modulus of elasticity(psi)\n",
+    "Alpha=6.5*(pow(10,-6))                                                     # Constant(/F)\n",
+    "L1=12                                                                      # Length of AC(m)\n",
+    "L2=12                                                                      # Length of CB(m)\n",
+    "A1=0.6                                                                     # Area of cross section of AC(m**2)\n",
+    "A2=1.2                                                                     # Area of cross section of BC(m**2) \n",
+    "Rb=symbols('Rb')                                                           # Reaction at B(N)\n",
+    "P1=Rb                                                                      # Internal force(N)\n",
+    "P2=Rb                                                                      # Internal force(N)\n",
+    "DELTAt=n*(50+75)                                                           # Diff in temperature(F)\n",
+    "AC=12                                                                      # Length of AC(m)\n",
+    "CB=12                                                                      # Length of CB(m)\n",
+    "\n",
+    "#Calculation\n",
+    "St=Alpha*DELTAt*24                                                         # Deformation(in)\n",
+    "Sr=((P1*L1)/(A1*E)) +  ((P2*L2)/(A2*E))                                    # Deformation(in)\n",
+    "\n",
+    "Rb=(solve(St+Sr,Rb))[0]/(1000)                                             # Reaction at B(kips) \n",
+    "S1=(Rb)/A1                                                                 # Stress in portion AC(ksi)\n",
+    "S2=(Rb)/A2                                                                 # Stress in portion CB(ksi)\n",
+    "\n",
+    "Et=Alpha*DELTAt                                                            # Thermal strain(in./in.) \n",
+    "Ratio=S1/E                                                                 # Other component of eAC(in./in.)\n",
+    "Eac=Et + S1/E                                                              # Component of strain in AC(in)\n",
+    "Ecb=Et + S2/E                                                              # Component of strain in CB(in) \n",
+    "\n",
+    "Sac=Eac*(AC)                                                               # Deformation of rod AC(in)\n",
+    "Scb=Ecb*(CB)                                                               # Deformation of rod CB(in)\n",
+    "\n",
+    "#Result\n",
+    "print('Stress in portion AC = %lf' %S1)\n",
+    "print('Stress in portion CB = %lf' %S2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 2.3, Page number 86"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Force in rod DF = 7.5 psi\n",
+      "Case(a): Force in rod CE = 2.497916 psi\n",
+      "Case(b): Deflection of point A = 0.043249 psi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "Ldf=30                                                                 # Length of DF(in)\n",
+    "Adf=(1/4)*(math.pi)*(3/4)*(3/4)                                        # Cross sectional area of DF(in**2) \n",
+    "Lce=24                                                                 # Length of CE(in)\n",
+    "Ace=(1/4)*(math.pi)*(1/2)*(1/2)                                        # Cross sectional area of DF(in**2) \n",
+    "E=(10.6*pow(10,6))                                                     # Molulus of elasticity(psi)\n",
+    "Fce=symbols('Fce')                                                     # Force on CE(N)  \n",
+    "Fdf=symbols('Fdf')                                                     # Force on DF(N)\n",
+    "Sd=symbols('Sd')                                                       # Force on CE(N)  \n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "# Statics\n",
+    "Eq=Fce*12 +  Fdf*20  - 180                                             # Because submission of Mb is 0   \n",
+    "\n",
+    "# Geometry\n",
+    "Sc=0.6*Sd                                                              # By using similar triangles\n",
+    "Sa=0.9*Sd                                                              # By using similar triangles\n",
+    "\n",
+    "# Deformations\n",
+    "Sc=(Fce*Lce)/(Ace*E)                                                   # Deformation at C(in) \n",
+    "Sd=(Fdf*Ldf)/(Adf*E)                                                   # Deformation at D(in)  \n",
+    "Fce=0.333*Fdf                                                          # By solving Sc= 0.6*Sd we get this result\n",
+    "\n",
+    "# Force in Each Rod\n",
+    "Fdf=(180/(((12)*(0.333))+20))                                          # By using Eq and the value of Fce   \n",
+    "Fce=0.333*Fdf                                                          # Force in CE(N)\n",
+    "\n",
+    "# Case(b)\n",
+    "# Deflections\n",
+    "Sd=(Fdf*(pow(10,3))*Ldf)/(Adf*E)                                       # Deflection of point D(in)\n",
+    "Sa=0.9*Sd                                                              # Deflection of point A(in) \n",
+    "\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Force in rod DF = %.1f psi' %Fdf)\n",
+    "print('Case(a): Force in rod CE = %lf psi' %Fce)\n",
+    "print('Case(b): Deflection of point A = %lf psi' %Sa)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 2.4, Page number 87"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Stress in cylinder = 44.8 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "\n",
+    "Ldf=30                                                                 # Length of DF(in)\n",
+    "Adf=(1/4)*(math.pi)*(3/4)*(3/4)                                        # Cross sectional area of DF(in**2) \n",
+    "Lce=24                                                                 # Length of CE(in)\n",
+    "Ace=(1/4)*(math.pi)*(1/2)*(1/2)                                        # Cross sectional area of DF(in**2) \n",
+    "E=(10.6*pow(10,6))                                                     # Molulus of elasticity(psi)\n",
+    "Fce=symbols('Fce')                                                     # Force on CE(N)  \n",
+    "Fdf=symbols('Fdf')                                                     # Force on DF(N)\n",
+    "Sd=symbols('Sd')                                                       # Force on CE(N)  \n",
+    "Rb=symbols('Rb')                                                       # Reaction at B(m)   \n",
+    "\n",
+    "\n",
+    "#Calculation  \n",
+    "Ra=0.4*Rb                                                              # By considering the free body motion\n",
+    "L=0.3                                                                  # Length of rod DE(m) \n",
+    "DeltaT=30                                                              # Change in temperature(C)  \n",
+    "Alpha=(20.9*pow(10,-6))                                                # Constant(/C)\n",
+    "A=(1/4)*(math.pi)*(pow(0.22,2))                                        # Area of cross-section of rod AC(m**2)\n",
+    "E=200                                                                  # Molulus of elasticity(psi)\n",
+    "\n",
+    "St=L*(DeltaT)*Alpha                                                    # Deflection(m)\n",
+    "\n",
+    "temp=(L/(A*E))                    \n",
+    "Sc=str(temp)+'*Ra'                                                     # Deflection(m)  \n",
+    "\n",
+    "Sd=str(0.4)+'*Sc'                                                      # Deflection(m)\n",
+    "Sd=4.74*pow(10,-9)                                                     # After computing the above equation\n",
+    "\n",
+    "Sbd=str(4.04*pow(10,-9))+'*Ra'                                         # Deflection(m)\n",
+    "\n",
+    "S1=str(5.94*pow(10,-9))+'*Rb'                                          # Deflection(m)\n",
+    "\n",
+    "Rb=((188.1*pow(10,-6))/(5.94*pow(10,-9)))/(pow(10,3))                  # Reaction at B(m) \n",
+    "\n",
+    "db=((round(Rb,1))/((1/4)*(math.pi)*(pow(0.03,2))))/(pow(10,3))         # Stress in cylinder(MPa)\n",
+    "\n",
+    "#Result\n",
+    "print('Stress in cylinder = %.1f MPa' %db)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.07, Page number 94"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Modulus of elasticity = 99471839.4 GPa\n",
+      "Poissons ratio = 0.2 \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=12*(pow(10,3))                                                                  # Axial load(kN)\n",
+    "r=8*(pow(10,-3))                                                                  # Radius of the rod(m)\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation\n",
+    "A=(math.pi)*(r**2)                                                                # Cross sectional area of rod(m**2)\n",
+    "Sx=(P/A)                                                                          # Stress in cylinder(MPa) \n",
+    "Ex=(300/500)                                                                      # Strain()\n",
+    "Ey=(n*(2.4))/16                                                                   # Strain()\n",
+    "\n",
+    "E=Sx/Ex                                                                           # Modulus of elasticity(GPa)\n",
+    "v=n*(Ey/Ex)                                                                       # Poissons ratio()  \n",
+    "\n",
+    "#Result\n",
+    "print('Modulus of elasticity = %.1f GPa' %E)\n",
+    "print('Poissons ratio = %.1f ' %v)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.08, Page number 96"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Change in length in y direction = -0.000600 in\n",
+      "Change in length in z direction = -0.000900 in\n",
+      "Pressure = 20.7 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E=29*(pow(10,6))                                                     # Modulus of elasticity(GPa)\n",
+    "v=0.29                                                               # Poissons ratio()\n",
+    "Sx=symbols('Sx')                                                     # Strain variable \n",
+    "Sy=symbols('Sy')                                                     # Strain variable\n",
+    "Sz=symbols('Sz')                                                     # Strain variable\n",
+    "Ex=symbols('Ex')                                                     # Stress variable\n",
+    "Ey=symbols('Ey')                                                     # Stress variable\n",
+    "Ez=symbols('Ez')                                                     # Stress variable\n",
+    "p=symbols('p')                                                       # pressure\n",
+    "n=-1\n",
+    "Sx=n*p                                                               # Strain at x\n",
+    "Sy=n*p                                                               # Strain at y\n",
+    "Sz=n*p                                                               # Strain at z \n",
+    "Ey=Ez=Ex                                                             # Equating all the stresses\n",
+    "\n",
+    "#Calculation\n",
+    "# Case(a)\n",
+    "Ex=((n*p)*(1-(2*v)))/E                                               # Stress                                             \n",
+    "Ex=(n*1.2*(pow(10,3)))/4                                             # Stress(in./in)\n",
+    "DELTAy=n*(300*(pow(10,-6)))*(2)                                       # Change in length(in)\n",
+    "DELTAz=n*(300*(pow(10,-6)))*(3)                                       # Change in length(in)  \n",
+    "# Case(b)\n",
+    "p=(solve(p+((29*(pow(10,6)))*(n*300*(pow(10,-6))))/(1-0.58),p)[0])/(pow(10,3))          # pressure(ksi)\n",
+    "\n",
+    "#Result\n",
+    "print('Change in length in y direction = %1f in' %DELTAy)\n",
+    "print('Change in length in z direction = %1f in' %DELTAz)\n",
+    "print('Pressure = %.1f ksi' %p)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.09, Page number 98"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Change in volume = -217.728000 mm**3\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "p=180                                                               # Hydrostatic pressure(MPa)\n",
+    "E=200                                                               # Modulus of elasticity(GPa)\n",
+    "v=0.29                                                              # Poissons ratio() \n",
+    "\n",
+    "#Calculation\n",
+    "k=E/(3*(1-(2*v)))                                                   # Bulk modulus of steel(GPa)\n",
+    "e=-p/k                                                              # Dialation \n",
+    "V=80*40*60                                                          # Volume of block in unstressed state(mm**3)\n",
+    "DELTAv=(e*V)/(pow(10,3))                                            # change in volume per unit volume\n",
+    "\n",
+    "# Results\n",
+    "print('Change in volume = %1f mm**3' %DELTAv)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.10, Page number 101"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Shearing strain in rod=0.020000 rad\n",
+      "Force exerted on the upper plate=36.000000 kips\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "G=90                                                                      # Modulus of rigidity(ksi)\n",
+    "disp=0.04                                                                 # Displacement of upper rod(in)\n",
+    "Lda=2                                                                     # Height of bar(in)\n",
+    "A=8*2.5                                                                   # Area of cross section(in**2)\n",
+    "\n",
+    "#Calculation\n",
+    "Yxy=(disp/Lda)                                                            # Shearing strain(rad)\n",
+    "Txy=(90*(pow(10,3)))*(0.020)                                              # Shearing stress(psi) \n",
+    "P=(Txy*A)/(pow(10,3))                                                     # Force exerted on the upper plate(kips) \n",
+    "\n",
+    "# Results\n",
+    "print('Shearing strain in rod=%1f rad' %Yxy)\n",
+    "print('Force exerted on the upper plate=%1f kips' %P)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.11, Page number 105"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Change in cube dimension in x direction=-14.981914 um\n",
+      "Change in cube dimension in y direction=0.000000 um\n",
+      "Change in cube dimension in z direction=5.443356 um\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Ex=155.0                                                                      # Modulus of elasticity in x direction(GPa)\n",
+    "Ey=12.10                                                                      # Modulus of elasticity in y direction(GPa)\n",
+    "Ez=12.10                                                                      # Modulus of elasticity in z direction(GPa)\n",
+    "Vxy=0.248                                                                     # Poissons ratio in xy direction\n",
+    "Vxz=0.248                                                                     # Poissons ratio in xz direction\n",
+    "Vyz=0.458                                                                     # Poissons ratio in yz direction\n",
+    "n=-1\n",
+    "F=140*(pow(10,3))                                                             # Compressive load(kN)\n",
+    "L=0.060                                                                       # Length of cube(m)\n",
+    "\n",
+    "#Calculation\n",
+    "#(a) Free in y and z Directions\n",
+    "Sx=(n*F)/(0.060*0.060)                                                        # Stress in x direction(MPa)\n",
+    "Sy=0                                                                          # Stress in y direction(MPa) \n",
+    "Sz=0                                                                          # Stress in z direction(MPa)  \n",
+    "ex=Sx/Ex                                                                      # Lateral strains \n",
+    "ey=n*((Vxy*Sx)/Ex)                                                            # Lateral strains \n",
+    "ez=n*((Vxy*Sx)/Ex)                                                            # Lateral strains\n",
+    "DELTAx=ex*L                                                                   # Change in cube dimension in x direction(um) \n",
+    "DELTAy=ey*L                                                                   # Change in cube dimension in y direction(um)\n",
+    "DELTAz=ez*L                                                                   # Change in cube dimension in z direction(um)\n",
+    "#(b) Free in z Direction, Restrained in y Direction\n",
+    "Sx=n*38.89                                                                    # Stress in x direction(MPa)\n",
+    "Sy=(Ey/Ex)*(Vxy)*(Sx)                                                         # Stress in y direction(MPa) \n",
+    "Vyx=(Ey/Ex)*(Vxy)                                                             # Poissons ratio\n",
+    "ex=(Sx/Ex)-(((Vyx)*(Sy))/Ey)                                                  # Lateral strains in x direction\n",
+    "ey=0                                                                          # Lateral strains in y direction\n",
+    "ez=n*((Vxz*Sx)/Ex)-(((Vyz)*(Sy))/Ey)                                          # Lateral strains in z direction\n",
+    "DELTAx=ex*L*1000                                                              # Change in cube dimension in x direction(um) \n",
+    "DELTAy=ey*L                                                                   # Change in cube dimension in y direction(um)\n",
+    "DELTAz=ez*L*1000                                                              # Change in cube dimension in z direction(um)\n",
+    "\n",
+    "# Results\n",
+    "print('Change in cube dimension in x direction=%1f um' %DELTAx)\n",
+    "print('Change in cube dimension in y direction=%1f um' %DELTAy)\n",
+    "print('Change in cube dimension in z direction=%1f um' %DELTAz)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 2.5, Page number 107"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Change in diamter of rod AB =0.004800 in\n",
+      "Change in diamter of rod CD =0.014400 in\n",
+      "Change in thickness =-0.000800 in\n",
+      "Volume of the plate =0.180000 in**3\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "d=9                                                                              # Diameter of the rod(in)\n",
+    "t=3/4                                                                            # Thickness of the rod(in)\n",
+    "ex=12                                                                            # Normal stresses(ksi) \n",
+    "ez=20                                                                            # Normal stresses(ksi)\n",
+    "E=(10*pow(10,6))                                                                 # Moduluus of elasticity(psi)\n",
+    "v=(1/3)                                                                          # Poissons ratio\n",
+    "V=15*15*(3/4)                                                                    # Volume(in**3)\n",
+    "\n",
+    "\n",
+    "#Calculation\n",
+    "STRAINx=(1/pow(10,7))*(12-(20/3))*(1000)                                         # Strain in x direction(in./in) \n",
+    "STRAINy=n*(1/pow(10,7))*((12/3)+(20/3))*(1000)                                   # Strain in y direction(in./in)\n",
+    "STRAINz=(1/pow(10,7))*(20-(12/3))*(1000)                                         # Strain in z direction(in./in)\n",
+    "\n",
+    "\n",
+    "#Case(a) \n",
+    "DELTAba=(STRAINx)*(d)                                                            # Change in diameter(in)\n",
+    "#Case(b) \n",
+    "DELTAcd=(STRAINz)*(d)                                                            # Change in diameter(in)\n",
+    "#Case(c) \n",
+    "DELTAt=(STRAINy)*(t)                                                             # Change in thickness(in)\n",
+    "#Case(d)          \n",
+    "e=(STRAINx+STRAINy+STRAINz)                                                      # Volume of the plate(in**3)\n",
+    "DeltaV=(e*V)         \n",
+    "\n",
+    "# Results\n",
+    "print('Change in diamter of rod AB =%1f in' %DELTAba)\n",
+    "print('Change in diamter of rod CD =%1f in' %DELTAcd)\n",
+    "print('Change in thickness =%1f in' %DELTAt)\n",
+    "print('Volume of the plate =%1f in**3' %DeltaV)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.12, Page number 116"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Largest Axial Load =36.300000 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "D=60                                                                       # Width(mm) \n",
+    "d=40                                                                       # Width(mm)\n",
+    "r=8                                                                        # Radius(mm)\n",
+    "K=1.82                                                                     # Stress-concentration factor\n",
+    "Smax=165                                                                   # Allowable normal stress(MPa)\n",
+    "\n",
+    "#Calculation\n",
+    "eave=(165/1.82)                                                            # Average stress in the narrower portion(MPa) \n",
+    "P=round((40*10*eave)/(1000),1)                                             # Largest Axial Load(kN)\n",
+    "\n",
+    "# Results\n",
+    "print('Largest Axial Load =%1f in' %P)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 2.13, Page number 117"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Permanent set deformation =6.250000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "L=500                                                                     # Length of rod(mm)\n",
+    "A=60                                                                      # Cross Sectional area(mm**2)\n",
+    "E=200                                                                     # Modulus of elasticity(GPa)\n",
+    "ey=300                                                                    # Yield Point(MPa)                                                                \n",
+    "DELTAc=7                                                                  # Stretch(mm)  \n",
+    "\n",
+    "#Calculation\n",
+    "ec=DELTAc/L                                                               # Maximum strain permitted on point C\n",
+    "ey=(ey*(pow(10,6)))/(E*(pow(10,9)))                                       # Maximum strain permitted on point Y \n",
+    "ed=ec-ey                                                                  # Strain after unloading\n",
+    "DELTAd=ed*L                                                               # Deformation(mm)\n",
+    "\n",
+    "# Results\n",
+    "print('Permanent set deformation =%1f mm' %DELTAd)                         "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 2.6, Page number 123"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Required maximum value of Q =240.0 mm\n",
+      "The final position of the beam =11.000000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Lad=2                                                          # Length of AD(m)\n",
+    "Lce=5                                                          # Length of CE(m)  \n",
+    "E=200                                                          # Modulus of elasticity(GPa)\n",
+    "ey=300                                                         # Stress(MPa)\n",
+    "Aad=400                                                        # Area of cross section of AD(mm**2)\n",
+    "Ace=500                                                        # Area of cross section of CE(mm**2)\n",
+    "STRAINad=ey/E                                                  # Stress(MPa)                                                         # \n",
+    "\n",
+    "#Calculation\n",
+    "Pad=symbols('Pad')                                             # Variable declaration\n",
+    "Pce=symbols('Pce')                                             # Variable declaration\n",
+    "Pce=Pad\n",
+    "Q=symbols('Q')                                                 # Variable declaration\n",
+    "Q=2*Pad                                                        # Force(kN)    \n",
+    "d=ey                                                           # Maximum elastic deflection of point A\n",
+    "PadM=ey*Aad                                                    # Maximum force(kN)   \n",
+    "Q=(2*PadM)/(1000)                                                        # Maximum force(kN)\n",
+    "Sa1=STRAINad*Lad                                               # Maximum deflection of point A(mm)\n",
+    "Pce=120                                                        # This implies Pad is also 120\n",
+    "ece=Pce/Ace                                                    # Stress in rod CE(MPa)\n",
+    "STRAINce=ece/E                                                 # Strain CE\n",
+    "Sc1=STRAINce*Lce                                               # Deflection of point C(mm)\n",
+    "Sb=(1/2)*(Sa1+Sc1)                                             # Deflection of point B(mm)\n",
+    "\n",
+    "# Since we must have Sb 10 mm, we conclude that plastic deformation will occur.\n",
+    "\n",
+    "# Plastic Deformation\n",
+    "eAD=ey                              # Equating stresses\n",
+    "Sc=6                                # Deflection in C(mm)\n",
+    "Sa2=symbols('Sa2')                  # Variable declaration \n",
+    "Sa2=solve(((1/2)*(Sa2+6)-10),Sa2)   # The deflection Sa for which Sb = 10\n",
+    "\n",
+    "# Unloading\n",
+    "Sa3=14-3                            #Since the stress in rod CE remained within the elastic range, we note that the final deflection of point C is zero.\n",
+    "\n",
+    "print('Required maximum value of Q =%.1f mm' %Q)\n",
+    "print('The final position of the beam =%1f mm' %Sa3)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_3_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_3_1.ipynb
new file mode 100644
index 00000000..b4b629d6
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_3_1.ipynb
@@ -0,0 +1,980 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 3 : Torsion"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.01, Page number 150"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Largest permissible torque that can be applied to the shaft = 4.084070 kN\n",
+      "Minimum shearing stress that can be applied to the shaft = 80.000000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "l=1.5                                                 # length of the cylindrical shaft\n",
+    "Tmax=120                                              # Maximum allowable torque\n",
+    "c1=0.02                                               # Inner radius \n",
+    "c2=0.03                                               # Outer radius\n",
+    "\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a)\n",
+    "J=(1/2)*(math.pi)*(c2**4-c1**4)                       # Polar moment of inertia \n",
+    "c=c2                                                  # Letting c equal to c2\n",
+    "T=((J*Tmax*(pow(10,6)))/(c))/(1000)                   # Largest Permissible Torque\n",
+    "#Case(b)\n",
+    "Tmin=(c1/c2)*(Tmax)                                   # Minimum Shearing Stress\n",
+    "\n",
+    "#Result\n",
+    "print ('Largest permissible torque that can be applied to the shaft = %lf kN' %T)\n",
+    "print ('Minimum shearing stress that can be applied to the shaft = %lf MPa' %Tmin)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.1, Page number 152"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum shearing stress in shaft BC = 86.229980 MPa\n",
+      "Minimum shearing stress in shaft BC = 64.650000 MPa\n",
+      "Required diamter of the shafts AB and CD = 78.353203 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Din=90/(1000)                                                               # Inner diamter of shaft BC(m)                          \n",
+    "Dout=120/(1000)                                                             # Outer diamter of shaft BC(m)\n",
+    "Tab=symbols('Tab')\n",
+    "Tbc=symbols('Tbc')\n",
+    "\n",
+    "#Calculation \n",
+    "#Equations of statics\n",
+    "Tab=solve(6-Tab,Tab)                                                        # Torque in the shaft AB(kN.m)\n",
+    "Tbc=14+6                                                                    # Torque in the shaft BC(kN.m)\n",
+    "\n",
+    "#Case(a) Shaft BC\n",
+    "J=((math.pi)/2)*((pow(Dout/2,4)-pow(Din/2,4)))                              # Polar moment of inertia(m**4)\n",
+    "# Maximum Shearing Stress\n",
+    "Tmax=((Tbc*(Dout/2))/(J))/(1000)                                            # Maximum shearing stress(MPa)\n",
+    "#Minimum Shearing Stress\n",
+    "Tmin=(45/60)*86.2                                                           # Minimum shearing stress(MPa) \n",
+    "#Case(b) Shafts AB and CD\n",
+    "c=((6*4)/(65*(math.pi)))**1/3                                               # Radius of the shafts(m)\n",
+    "\n",
+    "#Result\n",
+    "print ('Maximum shearing stress in shaft BC = %lf MPa' %Tmax)  \n",
+    "print ('Minimum shearing stress in shaft BC = %lf MPa' %Tmin)\n",
+    "print ('Required diamter of the shafts AB and CD = %lf mm' %(c*2*1000))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.2, Page number 153"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a):Maximum torque that can be transmitted by the shaft as designed = 408.407045 kip.in\n",
+      "Case(b):Maximum torque that can be transmitted by the shaft of equal weight = 210.744442 kip.in\n",
+      "Case(c):Maximum torque that can be transmitted by the hollow shaft of equal weight and 8 in outer diameter = 636.000000 kip.in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "din=4                                                              # Inner diamter of shaft (in)\n",
+    "dout=6                                                             # Outer diamter of shaft (in)\n",
+    "STRESS=12                                                          # Shearing stress(ksi) \n",
+    "\n",
+    "#Calculation \n",
+    "#Hollow Shaft as Designed.                                         \n",
+    "J=((math.pi)/2)*(pow((dout/2),4)-pow((din/2),4))                   # Polar moment of inertia(in**4)\n",
+    "Th=(J*STRESS)/3                                                     # Allowable shearing stress(kip.in)                            \n",
+    "\n",
+    "#Solid Shaft of Equal Weight\n",
+    "rad=math.sqrt((dout/2)**2-(din/2)**2)                              # Radius of solid shaft of equal weight(in)\n",
+    "Te=(12*(math.pi)*(pow(rad,3)))/2                                    # Maximum allowable torque(kip.in)\n",
+    "\n",
+    "#Hollow Shaft of 8-in. Diameter.\n",
+    "c5=math.sqrt(4**2 + 2**2 -3**2)                                    # Inner radius of hallow shaft(in)\n",
+    "J8=((math.pi)*(4**4-3.317**4))/2                                   # Polar moment of inertia(in**4) \n",
+    "Tor=((212)*(12))/4  \n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a):Maximum torque that can be transmitted by the shaft as designed = %lf kip.in' %Th)  \n",
+    "print ('Case(b):Maximum torque that can be transmitted by the shaft of equal weight = %lf kip.in' %Te)\n",
+    "print ('Case(c):Maximum torque that can be transmitted by the hollow shaft of equal weight and 8 in outer diameter = %lf kip.in' %Tor)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.02, Page number 160"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum torque that can be transmitted by the shaft as designed = 1.829501 kN.m\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "G=77*(pow(10,9))                                      # Modulus of rigidity(GPa) \n",
+    "L=1.5                                                 # length of the shaft(m)\n",
+    "TWIST=2                                               # Allowable twist\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a)\n",
+    "phy=(2)*((2*(math.pi))/(360))                         # Angle of twist(rad)\n",
+    "#Case(b)\n",
+    "J=1.021*(pow(10,-6))                                  # Polar moment of inertia(m**4)\n",
+    "T=(((J*G)/(L))*(phy))/(1000)                          # Torque to be applied to the end of shaft(kN.m)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum torque that can be transmitted by the shaft as designed = %lf kN.m' %T)  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.03, Page number 160"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum torque that can be transmitted by the shaft as designed = 3.906530 degree\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "tmin=70*(pow(10,6))                                   # Shearing stress(Pa) \n",
+    "G=77*(pow(10,9))                                      # Modulus of rigidity(Pa)\n",
+    "L=1500                                                # ength of arc AA'(mm)\n",
+    "c1=20                                                 # inner radius(mm)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a)\n",
+    "Ymin=tmin/G                                           # shearing strain on the inner surface of the shaft\n",
+    "#Case(b)\n",
+    "phy=((L*Ymin)/(c1))*(360/(2*(math.pi)))               # Angle of twist(degrees)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum torque that can be transmitted by the shaft as designed = %lf degree' %phy)  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.04, Page number 163"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Angle of rotation of end E\n",
+      "5*L*T/(G*J)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "rA=symbols('rA')                                                        # Variable declaration                               \n",
+    "rB=symbols('rB')                                                        # Variable declaration  \n",
+    "Tad=symbols('Tad')                                                      # Variable declaration\n",
+    "T=symbols('T')                                                          # Variable declaration\n",
+    "L=symbols('L')                                                          # Variable declaration \n",
+    "J=symbols('J')                                                          # Variable declaration\n",
+    "G=symbols('G')                                                          # Variable declaration\n",
+    "\n",
+    "#Calculation         \n",
+    "rA=2*rB                                                                 # Given relation \n",
+    "Tad=2*T                                                                 # Given relation \n",
+    "phya=(Tad*L)/(J*G)                                                      # Angle of rotation phyA of gear A\n",
+    "phyb=(rA/rB)*(phya)                                                     # Angle of rotation phyB of gear B\n",
+    "phyEB=(T*L)/(J*G)                                                       # Angle of rotation phyEB through which end E rotates with respect to end B\n",
+    "phyE=phyb+phyEB                                                         # Angle of rotation of end E\n",
+    "\n",
+    "# Result\n",
+    "print ('Angle of rotation of end E')  \n",
+    "print (phyE)  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.05, Page number 164"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Torque exerted on the shaft by support A. = 51.736527 lb.ft\n",
+      "Torque exerted on the shaft by support B. = 38.285030 lb.ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "L=10                                                          # Outer Length(in)\n",
+    "r=(7/16)                                                      # Outer radius(in)\n",
+    "Li=5                                                          # Internal Length(in)\n",
+    "ri=(5/16)                                                     # Inner radius(in)\n",
+    "L1=5                                                          # Equivalent to internal length(in)\n",
+    "L2=5                                                          # Equivalent to internal length(in)\n",
+    "Ta=symbols('Ta')                                              # Torque at a\n",
+    "Tb=symbols('Tb')                                              # Torque at b \n",
+    "L1=symbols('L1')                                              # Length\n",
+    "L2=symbols('L2')                                              # Length  \n",
+    "J1=symbols('J1')                                              # polar moment of inertia\n",
+    "J2=symbols('J2')                                              # polar moment of inertia\n",
+    "G=symbols('G')                                                # modulus of rigidity of steel.\n",
+    "\n",
+    "#Calculation         \n",
+    "Tb=solve(((Ta*L1)/(J1*G))-((Tb*L2)/(J2*G)),Tb)                # Internal torque\n",
+    "Tb[0]=Tb[0].subs([ (J1, 57.6*(pow(10,-3))), (J2, 42.6*(pow(10,-3))),(L1, 5), (L2, 5)])  \n",
+    "Ta=solve(90-Tb[0]-Ta,Ta)                                      # Internal torque(lb.ft)\n",
+    "Tb=0.740*Ta[0]                                                # Internal torque(lb.ft) \n",
+    "\n",
+    "# Result\n",
+    "print ('Torque exerted on the shaft by support A. = %lf lb.ft' %Ta[0])\n",
+    "print ('Torque exerted on the shaft by support B. = %lf lb.ft' %Tb)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.3, Page number 165"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Angle of twist at end A = 2.310432 degree\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Tab=symbols('Tab')                                            # Torque on shaft AB\n",
+    "Tbc=symbols('Tbc')                                            # Torque on shaft BC \n",
+    "Tcd=symbols('Tcd')                                            # Torque on shaft CD \n",
+    "\n",
+    "#Calculation\n",
+    "#Statics\n",
+    "Tab=solve(250-Tab,Tab)                                        # Using the free body shown(N.m)\n",
+    "Tbc=2000+250                                                  # Torque on BC(N.m)\n",
+    "Tcd=Tbc                                                       # Torque on CD(N.m)\n",
+    "\n",
+    "#Polar Moments of Inertia\n",
+    "Jab=((math.pi)*((0.015)**4))/2                                # Polar moment of inertia AB(m**4) \n",
+    "Jbc=((math.pi)*((0.030)**4))/2                                # Polar moment of inertia BC(m**4)\n",
+    "Jcd=((math.pi)*((0.030)**4-(0.022)**4))/2                     # Polar moment of inertia CD(m**4) \n",
+    "\n",
+    "#Angle of Twist\n",
+    "AngleA=((1/77)*(((250*0.4)/(0.0795))+(((2250)*(0.2))/(1.272))+(((2250)*(0.6))/(0.904))))/((pow(10,-6))*(pow(10,9))) # Angle of twist(rad)\n",
+    "AngleA=AngleA*(360/(2*math.pi))                  # convertiong radian into degree\n",
+    "\n",
+    "# Result\n",
+    "print ('Angle of twist at end A = %lf degree' %AngleA)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.4, Page number 166"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Maximum permissible torque = 561.0 lb.in\n",
+      "Case(b): The corresponding angle through which end A of shaft AB rotates = 10.5 degrees\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol \n",
+    "\n",
+    "#Variable declaration\n",
+    "T0=symbols('T0')                                          # Variable declaration\n",
+    "Tab=symbols('Tab')                                        # Variable declaration  \n",
+    "F=symbols('F')                                            # Force\n",
+    "phyB=symbols('phyB')                                      # Variable declaration\n",
+    "phyC=symbols('phyC')                                      # Variable declaration\n",
+    "Smax=8000                                                 # Maximum permissible shearing stress(psi) \n",
+    "cAB=0.375                                                 # Radius of shaft AB(in)\n",
+    "cCD=0.5                                                   # Radius of shaft CD(in)\n",
+    "rC=2.45                                                   # Radius at C(in)\n",
+    "rB=0.875                                                  # Radius at B(in)  \n",
+    "Tcd=symbols('Tcd')                                        # Variable declaration\n",
+    "\n",
+    "# Calculation\n",
+    "# Statics\n",
+    "T0=F *0.875                                               # Equation 1 by Submission of Mb\n",
+    "Tcd=F*2.45                                                # Equation 2 by Submission of Mc\n",
+    "phyB=phyC*(rC/rB)                                         # By noting that the peripheral motions of the gears are equal\n",
+    "#Shaft AB\n",
+    "Tab=T0                                                    # Variable declaration\n",
+    "T0=round((8000)*(1/2)*(math.pi)*(0.375)**3)               # Largest torque that must be applied to end A of shaft AB(lb.in)               \n",
+    "#Shaft CD\n",
+    "T0=symbols('T0')                                          # Variable declaration\n",
+    "Tcd=2.8*T0                                                # Equation \n",
+    "T0=round((8000*(1/2)*(math.pi)*(0.5)**3)/2.8)             # Largest torque that must be applied to end C of shaft CD(lb.in)\n",
+    "#Angle of Rotation at End A\n",
+    "#Shaft AB\n",
+    "phyAB=(((561)*(24))/((1/2)*(math.pi)*((0.375)**4)*(11.2*pow(10,6))))*(360/(2*math.pi)) \n",
+    "#Shaft CD\n",
+    "phyCD=(((561)*(36)*(2.8))/((1/2)*(math.pi)*((0.5)**4)*(11.2*pow(10,6))))*(360/(2*math.pi)) \n",
+    "phyC=phyCD\n",
+    "phyB=2.8*(phyC)\n",
+    "phyA=phyB+phyAB\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Maximum permissible torque = %.1f lb.in' %T0)\n",
+    "print('Case(b): The corresponding angle through which end A of shaft AB rotates = %.1f degrees' %phyA)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.5, Page number 167"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Maximum permissible torque = 6.3 lb.in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol \n",
+    "\n",
+    "#Variable declaration\n",
+    "T0=symbols('T0')                                                # Variable declaration\n",
+    "T1=symbols('T1')                                                # Variable declaration \n",
+    "T2=symbols('T2')                                                # Variable declaration \n",
+    "phy1=symbols('phy1')                                            # Variable declaration\n",
+    "phy2=symbols('phy2')                                            # Variable declaration\n",
+    "Ts=120                                                          # Maximum allowable stress in stell(MPa)\n",
+    "Ta=70                                                           # Maximum allowable stress in aluminum(MPa)\n",
+    "Gs=77                                                           # Modulus of regidity for steel(GPa)        \n",
+    "Ga=27                                                           # Modulus of regidity for aluminium(GPa)       \n",
+    "T0=T1+T2                                                        # Equation \n",
+    "phy1=phy2                                                       # Equation\n",
+    "T2=T1*(77/27)*(0.614/2.003)                                     # Since both the tube and the shaft are connected to the rigid disk\n",
+    "# Shearing Stresses\n",
+    "T1=round(((70*pow(10,6))*(2.003*pow(10,-6)))/(0.038))           # Torque(N.m)\n",
+    "T2=(0.874)*(3690)                                               # Torque(N.m)\n",
+    "tsteel=((3225)*(0.025)*(pow(10,-6)))/(0.614*pow(10,-6))         # Maximum shearing stress in steel shaft(MPa) \n",
+    "T2=round(((120)*pow(10,6)*(0.614*pow(10,-6)))/(0.025),-1)       # Reobtaining torque as our earlier assumption was wrong(N.m)\n",
+    "T1=round(2950/0.874)                                            # Torque(N.m)   \n",
+    "T0=(T1+T2)/(1000)                                               # maximum torque(N.m) \n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Maximum permissible torque = %.1f lb.in' %T0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.06, Page number 178"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Size of shaft = 0.374342 lb.in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=5                                                           # Power(hp)\n",
+    "f=3600                                                        # frequency(rpm) \n",
+    "Tmax=8500                                                     # Maximum torque(psi)\n",
+    "\n",
+    "#Calculation         \n",
+    "P=P*(6600)                                                    # Converting power into lb/s\n",
+    "f=(3600)/(60)                                                 # Converting frequency into cycles per second\n",
+    "T=(P)/(2*(math.pi)*f)                                         # Torque exerted on the shaft\n",
+    "Ratio=T/Tmax                                                  # Here we are finding the value of J/c\n",
+    "c=(((10.30)*(pow(10,-3))*(2))/(math.pi))**(1/3)\n",
+    "d=2*c                                                         # Diameter of the shaft that should be used\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Size of shaft = %1f lb.in' %d)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.07, Page number 178"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Tube thickness that should be used = 4.414195 lb.in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=100                                                         # Power(kW)\n",
+    "f=20                                                          # frequency(Hz) \n",
+    "c2=25                                                         # radius(mm)  \n",
+    "Smax=60                                                       # Shearing stress maximum(MPa)\n",
+    "c1=symbols('c1')\n",
+    "\n",
+    "#Calculation         \n",
+    "T=P/(2*(math.pi)*f)                                           # torque exerted on the shaft\n",
+    "Ratio=T/(Tmax*(pow(10,6)))                                    # Here we are finding the value of J/c2\n",
+    "c1=solve((0.025)**4-(0.050/math.pi)*(13.26*(pow(10,-6)))-(c1)**4,c1) \n",
+    "Thickness=c2-(c1[1]*1000)                                     # Thickness that should be used if the shearing stress is not to exceed\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Tube thickness that should be used = %1f lb.in' %Thickness)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.6, Page number 180"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Maximum power that can be transmitted = 890.000000 hp\n",
+      "Case(b): Percentage in power = 11.000000 \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "D=7.5                                                               # Diameter of the bigger shaft(in)\n",
+    "d=3.75                                                              # Diameter of the smaller shaft(in)\n",
+    "r=0.5625                                                            # Inner radius(in)\n",
+    "k=1.33                                                              # Stress concentration factor\n",
+    "\n",
+    "#Calculation \n",
+    "temp1=(D/d)                                                          \n",
+    "temp2=(r/d)\n",
+    "T=round((1/2)*(math.pi)*((1.875)**3)*(8/1.33),1)                    # Maximum torque(ksi)   \n",
+    "#Power\n",
+    "f=(900/60)                                                          # Frequency(Hz)\n",
+    "Pa=(2*(math.pi)*15*62.3*pow(10,3))                                  # Power(lb/s)\n",
+    "Pa=round(Pa/6600)                                                   # Power(hp) \n",
+    "#Final Design\n",
+    "r=15/16                                                             # Radius(in) \n",
+    "temp2=(0.9375/3.75)                                                 \n",
+    "k=1.20                                                              # Stress concentration factor\n",
+    "T=(10.35*(8/1.20))                                                  # Torque(kip.in)\n",
+    "Pb=(2)*(math.pi)*(15)*(69)*(pow(10,3))                              # Power(lb/s) \n",
+    "Pb=round(Pb/6600)                                                   # Power(hp)\n",
+    "#Percent Change in Power\n",
+    "PC=round(((Pb-Pa)/Pa)*100)\n",
+    "\n",
+    "#Result\n",
+    "print('Case(a): Maximum power that can be transmitted = %1f hp' %Pa)\n",
+    "print('Case(b): Percentage in power = %1f ' %PC)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.08, Page number 189"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Radius of elastic core = 15.749013 mm\n",
+      "Case(b): Angle of twist = 8.494327 degree \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "l=1.2                                                         # length(m)\n",
+    "d=50                                                          # diameter(mm) \n",
+    "T=4.60                                                        # torque(kN)  \n",
+    "G=77                                                          # modulus of rigidity(GPa)\n",
+    "ty=150                                                        # torque(MPa)\n",
+    "c=25                                                          # radius(mm)\n",
+    "py=symbols('py')\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "J=(1/2)*(math.pi)*(25*(pow(10,-3)))**4                        # Polar moment of inertia(m**4) \n",
+    "Ty=(J*ty*(pow(10,6)))/(c*(pow(10,-3)))                        # Torque(kN.m)\n",
+    "py=solve((py/c)**3-4+((3*4.60)/(3.68)),py)                    # Radius of elastic core(mm)\n",
+    "# Case(b)\n",
+    "phyY=(Ty*l*(pow(10,3)))/(J*G*(pow(10,9)))                     # Angle of twist at the onset of yield(rad) \n",
+    "phy=((93.4*(pow(10,-3)))/(0.630))*(360/(2*math.pi))           # Angle of twist(degree)\n",
+    "\n",
+    "# Result\n",
+    "print('Case(a): Radius of elastic core = %1f mm' %py[0])\n",
+    "print('Case(b): Angle of twist = %1f degree ' %phy)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.09, Page number 190"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Permanent twist = 1.810362 degree\n",
+      "Case(b): Residual stress = 187.296417 MPa \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "T=4.60*(10**3)                                                # Torque(N.m)\n",
+    "L=1.2                                                         # length(m) \n",
+    "G=77*(10**9)                                                  # modulus of rigidity(Pa)\n",
+    "J=614*(10**-9)                                                # Polar moment of inertia(m**4)\n",
+    "phy=8.50  \n",
+    "c=25*(10**-3)                                                 # radius(m)\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "phyl=((T*L)/(J*G))*(360/(2*(math.pi)))                        # Lateral twist(degree)\n",
+    "phyp=phy-phyl                                                 # Permanent twist(degree)\n",
+    "# Case(b)\n",
+    "Tlmax=((T*c)/(J))/(pow(10,6))                                 # Residual stresses(MPa) \n",
+    "\n",
+    "# Result\n",
+    "print('Case(a): Permanent twist = %1f degree' %phyp)\n",
+    "print('Case(b): Residual stress = %1f MPa ' %Tlmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "## SAMPLE PROBLEM 3.7, Page number 192"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Magnitude of T when yield first occurs = 5.730000 degree\n",
+      "Case(b): Angle of twist when the deformation has become fully plastic.= 8.590000 MPa \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "p=symbols('p')\n",
+    "G=(11.2*pow(10,6))                                                       # Modulus of rigidity(GPa)\n",
+    "ty=21                                                                    # Stress(ksi) \n",
+    " \n",
+    "#Calculation\n",
+    "#Geometric properties\n",
+    "c1=(1/2)*(1.5)                                                           # Radius(in)\n",
+    "c2=(1/2)*(2.25)                                                          # Radius(in) \n",
+    "J=round((1/2)*(math.pi)*(c2**4-c1**4),2)                                 # Polar moment of inertia(in**4)\n",
+    "#Case(a) Onset of yield\n",
+    "tmax=ty\n",
+    "Ty=round(((21)*(2.02))/1.125,1)                                          # Torque at y(kip.in)\n",
+    "phyY=((21*(10**3))*(60))/(1.125*11.2*pow(10,6))                          # Onset of yield(rad)\n",
+    "phyY=round(phyY*(360/(2*math.pi)),2)\n",
+    "#Case(b) Fully Plastic Deformation\n",
+    "Tp=round(2*math.pi*21*integrate(p**2, (p, c1, c2)),1)                    # Torque(kip.in) \n",
+    "phyF=round((21*pow(10,3)*60)/(0.75*11.2*pow(10,6)),4)                    # Fully plastic deformation(rad)  \n",
+    "phyF=round(phyF*(360/(2*math.pi)),2)\n",
+    "\n",
+    "# Result\n",
+    "print('Case(a): Magnitude of T when yield first occurs = %1f degree' %phyY)\n",
+    "print('Case(b): Angle of twist when the deformation has become fully plastic.= %1f MPa ' %phyF)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.8, Page number 193"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Residual stress = 0.000000 kip.in\n",
+      "Case(b): Permanent angle of twist= 1.890000 degree \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "Tp=44.1\n",
+    "phyF=8.59\n",
+    "\n",
+    "# Calculation\n",
+    "# Elastic Unloading\n",
+    "Tmax=((44.1)*(1.125))/2.02\n",
+    "Tmin=(Tmax)*(0.75/1.125)\n",
+    "phyl=round(((44.1*pow(10,3)*60)*(360/(2*math.pi)))/((2.02)*(11.2*pow(10,6))),2)\n",
+    "phy=phyF-phyl\n",
+    "\n",
+    "# Result\n",
+    "print('Case(a): Residual stress = %1f kip.in' %(0))\n",
+    "print('Case(b): Permanent angle of twist= %1f degree ' %(phy))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 3.10, Page number 202"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a): Shearing stress in each wall = 8.346688 ksi\n",
+      "Case(b): Shearing stress in wall AB and AC= 11.128917 ksi \n",
+      "Case(b): Shearing stress in wall BD and CD= 6.677350 ksi \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "t=0.160                                               # thickness(in)\n",
+    "T=24                                                  # Torque(kip.in) \n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "Area=3.84*2.34                                        # Area bounded by centre line(in**2) \n",
+    "t=(T)/(2*t*Area)                                      # shearing stress in wall(ksi) \n",
+    "# Case(b)\n",
+    "tABAC=0.120\n",
+    "tBDCD=0.200\n",
+    "tAB=(T)/(2*tABAC*Area)                                # shearing stress in wall(ksi)\n",
+    "tAC=tAB\n",
+    "tBD=(T)/(2*tBDCD*Area)                                # shearing stress in wall(ksi)\n",
+    "tCD=tBD\n",
+    "\n",
+    "# Result\n",
+    "print('Case(a): Shearing stress in each wall = %1f ksi' %t)\n",
+    "print('Case(b): Shearing stress in wall AB and AC= %1f ksi ' %tAB)\n",
+    "print('Case(b): Shearing stress in wall BD and CD= %1f ksi ' %tCD)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 3.9, Page number 203"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Largest torque on bar with square cross section = 532.480000 N.m\n",
+      "Largest torque on bar with rectangular cross section = 414.400000 N.m\n",
+      "Largest torque on square tube = 555.000000 N.m\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "\n",
+    "#Bar with Square Cross Section\n",
+    "#Variable declaration\n",
+    "tALL=40                                                                  # Stress(MPa)\n",
+    "\n",
+    "\n",
+    "#Calculation\n",
+    "# Bar with square cross section\n",
+    "a=0.040                                                                  # Length(m) \n",
+    "b=0.040                                                                  # Length(m)\n",
+    "temp=(a/b)                                                                \n",
+    "c1=0.208                                                                 # Coefficient\n",
+    "tmax=tALL                                                                # Maximum stress(MPa)\n",
+    "T1=(40)*(pow(10,6))*(0.208)*(pow(0.040,3))                                           # Torque(N.m)\n",
+    "\n",
+    "# Bar with Rectangular Cross Section.\n",
+    "a=0.064                                                                  # Length(m)\n",
+    "b=0.025                                                                  # Length(m)\n",
+    "temp2=(a/b)\n",
+    "T2=(40)*(pow(10,6))*(0.259)*(0.064)*(pow(0.025,2))                                   # Torque(N.m)\n",
+    "\n",
+    "#Square Tube\n",
+    "A=(0.034)*(0.034)                                                        # Area bounded by the center line of the cross section(m**2)\n",
+    "T3=round((40)*(pow(10,6))*(2)*(0.006)*(1.156)*(pow(10,-3)),0)            # Torque(N.m)\n",
+    "\n",
+    "# Result\n",
+    "print('Largest torque on bar with square cross section = %1f N.m' %T1)\n",
+    "print('Largest torque on bar with rectangular cross section = %1f N.m' %T2)\n",
+    "print('Largest torque on square tube = %1f N.m' %T3)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_4_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_4_1.ipynb
new file mode 100644
index 00000000..98006c09
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_4_1.ipynb
@@ -0,0 +1,1100 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 4 : Pure Bending"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.01, Page number 232"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Bending moment = 30.000000 kip.in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "c=1.25                                                               # Radius(in)\n",
+    "Sy=36                                                                # Stress(ksi)\n",
+    "b=0.8                                                                # Breadth(in)\n",
+    "h=2.5                                                                # Height(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "I=(1/12)*(b)*(h)**3                                                  # Centroidal moment of inertia(in**4)\n",
+    "M=(I/c)*(Sy)                                                         # Bending moment(kip.in)\n",
+    "\n",
+    "# Result\n",
+    "print ('Bending moment = %lf kip.in' %M)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.02, Page number 233"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum tensile stress = 193.397171 MPa\n",
+      "Maximum compressive stress = -142.602829 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "r=12                                                                     # Radius(mm)\n",
+    "p=2.5                                                                    # Mean radius(m)  \n",
+    "E=70                                                                     # Modulus of rigidity(GPa)\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "Y=(4*r)/(3*(math.pi))                                                    # Ordinate(mm)\n",
+    "c=r-Y                                                                    # Distance from the neutral axis to the point of crossection(mm) \n",
+    "Em=(c*(10**-3))/p                                                        # Maximum absolute value of the strain\n",
+    "Sm=((E*(pow(10,9)))*Em)/(pow(10,6))                                      # Maximum tensile stress(MPa)\n",
+    "Scomp=(n)*(Y/c)*(Sm)                                                     # Maximum compressive stress(MPa) \n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum tensile stress = %lf MPa' %Sm)\n",
+    "print ('Maximum compressive stress = %lf MPa' %Scomp)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.1, Page number 235"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Bending moment M for which factor of safety is 3 = 103.760000 kip.in\n",
+      "Radius of curvature of tube = 110.400000 ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "sY=40                                                                   # Stress(ksi)\n",
+    "sU=60                                                                   # Stress(ksi)\n",
+    "E=(10.6)*(pow(10,6))                                                    # Modulus of rigidity(psi)\n",
+    "FS=3                                                                    # Factor of safety\n",
+    "\n",
+    "#Calculation\n",
+    "#Moment of Inertia\n",
+    "E=(10.6)*(pow(10,6))                                                    # Modulus of rigidity(psi)\n",
+    "I=round(((1/12)*3.25*pow(5,3))-((1/12)*(2.75)*pow(4.5,3)),2)            # Centroidal moment of inertia of a rectangle\n",
+    "#Allowable Stress\n",
+    "sALL=(sU/FS)                                                            # Allowable stress(ksi)\n",
+    "#Case(a) Bending Moment\n",
+    "c=(1/2)*(5)                                                             # Radius(in)\n",
+    "M=((12.97)*(20))/2.5                                                    # Bending moment(kip.in)\n",
+    "#Case(b) Radius of Curvature\n",
+    "p=round((10.6*pow(10,6)*12.97)/(103.8*pow(10,3)),1)                     # Radius of curvature(in)\n",
+    "p=round((p*0.08333),1)                                                  # Converting into feet(ft)  \n",
+    "#Alternative Solution.\n",
+    "Em=(sALL/(E*(pow(10,-3))))                                              # Maximum strain(in./in)\n",
+    "p=(c/Em)                                                                # Radius of curvature(in)\n",
+    "p=round((p*0.08333),1)                                                  # Converting into feet(ft) \n",
+    "\n",
+    "# Result\n",
+    "print ('Bending moment M for which factor of safety is 3 = %lf kip.in' %M)\n",
+    "print ('Radius of curvature of tube = %lf ft' %p)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.2, Page number 236"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum tensile stress = 76.036866 MPa\n",
+      "Maximum compressive stress = -131.336406 MPa\n",
+      "Radius of curvature = 47.740000 ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation\n",
+    "#Centroid\n",
+    "sumA=3000                                                                       # Summing up the area(mm**2) \n",
+    "M=3                                                                             # Couple(kN.m) \n",
+    "cA=0.022                                                                        # Distance(m)                 \n",
+    "Y=(114*pow(10,6))/(3000)                                                        # Distance(mm)\n",
+    "#Centroidal Moment of Inertia\n",
+    "Ix=((1/12)*(90)*(pow(20,3)) + (90*20*pow(12,2)) + ((1/12)*(30)*(pow(40,3))) + (30*40*pow(18,2)))/(pow(10,12)) # Centroidal moment of inertia(m**4)  \n",
+    "#Case(a) Maximum Tensile Stress\n",
+    "sA=((M*cA)/(Ix))/(1000)                                                          # Maximum tensile stress(MPa) \n",
+    "#Maximum Compressive Stress\n",
+    "sB=n*(3*0.038)/((868*pow(10,-9)*pow(10,3)))                                      # Maximum compressive stress(MPa) \n",
+    "#Case(b) Radius of Curvature\n",
+    "p=((165*868*(pow(10,-9)))/(3))*(pow(10,6))                                       # Radius of curvature(m)\n",
+    "\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum tensile stress = %lf MPa' %sA)\n",
+    "print ('Maximum compressive stress = %lf MPa' %sB)\n",
+    "print ('Radius of curvature = %lf ft' %p)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.03, Page number 244"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum stress in brass portion = 11.851852 ksi\n",
+      "Maximum stress in steel portion = 22.909630 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "Es=29*(pow(10,6))                                                          # Modulus of rigidity(psi)\n",
+    "Eb=15*(pow(10,6))                                                          # Modulus of rigidity(psi) \n",
+    "M=40                                                                       # Bending moment(kip.in)\n",
+    "h=3                                                                        # Height(3)\n",
+    "b=2.25                                                                     # Breadth(in) \n",
+    "c=1.5                                                                      # Distance(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "n=Es/Eb                                                                    # Ratio\n",
+    "W=0.75*n                                                                   # width(in)\n",
+    "I=(1/12)*(b)*((h)**3)                                                      # Moment of inertia of the transformed section(in**4)\n",
+    "Sm=(M*c)/(I)                                                               # Maximum stress in the transformed section(ksi)\n",
+    "Sbrass=Sm                                                                  # Maximum stress in brass portion(ksi)\n",
+    "Ssteel=1.933*(Sbrass)                                                      # Maximum stress in steel portion(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum stress in brass portion = %lf ksi' %Sbrass)\n",
+    "print ('Maximum stress in steel portion = %lf ksi' %Ssteel)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.04, Page number 247"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Smallest allowable width of the groves = 10.400000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "depth=10                                                                 # Depth(mm)\n",
+    "width=60                                                                 # Width(mm)\n",
+    "thickness=9                                                              # Thickness(mm)\n",
+    "Smax=150                                                                 # Maximum stress(MPa) \n",
+    "M=180                                                                    # Bending moment(N.m) \n",
+    "\n",
+    "#Calculation         \n",
+    "d=width-(2*depth)                                                        # Distance(mm) \n",
+    "c=(1/2)*d                                                                # Distance(mm) \n",
+    "b=9                                                                      # Distance(mm)\n",
+    "I=(1/12)*(b*(pow(10,-3)))*((d*(pow(10,3)))**3)                           # Moment of inertia of the critical cross section(m**4)\n",
+    "Ratio=((M)*(c)*(pow(10,3)))/(I)                                          # Stress(MPa)\n",
+    "k=150/75                                                                 # Factor \n",
+    "Ratio2=width/d                                                           # Ratio\n",
+    "r=0.13*40                                                                # Radius(mm)\n",
+    "wid=2*r                                                                  # Width(mm)\n",
+    "\n",
+    "# Result\n",
+    "print ('Smallest allowable width of the groves = %lf mm' %wid)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.3, Page number 248"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum stress in the wood = 4.570000 MPa\n",
+      "Stress in steel = 43.800000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration\n",
+    "Es=200                                                                    # Moduluss of rigidity(GPa)\n",
+    "Ew=12.5                                                                   # Moduluss of rigidity(GPa) \n",
+    "\n",
+    "#Transformed Section.\n",
+    "n=(Es/Ew)                                                                 # Ratio\n",
+    "#Neutral Axis\n",
+    "Y=round(((0.160)*(3.2*0.020))/(3.2*0.020+0.470*0.300),2)                  # Distance(m) \n",
+    "#Centroidal Moment of Inertia\n",
+    "I=round(((1/12)*0.470*(pow(0.3,3)))+(0.470*0.3*(pow(0.05,2)))+((1/12)*(3.2)*(pow(0.020,3)))+(3.2*0.020*(pow(0.160-0.050,2))),5) # Centroidal Moment of Inertia \n",
+    "#Maximum Stress in Wood\n",
+    "sW=((50*(pow(10,3)))*(0.200))/(2.19*pow(10,-3))                           # Maximum stress in wood(MPa)\n",
+    "sW=round((sW/(pow(10,6))),2)                                              # Rounding\n",
+    "#Stress in Steel\n",
+    "sS=((16)*(50*(pow(10,3)))*(0.120))/(2.19*(pow(10,-3)))                    # Stress in steel(MPa) \n",
+    "sS=round((sS/(pow(10,6))),1)                                              # Rounding\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum stress in the wood = %lf MPa' %sW)\n",
+    "print ('Stress in steel = %lf MPa' %sS)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.4, Page number 249"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum stress in concrete = 1.306000 MPa\n",
+      "Stress in steel = 18.520000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration\n",
+    "x=symbols('x')                                                            # Variable declartion                                                       \n",
+    "d=(5/8)                                                                   # Diameter(in)\n",
+    "Es=(29*(pow(10,6)))                                                       # Modulus of elasticity for concrete(psi)\n",
+    "Ec=(3.6*(pow(10,6)))                                                      # Modulus of elasticity for stell(psi)\n",
+    "\n",
+    "# Calculation\n",
+    "#Transformed Section\n",
+    "As=round((2)*(math.pi)*(pow(d/2,2)),3)                                    # Cross sectional area(in**2)\n",
+    "n=round(Es/Ec,2)                                                          # Ratio\n",
+    "TA=round(n*As,2)                                                          # Transformed steel area(in**2)\n",
+    "#Neutral Axis\n",
+    "x=(solve((12*x)*(x/2)-(4.95)*(4-x)))\n",
+    "#Moment of inertia\n",
+    "I=(1/3)*(12)*((1.450)**3) + 4.95*(4-1.450)**2                              # Centroidal moment of inertia(in**4) \n",
+    "#Maximum Stress in Concrete\n",
+    "sC=round(((40)*(1.450))/(44.4),3)                                         # Maximum stress in concrete(ksi) \n",
+    "#Stress in Steel\n",
+    "sS=round(((8.06)*(40)*(2.55))/(44.4),2)                                   # Stress in steel(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum stress in concrete = %lf MPa' %sC)\n",
+    "print ('Stress in steel = %lf MPa' %sS)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.05, Page number 260"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Thickness of elastic core = 80.000000 mm\n",
+      "Radius of curvature = 33.333333 m\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=36.8\n",
+    "c=60*(pow(10,-3))                                                             # Half length of rod(mm)\n",
+    "b=50*(pow(10,-3))                                                             # Breadth of rod(mm)\n",
+    "Sy=240                                                                        # Stress(MPa) \n",
+    "yY=symbols('yY')                                                              # Variable declaration\n",
+    "E=200                                                                         # Modulus of elasticity(GPa)\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "Rt=(2/3)*(b)*(c)**2                                                           # Ratio(m**3)\n",
+    "My=Rt*Sy                                                                      # Maximum elastic moment(kN.m) \n",
+    "yY=solve(36.8-(3/2)*(28.8)*(1-((1/3)*(((yY)**2)/(60**2)))),yY)                # \n",
+    "# Case(b)\n",
+    "Ey=(Sy*(pow(10,6)))/(E*(pow(10,9)))\n",
+    "p=(yY[0]*(pow(10,-3)))/(Ey)\n",
+    "\n",
+    "# Result\n",
+    "print ('Thickness of elastic core = %lf mm' %(n*(2*yY[0])))\n",
+    "print ('Radius of curvature = %lf m' %(n*p))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.06, Page number 262"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Residual stress = 306.666667 MPa\n",
+      "Radius of curvature after unloading = 225 m\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=36.8                                                                           # Bending moment(kN)                              \n",
+    "Sy=240                                                                           # Yield strength(MPa)\n",
+    "yY=40                                                                            # Thickness of elastic core(mm) \n",
+    "n=-1\n",
+    "Sx=n*35.5*(pow(10,6))                                                            # Stress(Pa)    \n",
+    "E=200*(pow(10,9))\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "Sml=((36.8)/(120*(pow(10,-6))))/(1000)                                           # Residual stress(MPa) \n",
+    "# Case(b)\n",
+    "Ex=Sx/E                                                                          # Residual strain \n",
+    "p=(n*(40*(pow(10,-3))))/(Ex)                                                     # Radius of Curvature after Unloading(m)\n",
+    "\n",
+    "# Result\n",
+    "print ('Residual stress = %lf MPa' %Sml)\n",
+    "print ('Radius of curvature after unloading = %.lf m' %p)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.5, Page number 263"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Bending moment = 9525.000000 kip.in\n",
+      "Case(a) Radius of curvature = 4640 in\n",
+      "Case(b) Bending moment = 10226.342000 kip.in\n",
+      "Case(b) Radius of curvature = 338 ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# variable declaration\n",
+    "E=(29*pow(10,6))                                                               # Modulus of elastoplasticity(psi)\n",
+    "sY=50                                                                          # Stress(ksi) \n",
+    "\n",
+    "# Calculation\n",
+    "#Case(a) Onset Of Yield\n",
+    "I=round((1/12)*(12)*(pow(16,3))-(1/12)*(12-0.75)*(pow(14,3)),0)                # Centroidal moment of inertia(in**4) \n",
+    "#Bending Moment\n",
+    "sMAX=sY                                                                        # Stress(ksi)\n",
+    "c=8                                                                            # Distance(in)\n",
+    "My=(sY*I)/c                                                                    # Bending moment(kip.in)\n",
+    "#Radius of Curvature \n",
+    "Ey=sY/E                                                                        # Strain\n",
+    "pY=(c/Ey)/(1000)                                                               # Radius of curvature(in)\n",
+    "#Case(b) Flanges Fully Plastic\n",
+    "R1=50*12*1                                                                     # Compressive forces on top(kips) \n",
+    "R4=R1                                                                          # Compressive forces on top(kips) \n",
+    "R2=round((1/2)*(50)*(7)*(0.75)+0.05,1)                                         # Compressive forces on top half(kips)\n",
+    "R3=R2                                                                          # Compressive forces on top half(kips)\n",
+    "#Bending Moment\n",
+    "M=2*((R1*7.5)+(R2*4.67))                                                       # Bending moment(kip.in)\n",
+    "#Radius of Curvature\n",
+    "p=round(((7/0.001724)*0.0833),0)                                               # Radius of curvature(ft)        \n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Bending moment = %lf kip.in' %My)\n",
+    "print ('Case(a) Radius of curvature = %.lf in' %pY)\n",
+    "print ('Case(b) Bending moment = %lf kip.in' %M)\n",
+    "print ('Case(b) Radius of curvature = %.lf ft' %p)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.6, Page number 264"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Plastic moment = 44.160000 kN.m\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration\n",
+    "sY=240                                                                   # Yield strength(MPa)\n",
+    "A1=(0.1*0.02)                                                            # Area of cross section(m**2)\n",
+    "A2=(0.02*0.02)                                                           # Area of cross section(m**2)\n",
+    "A3=(0.02*0.06)                                                           # Area of cross section(m**2)\n",
+    "A4=(0.06*0.02)                                                           # Area of cross section(m**2)\n",
+    "\n",
+    "# Calculation\n",
+    "#Neutral Axis\n",
+    "A=(100)*(20) + (80)*(20) + (60)*(20)                                     # Total area(mm**2)\n",
+    "y=(2400-((20)*(100)))/(20)                                               # Distance(mm)\n",
+    "#Plastic Moment\n",
+    "R1=(A1*sY*1000)                                                          # Resultant force(kN) \n",
+    "R2=(A2*sY*1000)                                                          # Resultant force(kN)\n",
+    "R3=(A3*sY*1000)                                                          # Resultant force(kN) \n",
+    "R4=(A4*sY*1000)                                                          # Resultant force(kN) \n",
+    "\n",
+    "Mp=(0.030*R1) + (0.010*R2) + (0.030*R3) + (0.070*R4)                     # Plastic moment(kN.m)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Plastic moment = %lf kN.m' %Mp)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.7, Page number 265"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Residual stress = 53.700787 ksi\n",
+      "Case(a) Permanent radius of curvature = 5620.000000 ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration\n",
+    "y=7                                                                                  # Distance(in)\n",
+    "s=-3.01                                                                              # Stress(ksi)\n",
+    "\n",
+    "# Calculation\n",
+    "#Loading\n",
+    "M=10230                                                                              # Couple of moment(kip.in)\n",
+    "#Elastic Unloading\n",
+    "sMl=((10230)*(8))/(1524)                                                             # Maximum stress(ksi)\n",
+    "#Permanent Radius of Curvature\n",
+    "p=round(((7)*(29*pow(10,6))*(pow(10,-3)))/(3.01),-2)                                 # Permanent radius of curvature(in)\n",
+    "p=round((p*0.083333),-1)                                                             # Conversion(ft)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Residual stress = %lf ksi' %sMl)\n",
+    "print ('Case(a) Permanent radius of curvature = %lf ft' %p)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.07, Page number 272"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Largest tensile stress = 9289.555718 psi\n",
+      "Case(a) Largest compressive stress = -7659.809101 psi\n",
+      "Case(b) Distance Between Centroidal and Neutral Axes = 0.024038 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "d=0.5                                                      # Diameter(in)\n",
+    "P=160                                                      # Load(lb)\n",
+    "c=0.25                                                     # Distance(in)\n",
+    "Sx=0                                                       # \n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "M=P*0.65                                                   # Bending couple(lb.in)\n",
+    "A=(math.pi)*(c**2)                                         # Area(in**2)\n",
+    "S0=P/A                                                     # Stress(psi)\n",
+    "I=(1/4)*(math.pi)*(c**4)                                   # Moment of inertia(in**4)\n",
+    "Sm=((M)*(c))/(I)                                           # Stress(psi)\n",
+    "St=S0+Sm                                                   # Tensile stress(psi)\n",
+    "Sc=S0-Sm                                                   # Compressive stress(psi) \n",
+    "# Case(b)\n",
+    "Ex=Sx/E                                                    # Strain\n",
+    "p=(n*(40*(pow(10,-3))))/(Ex)                            \n",
+    "y0=(S0)*(I/M)                                              # Distance Between Centroidal and Neutral Axes\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Largest tensile stress = %lf psi' %St)\n",
+    "print ('Case(a) Largest compressive stress = %lf psi' %Sc)\n",
+    "print ('Case(b) Distance Between Centroidal and Neutral Axes = %lf in' %y0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.8, Page number 273"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Largest allowable force = 76.972418 kN\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sympy import Symbol\n",
+    "import math\n",
+    "\n",
+    "# Variable declaration\n",
+    "M=symbols('M')                                                                    # Variable declaration\n",
+    "P=symbols('P')                                                                    # Variable declaration\n",
+    "\n",
+    "# Calculation\n",
+    "#Properties of Cross Section.\n",
+    "A=(3*pow(10,-3))                                                                  # Area of cross section(mm**2)\n",
+    "Y=0.038                                                                           # Distance(m)\n",
+    "I=868*(pow(10,-9))                                                                # Moment of inertia(m**4)\n",
+    "d=(0.038-0.010)                                                                   # Distance(m) \n",
+    "#Force and Couple at C\n",
+    "M=0.028*P                                                                         # Equivalent force-couple system\n",
+    "s0=(P*(round((1/(3*pow(10,-3))),0)))                                              # Stress compression\n",
+    "s1=(P*round(((0.028)*(0.022))/(868*(pow(10,-9))),0))                              # Stress tension \n",
+    "s2=(P*round(((0.028)*(0.038))/(868*pow(10,-9))))                                  # Stress compression\n",
+    "#Superposition\n",
+    "sA=-s0+s1                                                                         # Stress tension\n",
+    "sB=-s0-s2                                                                         # Stress compression\n",
+    "#Largest Allowable Force\n",
+    "P1=(30/377)*(1000)                                                                # The magnitude of P for which the tensile stress at point A is equal to the allowable tensile stress of 30 MPa is found by writing\n",
+    "P2=(120/1559)*(1000)                                                              # Determine the magnitude of P for which the stress at B is equal to the allowable compressive stress of 120 MPa.\n",
+    "\n",
+    "# Result\n",
+    "print ('Largest allowable force = %lf kN' %P2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.09, Page number 285"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Stress at A = -2.625000 MPa\n",
+      "Stress at B = -1.375000 MPa\n",
+      "Stress at C = 1.625000 MPa\n",
+      "Stress at D = 0.375000 MPa\n",
+      "Neutral axis BG = 36.666667 mm\n",
+      "Neutral axis HA = 70.000000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "F=4.80                                                    # Couple(lb)\n",
+    "l=80                                                      # Length(mm)\n",
+    "b=120                                                     # Breadth(mm)\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "Mx=(F)*(40)                                               # Stress in x(N.m)\n",
+    "Mz=(F)*(60-35)                                            # Stress in z(N.m)\n",
+    "A=(0.080)*(0.120)                                         # Area of cross section(m**2)\n",
+    "Ix=(1/12)*(0.120)*(0.080**3)                              # Centroidal moment of inertia(m**4)\n",
+    "Iz=(1/12)*(0.080)*(0.120**3)                              # Centroidal moment of inertia(m**4)\n",
+    "S0=n*(P/A)                                                # Stress(MPa) \n",
+    "S1=((192)*(40))/(5.12*(pow(10,-6)))                       # Stress in x(MPa)\n",
+    "S2=((120)*(60))/(11.52*(pow(10,-6)))                      # Stress in y(MPa)\n",
+    "Sa=-0.5-1.5-0.625                                         # Stress at A(MPa)\n",
+    "Sb=-0.5-1.5+0.625                                         # Stress at B(MPa)\n",
+    "Sc=-0.5+1.5+0.625                                         # Stress at C(MPa) \n",
+    "Sd=-0.5+1.5-0.625                                         # Stress at D(MPa)\n",
+    "\n",
+    "\n",
+    "# Case(b)\n",
+    "BG=((1.375)/(1.625+1.375))*80                             # Distance(mm)\n",
+    "HA=((2.625)/(2.625+0.375))*80                             # Distance(mm)\n",
+    "\n",
+    "# Result\n",
+    "print ('Stress at A = %lf MPa' %Sa)\n",
+    "print ('Stress at B = %lf MPa' %Sb)\n",
+    "print ('Stress at C = %lf MPa' %Sc)\n",
+    "print ('Stress at D = %lf MPa' %Sd)\n",
+    "print ('Neutral axis BG = %lf mm' %BG)\n",
+    "print ('Neutral axis HA = %lf mm' %HA)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.9, Page number 287"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Largest permissible load = 14.251781 kips\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration\n",
+    "P=symbols('P')\n",
+    "\n",
+    "\n",
+    "#Properties of Cross Section\n",
+    "A=7.46                                                                  # Area of cross section(in**2)\n",
+    "Sx=24.7                                                                 # Section moduli x(in**3)\n",
+    "Sy=2.91                                                                 # Section moduli y(in**3) \n",
+    "#Force and Couple at C\n",
+    "Mx=4.75*P                                                               # Moment x()\n",
+    "My=1.5*P                                                                # Moment y()\n",
+    "#Normal Stresses\n",
+    "s1=P*round((1/7.46),4)                                                  # Normal stresses \n",
+    "s2=P*round((4.75/24.7),4)                                               # Normal stresses\n",
+    "s3=P*round((1.5/2.91),4)                                                # Normal stresses\n",
+    "#Superposition\n",
+    "sA=-s1 + s2 +s3                                                         # Stress at A \n",
+    "sB=-s1+s2-s3                                                            # Stress at B\n",
+    "sD=-s1-s2+s3                                                            # Stress at D\n",
+    "sE=-s1-s2-s3                                                            # Stress at E\n",
+    "\n",
+    "P=12/0.842                                                              # Maximum compressive stress(kips) \n",
+    "\n",
+    "# Result\n",
+    "print ('Largest permissible load = %lf kips' %P)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.10, Page number 288"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Stress at point A  = 13.866727 MPa\n",
+      "The angle formed by the neutral axis and the horizontal is  = 41.400000 degree\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration  \n",
+    "M0=1500                                                                 # Couple of magnitude(kN)\n",
+    "yA=50                                                                   # Distance() \n",
+    "zA=74\n",
+    "Iy=(3.25*(pow(10,-6)))                                                  # Moment of inertia(m**4)\n",
+    "Iz=(4.18*(pow(10,-6)))                                                  # Moment of inertia(m**4)\n",
+    "Iyz=(2.87*(pow(10,-6)))                                                 # Moment of inertia(m**4)   \n",
+    "\n",
+    "# Calculation\n",
+    "# Principal axes\n",
+    "Theta=(80.8)/2                                                          # Angle \n",
+    "R=sqrt(pow(0.465,2)+pow(2.87,2))                                        # Radius\n",
+    "R=2.91*(pow(10,-6))                                                     # Converting to meter\n",
+    "Iu=3.72-2.91                                                            # Moment of inertia(m**4)\n",
+    "Iv=3.72+2.91                                                            # Moment of inertia(m**4) \n",
+    "#Loading\n",
+    "Mu=(M0*sin(40.4))                                                       # Applied couple(N.m)             \n",
+    "Mv=(M0*cos(40.4))                                                       # Applied couple(N.m)\n",
+    "#Case(a) Stress at A\n",
+    "uA=50*cos(40.4*((2*math.pi)/360))+74*sin(40.4*((2*math.pi)/360))        # Perpendicular distances(mm)\n",
+    "vA=-50*sin(40.4*((2*math.pi)/360))+74*cos(40.4*((2*math.pi)/360))       # Perpendicular distances(mm)\n",
+    "sA=((972*0.0239)/(0.810*(pow(10,-6))) - ((1142)*(0.0860))/(6.63*pow(10,-6)))/(pow(10,6)) # Stress at A(MPa)\n",
+    "#Case(b) Neutral Axis\n",
+    "phy=81.8                                                                # Angle neutral axis with the v axis(degree) \n",
+    "B=81.8-40.4                                                             # Angle neutral axis with the horizontal axis(degree)\n",
+    "\n",
+    "# Result\n",
+    "print ('Stress at point A  = %lf MPa' %sA)\n",
+    "print ('The angle formed by the neutral axis and the horizontal is  = %lf degree' %B)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.10, Page number 298"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The distance e between the centroid and the neutral axis of the cross section  = 0.031381 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "r=6                                                    # mean radius(in)\n",
+    "b=2.5                                                  # Breadth(in) \n",
+    "h=1.5                                                  # Height(in)\n",
+    "n=-1\n",
+    "b=symbols('b')                                         # Variable declaration\n",
+    "h=symbols('h')                                         # Variable declaration\n",
+    "r=symbols('r')                                         # Variable declaration\n",
+    "r1=symbols('r1')                                       # Variable declaration\n",
+    "r2=symbols('r2')                                       # Variable declaration\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "A=b*h                                                  # Area\n",
+    "R=A/(integrate((1/r), (r, r1, r2)))*(b)                # Radius\n",
+    "r1=6-((1/2)*(1.5))                                     # Inner radius(in)\n",
+    "r2=6+((1/2)*(1.5))                                     # Outer radius(in)\n",
+    "# Case(b)\n",
+    "R=(1.5)/(log(r2/r1))                                   # Distance(in)\n",
+    "e=6-R                                                  # Distance between the centroid and the neutral axis \n",
+    "\n",
+    "# Result\n",
+    "print ('The distance e between the centroid and the neutral axis of the cross section  = %lf in' %e)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 4.11, Page number 299"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum stress = 7.860974 ksi\n",
+      "Minimum stress = -9.304620 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=8                                                                        # Bending moment(kip.in)\n",
+    "A=(2.5)*(1.5)                                                              # Area(in**2)  \n",
+    "R=5.969                                                                     \n",
+    "e=0.0314                                                                   # Distance(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a)\n",
+    "Smax=((8)*(6.75-5.969))/((3.75)*(0.0314)*(6.75))                           # Maximum stress(ksi)  \n",
+    "Smin=((8)*(5.25-5.969))/((3.75)*(0.0314)*(5.25))                           # Minimum stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum stress = %lf ksi' %Smax)\n",
+    "print ('Minimum stress = %lf ksi' %Smin)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 4.11, Page number 300"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Largest force that can applied to the component = 8.550000 kN\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=symbols('P')                                                             # Variable declaration  \n",
+    "s=symbols('s')                                                             # Variable declaration\n",
+    "A=symbols('A')                                                             # Variable declaration\n",
+    "M=symbols('M')                                                             # Variable declaration\n",
+    "R=symbols('R')                                                             # Variable declaration \n",
+    "e=symbols('e')                                                             # Variable declaration\n",
+    "\n",
+    "# Calculation\n",
+    "#Centroid of the Cross Section\n",
+    "r=(120*(pow(10,3)))/(2400)                                                 # Distance(m) \n",
+    "#Force and Couple at D\n",
+    "M=((50+60)/1000)*P                                                         # Moment\n",
+    "#Superposition\n",
+    "s=-(P/A) + (M*(r-R))/(A*e*r)                                               # Total stress\n",
+    "#Radius of Neutral Surface\n",
+    "r=symbols('r')                                                             # Variable declaration \n",
+    "R=(2400)/((integrate((80/r), (r, 30, 50)))+(integrate((20/r), (r, 50, 90))))# Radius of neutral surface(m) \n",
+    "#Allowable Load\n",
+    "P=solve(-(P/(2.4*pow(10,-3))) + (0.110*P*(0.030-0.04561))/(2.4*(pow(10,-3))*(0.00439)*(0.030)) + (50*pow(10,6)),P) # Allowable load(kN)\n",
+    "P=round((P[0]/1000),2)                                                     # Rounding off(kN) \n",
+    "\n",
+    "# Result\n",
+    "print ('Largest force that can applied to the component = %lf kN' %P)                                 "
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_5_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_5_1.ipynb
new file mode 100644
index 00000000..f8abe852
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_5_1.ipynb
@@ -0,0 +1,589 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 5 : Analysis and Design of Beams for Bending"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.1, Page number 322"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum normal stress in the beam = 60.000000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "# Reactions\n",
+    "Rb=40                                                                             # Reaction at B(kN)\n",
+    "Rd=14                                                                             # Reaction at D(kN)\n",
+    "\n",
+    "# Calculations\n",
+    "# Shear and Bending-Moment Diagrams\n",
+    "V1=-20                                                                            # Force(kN) \n",
+    "M1=0                                                                              # Moment(kN.m)\n",
+    "V2=-20                                                                            # Force(kN) \n",
+    "M2=-50                                                                            # Moment(kN.m) \n",
+    "V3=26                                                                             # Force(kN) \n",
+    "M3=-50                                                                            # Moment(kN.m)\n",
+    "V4=26                                                                             # Force(kN)\n",
+    "M4=28                                                                             # Moment(kN.m)\n",
+    "V5=-14                                                                            # Force(kN)  \n",
+    "M5=28                                                                             # Moment(kN.m)\n",
+    "V6=-14                                                                            # Force(kN)\n",
+    "M6=0                                                                              # Moment(kN.m)  \n",
+    "# Maximum Normal Stress\n",
+    "S=(1/6)*(0.080)*(pow(0.250,2))                                                    # Section modulus of the beam(m**3)\n",
+    "Mb=(50*pow(10,3))                                                                 # Moment(N.m)\n",
+    "sM=(Mb/S)/((pow(10,6)))                                                                         # Stress(Pa)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum normal stress in the beam = %lf MPa' %sM)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.2, Page number 323"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum normal stress to the left of point D = 16.000000 ksi\n",
+      "Maximum normal stress to the right of point D = 14.095238 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "x=symbols('x')\n",
+    "V=symbols('V')\n",
+    "n=-1\n",
+    "\n",
+    "# Calculation\n",
+    "#Equivalent Loading of Beam\n",
+    "#Case(a) Shear and Bending-Moment Diagrams\n",
+    "#From A to C\n",
+    "V=n*(3*x)                                                                   # Force(kips) \n",
+    "M=n*3*(1/2)*x*x                                                             # Moment(kip.ft)\n",
+    "#From C to D\n",
+    "V=-24                                                                       # Force(kips) \n",
+    "M=96-(24*x)                                                                 # Moment(kip.ft)\n",
+    "#From D to B\n",
+    "V=-34                                                                       # Force(kips)  \n",
+    "M=226-(34*x)                                                                # Moment(kip.ft)\n",
+    "#Case(b) Maximum Normal Stress to the Left and Right of Point D\n",
+    "#To the left of D\n",
+    "S=126                                                                       # Volume(in**3)  \n",
+    "M=2016                                                                      # Moment(kip.in)\n",
+    "Sm=(M)/S                                                                    # Stress(ksi)\n",
+    "#To the right of D\n",
+    "M=1776                                                                      # Moment(kip.in)\n",
+    "Sm2=(M/S)                                                                   # Stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum normal stress to the left of point D = %lf ksi' %Sm)\n",
+    "print ('Maximum normal stress to the right of point D = %lf ksi' %Sm2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 5.03, Page number 331"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum value of the bending moment :-\n",
+      "0.5*l*w*x - 0.5*w*x**2\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Ra=symbols('Ra')                                                       # Variable declaration\n",
+    "Rb=symbols('Rb')                                                       # Variable declaration\n",
+    "w=symbols('w')                                                         # Variable declaration\n",
+    "l=symbols('l')                                                         # Variable declaration\n",
+    "Ma=0                                                                   # Bending moment \n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "Ra=(1/2)*(w)*(l)                                                       # Reaction at A\n",
+    "V=Ra+ n*integrate(w, (x, 0, x))                                        # Shear\n",
+    "M=Ma + integrate(V, (x, 0, x))                                         # Bending moment\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum value of the bending moment :-')\n",
+    "print (M)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.3, Page number 333"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Bending moment at A = 0.000000 kip.ft\n",
+      "Bending moment at B = 108.000000 kip.ft\n",
+      "Bending moment at C = 92.000000 kip.ft\n",
+      "Bending moment at D = 76.000000 kip.ft\n",
+      "Bending moment at E = 60.000000 kip.ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Mb=symbols('Mb')                                                       # Variable declaration\n",
+    "Mc=symbols('Mc')                                                       # Variable declaration\n",
+    "Md=symbols('Md')                                                       # Variable declaration\n",
+    "Me=symbols('Me')                                                       # Variable declaration\n",
+    "#Reactions\n",
+    "D=((12)*(28) + (12)*(14) + (20)*(6))/24                                # Force(kips)\n",
+    "Ay=20+12-26+12                                                         # Force(kips)\n",
+    "Ax=0                                                                   # Force(kips)\n",
+    "#Shear Diagram\n",
+    "V=18-20                                                                # Force(kips)\n",
+    "#Bending-Moment Diagram\n",
+    "Ma=0                                                                   # Moment(kip.ft)\n",
+    "Mb=solve(Mb-108,Mb)                                                    # Moment(kip.ft)\n",
+    "Mc=solve(Mc-Mb[0]+16,Mc)                                               # Moment(kip.ft) \n",
+    "Md=solve(Md-Mc[0]+16,Md)                                               # Moment(kip.ft)\n",
+    "Me=solve(Me-Md[0]+16,Me)                                               # Moment(kip.ft)\n",
+    "Vmax=18                                                                # Force(kips)\n",
+    "Mmax=108                                                               # Moment(kip.ft)\n",
+    "\n",
+    "# Result\n",
+    "print ('Bending moment at A = %lf kip.ft' %Ma)\n",
+    "print ('Bending moment at B = %lf kip.ft' %Mb[0])\n",
+    "print ('Bending moment at C = %lf kip.ft' %Mc[0])\n",
+    "print ('Bending moment at D = %lf kip.ft' %Md[0])\n",
+    "print ('Bending moment at E = %lf kip.ft' %Me[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.4, Page number 334"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Location of maximum normal stress = 4.000000 kip.ft\n",
+      "Magnitude of maximum normal stress = 125.984252 kip.ft\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "x=symbols('x')                                                           # Variable declaration\n",
+    "Ra=80                                                                    # Reaction at A(kN)\n",
+    "Rc=40                                                                    # Reaction at C(kN)\n",
+    "Va=80                                                                    # Force at A(kN)\n",
+    "Ma=0                                                                     # Moment at A                                                                     \n",
+    "S=1270\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a)\n",
+    "Vb=-120+80                                                               # Force at B(kN)\n",
+    "Vc=Vb                                                                    # Force at C(kN)   \n",
+    "x=solve(0-80+(20*x),x)                                                   \n",
+    "Md=Ma+160                                                                # Bending moment at point D(kN.m)\n",
+    "Mb=Md-40                                                                 # Bending moment at point B(kN.m)  \n",
+    "Mc=Mb-120                                                                # Bending moment at point C(kN.m)\n",
+    "sm=((Md*pow(10,3))/(S*pow(10,-6)*pow(10,6)))                                       # Maximum normal stress(Pa)\n",
+    "\n",
+    "# Result\n",
+    "print ('Location of maximum normal stress = %lf kip.ft' %x[0])\n",
+    "print ('Magnitude of maximum normal stress = %lf kip.ft' %sm)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.7, Page number 342"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum required depth of the beam = 14.546281 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "x=symbols('x')                                                        # Variable declaration \n",
+    "Ra=80                                                                 \n",
+    "Rc=40                             \n",
+    "sall=1.75                                                             # Allowable stress(ksi)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Reactions.\n",
+    "B=((4.5*12)+(3.2*4))/8                                                # Reaction at B(kips)\n",
+    "Ay=7.7-8.35                                                           # Reaction at A(kips)\n",
+    "A=-Ay\n",
+    "#Shear Diagram\n",
+    "Va=Ay                                                                 # Force at A(kips) \n",
+    "Vb=Va-((400*8)/1000)                                                  # Force at B(kips)   \n",
+    "#Determination of |M| max\n",
+    "Ma=Mc=0                                                               # Moment at C\n",
+    "Mmax=18                                                               # Maximum moment(kip.ft)\n",
+    "\n",
+    "#Minimum Allowable Section Modulus\n",
+    "Smin=((Mmax*12)/sall)                                                 # Minimum allowable section modulus(in**3)\n",
+    "\n",
+    "\n",
+    "#Minimum Required Depth of Beam\n",
+    "h=math.sqrt((123.43*6)/3.5)                                           # Minimum required depth of the beam\n",
+    "\n",
+    "# Result\n",
+    "print ('Minimum required depth of the beam = %lf in' %h)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.8, Page number 343"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "We select the lightest shape available, namely W360*32.9\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "x=symbols('x')                                                          # Variable declaration\n",
+    "Ra=80                                                                   # Force on rod AC(lb)\n",
+    "Rc=40                                                                   # Diameter at the upper junction of rod ABC(in)\n",
+    "sall=160                                                                # Normal stress for the grade of steel(MPa) \n",
+    "V=0\n",
+    "\n",
+    "#Calculation         \n",
+    "#Reactions.\n",
+    "D=((50*4)+(60*1.5))/5                                                   # Reaction(kN)\n",
+    "Ay=60+50-58                                                             # Reaction(kN)  \n",
+    "\n",
+    "#Shear Diagram\n",
+    "Va=Ay=52                                                                # Force at A(kN)\n",
+    "Vb=52-60                                                                # Force at B(kN)\n",
+    "x=(52/20)                                                               # Distance(m)\n",
+    "\n",
+    "#Determination of |M| max\n",
+    "Mmax=Me=67.6                                                            # Maximum bending moment(kN.m)\n",
+    "\n",
+    "#Minimum Allowable Section Modulus\n",
+    "Smin=(Mmax/sall)*(pow(10,-6))*(pow(10,9))                               # Minimum Allowable Section Modulus(mm**3) \n",
+    "\n",
+    "#Selection of Wide-Flange Shape\n",
+    "#W410*38.8   629\n",
+    "#W360*32.9   475\n",
+    "#W310*38.7   547\n",
+    "#W250*44.8   531\n",
+    "#W200*46.1   451\n",
+    "\n",
+    "#Result\n",
+    "print('We select the lightest shape available, namely W360*32.9')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "## Example 5.07, Page number 362"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The plate providing the most economical design is of triangular shape.\n",
+      "Maximum depth h0  = 300.000000 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "x=symbols('x')                                                            # Variable declaration\n",
+    "w=symbols('w')                                                            # Variable declaration \n",
+    "b=symbols('b')                                                            # Variable declaration\n",
+    "Sall=symbols('Sall')                                                      # Variable declaration \n",
+    "h=symbols('h')                                                            # Variable declaration\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "# Bending Moment\n",
+    "Vx=n*integrate(w,x)                                                       # Force \n",
+    "Mx=n*integrate(w*x,x)                                                     # Moment\n",
+    "\n",
+    "\n",
+    "#Case(a) Shape Of Plate\n",
+    "h=sqrt(n*(6*(Mx))/(b*(Sall)))                                             # Relation between h and x\n",
+    "\n",
+    "#Case(b) Shape Of Plate\n",
+    "h0=(((3*135)/(0.040*1000*72))**(1/2))*(800)                               # Maximum depth h0(mm)\n",
+    "\n",
+    "#Result\n",
+    "print('The plate providing the most economical design is of triangular shape.')\n",
+    "print('Maximum depth h0  = %lf in' %h0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.11, Page number 363"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The required number of pair of planks = 3.000000\n",
+      "Length of plank 1  = 130.500000 in\n",
+      "Length of plank 2  = 111.300000 in\n",
+      "Length of plank 3  = 83.800000 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "x=symbols('x')                                                      # Variable declaration\n",
+    "M=symbols('M')                                                      # Variable declaration\n",
+    "b=symbols('b')                                                      # Variable declaration \n",
+    "h=symbols('h')                                                      # Variable declaration\n",
+    "sall=symbols('sall')                                                # Variable declaration\n",
+    "Mab=4.80*x                                                          # Moment AB(kip.in) \n",
+    "Mbc=4.80*x-(4.80)*(x-48)                                            # Moment BC(kip.in)\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "#Number of Pairs of Planks\n",
+    "h=sqrt((6*M)/(b*sall))                                              # Eq 1\n",
+    "h=sqrt((6*230.4)/(4*2.40))                                          # Height(in)\n",
+    "No_Pl=3                                                             # Since the original beam has a depth of 4.50 in., the planks must provide an additional depth of 7.50 in. Recalling that each pair of planks is 2.50 in. thick\n",
+    "\n",
+    "#Length of Planks\n",
+    "h=symbols('h')                                                      # Variable declaration\n",
+    "x=(((4)*(2.40))/(6*4.80))*(h**2)                                    # from Eq 1\n",
+    "x1=round(x.subs(h,4.50),2)                                          # Distance(in)\n",
+    "x2=round(x.subs(h,7.00),2)                                          # Distance(in)\n",
+    "x3=round(x.subs(h,9.50),2)                                          # Distance(in)\n",
+    "l1=144-2*x1                                                         # Length(in)\n",
+    "l2=round((144-2*x2),1)                                              # Length(in)\n",
+    "l3=round((144-2*x3),1)                                              # Length(in)\n",
+    "\n",
+    "#Result\n",
+    "print('The required number of pair of planks = %lf' %No_Pl)\n",
+    "print('Length of plank 1  = %lf in' %l1)\n",
+    "print('Length of plank 2  = %lf in' %l2)\n",
+    "print('Length of plank 3  = %lf in' %l3)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 5.12, Page number 364"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Length of plates = 3.530000 m\n",
+      "Width of plates = 267.000000 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "#Bending Moment\n",
+    "x=symbols('x')                                                  # Variable declaration \n",
+    "M=symbols('M')                                                  # Variable declaration\n",
+    "I=symbols('I')                                                  # Variable declaration\n",
+    "Ip=Function('Ip')                                               # Variable declaration\n",
+    "M=250*x                                                         # Bending moment   \n",
+    "S=(3.49*pow(10,-3))                                             # Section modulus(m**3)\n",
+    "sall=160*(pow(10,3))                                            # Stress all(kN/(m**2)) \n",
+    "Ib=1190*(pow(10,6))                                             # the moment of inertia Ib of the two plates with respect to the neutral axis\n",
+    "d=678                                                           # Depth(mm)\n",
+    "t=16                                                            # Thickness(mm)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Required Length of Plates\n",
+    "M=round(S*sall,1)                                               # Moment(kN.m)\n",
+    "x=solve(M-250*x,x)                                              # Distance(m)\n",
+    "x=round(x[0],3)                                                 # Rounding\n",
+    "l=round(8-(2*x),2)                                              # Length of plates(m) \n",
+    "\n",
+    "\n",
+    "#Case(b) Required Width of Plates\n",
+    "M=250*4                                                         # Maximum bending moment(kN.m)\n",
+    "Ip=(((1/6)*b*(t**3)) + 2*b*t*(((1/2)*d)+((1/2)*t))**2)*(pow(10,3))# Moment of inertia\n",
+    "I=Ib+Ip                                                         # Moment of inertia of beam and plates \n",
+    "c=(1/2)*d + t                                                   # Distance from neutral axis to surface(mm)\n",
+    "I=round((M*c)/(sall),3)                                         # Moment of inertia(mm**4)\n",
+    "I=I*(pow(10,9))                                                 # Conversion\n",
+    "b=round((I-Ib)/(3.854*(pow(10,6))),0)                           # Distance(mm)\n",
+    "\n",
+    "#Result\n",
+    "print('Length of plates = %lf m' %l)\n",
+    "print('Width of plates = %lf mm' %b)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_6_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_6_1.ipynb
new file mode 100644
index 00000000..2efac11b
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_6_1.ipynb
@@ -0,0 +1,623 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 6 : Shearing Stresses in Beams and Thin-Walled Members"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.01, Page number 386"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Shearing force in each nail is = 92.592593 N\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "l=0.020                                                                           # Length(m)\n",
+    "b=0.100                                                                           # Breadth(m)\n",
+    "V=500                                                                             # Vertical shear(N)\n",
+    "y=0.060                                                                           # Distance(m)\n",
+    "\n",
+    "#Calculation         \n",
+    "A=l*b                                                                             # Area(m**2)\n",
+    "Q=A*y                                                                             # First moment of an area with respect to a given axis\n",
+    "I=(1/12)*(0.020)*(0.1**3) + 2*((1/12)*(0.1)*(0.02**3) + (0.020*0.1)*(0.06**2))    # Moment of inertia(m**4)    \n",
+    "q=(V*Q)/(I)                                                                       \n",
+    "F=(0.025)*q                                                                       # Shearing force in each nail(N)\n",
+    "\n",
+    "# Result\n",
+    "print ('Shearing force in each nail is = %lf N' %F)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.02, Page number 389"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum shearing stress in a narrow rectangular beam = 0.132548 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "Vmax=4.50                                                                           # Force maximum(kips)\n",
+    "b=3.5                                                                               # Actual width of beam(in)\n",
+    "h=14.55                                                                             # Depth(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "Tmax=(3/2)*(Vmax/(b*h))                                                             # Maximum shearing stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum shearing stress in a narrow rectangular beam = %lf ksi' %Tmax)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.03, Page number 389"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum allowable shearing stress for steel beam = 28.653295 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "tw=5.8                                                     # Distance(mm)\n",
+    "d=349                                                      # Distance(mm)\n",
+    "Vmax=58                                                    # Force(kN)\n",
+    "\n",
+    "#Calculation         \n",
+    "Aweb=d*tw                                                  # Area(mm*2)\n",
+    "Tmax=(Vmax/Aweb)*(1000)                                    # Maximum shearing stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum allowable shearing stress for steel beam = %lf MPa' %Tmax)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 6.1, Page number 392"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Shearing stress in joint a = 725.000000 kPa\n",
+      "Shearing stress in joint b = 608.000000 kPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "A=B=1.5                                                                       # Force(kN)\n",
+    "V=1.5                                                                         # Force(kN)\n",
+    "y1=0.0417                                                                     # Distance(m)\n",
+    "y2=0.0583                                                                     # Distance(m)\n",
+    "AreaA=0.100*0.020                                                             # Area(m**2)\n",
+    "AreaB=0.060*0.020                                                             # Area(m**2)\n",
+    "I=8.63*(pow(10,-6))                                                           # Moment of inertia(m**2) \n",
+    "t=0.020                                                                       # Distance(m)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Shearing Stress in Joint a\n",
+    "Qa=AreaA*y1                                                                   \n",
+    "taweA=round((V*Qa)/(I*t),0)                                                   # Shearing stress in joint a(kPa)\n",
+    "\n",
+    "#Shearing Stress in Joint b\n",
+    "Qb=AreaB*y2\n",
+    "taweB=round((V*Qb)/(I*t),0)                                                   # Shearing stress in joint b(kPa)\n",
+    "\n",
+    "# Result\n",
+    "print ('Shearing stress in joint a = %lf kPa' %taweA)            \n",
+    "print ('Shearing stress in joint b = %lf kPa' %taweB)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 6.2, Page number 393"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum required depth d of beam = 10.710000 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "#Maximum Shear and Bending Moment\n",
+    "I=symbols('I')                                                             # Variable declaration\n",
+    "b=symbols('b')                                                             # Variable declaration \n",
+    "d=symbols('d')                                                             # Variable declaration\n",
+    "c=symbols('c')                                                             # Variable declaration\n",
+    "S=symbols('S')                                                             # Variable declaration  \n",
+    "Mmax=90                                                                    # Maximum bending moment(kip.in) \n",
+    "Vmax=3                                                                     # Force(kips)\n",
+    "sall=1800                                                                  # Stress all(psi)\n",
+    "tall=120                                                                   # Shearing stress(psi) \n",
+    "b=3.5                                                                      # Width(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Design Based on Allowable Normal Stress\n",
+    "I=(1/12)*(b)*(d**3)                                                        # Moment of inertia(m**4)\n",
+    "S=round((1/6)*(b),4)*(d**2)                                                # Section modulus\n",
+    "d=round(sqrt(((90*(pow(10,3)))/(1800))*(1/0.5833)),2)                      # Distance(in)\n",
+    "\n",
+    "#Check Shearing Stress\n",
+    "Area=(b)*(d)                                                               # Area(in**2)\n",
+    "tm=round((3/2)*((Vmax*1000)/Area),1)                                       # Allowable shearing stress(psi)\n",
+    "\n",
+    "#Design Based on Allowable Shearing Stress\n",
+    "d=round((3*3000)/(2*3.5*120),2)                                            # Distance(in)\n",
+    "\n",
+    "# Result\n",
+    "print ('Minimum required depth d of beam = %lf in' %d)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.04, Page number 401"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Shearing force in each nail = 80.762500 lb\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "l=0.75                                                     # Distance(in)\n",
+    "b=3                                                        # Breadth(in)  \n",
+    "V=600                                                      # Vertical shear(lb)\n",
+    "y=1.875                                                    # Distance(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "Q=l*b*y                                                    \n",
+    "I=(1/12)*((4.5**4)-(3**4))                                 # Moment of inertia(in**4)\n",
+    "q=(V*Q)/(I)                                                \n",
+    "F=(1.75)*(46.15)                                           # Shearing force(lb)\n",
+    "\n",
+    "# Result\n",
+    "print ('Shearing force in each nail = %lf lb' %F)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 6.3, Page number 406"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Horizontal shearing stress = 2.630000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "Q=round((4.31)*(0.770)*(4.815),2)\n",
+    "t=round(((50)*(15.98))/(394*0.770),2)                                             # Normal shearing stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Horizontal shearing stress = %lf ksi' %t)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 6.4, Page number 406"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Horizontal shearing stress = 2.790000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "tf=0.770                                                                      # Distance(in)\n",
+    "\n",
+    "#Calculation         \n",
+    "I=round(394 + 2*((1/12)*(12)*pow(0.75,3) + (12)*(0.75)*(pow(5.575,2))),0)     # Centroidal moment of inertia(in**4)\n",
+    "t=2*tf                                                                        # Distance(in)  \n",
+    "Q=round(2*(4.31*0.770*4.815) + (12)*(0.75)*(5.575),1)                         \n",
+    "t=round(((50)*(82.1))/((954)*(1.54)),2)                                       # Shearing stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Horizontal shearing stress = %lf ksi' %t)            "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 6.5, Page number 407"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Shearing stress at A = 0.000000 ksi\n",
+      "Case(a) Maximum shearing stress = 18.540000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "AB=AD=65                                                                             # Distance AB(mm)\n",
+    "cosB=12/13                                                                            \n",
+    "\n",
+    "#Calculation         \n",
+    "#Centroid\n",
+    "Y=round((2*65*3*30)/((2*65*3)+((50)*(3))),2)                                         # Distance y(mm)\n",
+    "#Centroidal Moment of Inertia\n",
+    "b=(3)/(cosB)                                                                         # Distance(mm) \n",
+    "I=2*((1/12)*(3.25)*(pow(60,3)) + (3.25)*(60)*(pow(8.33,2))) +  ((1/12)*(50)*(pow(3,3)) + (50)*(3)*(pow(21.67,2)))# Moment of inertia(mm**4)\n",
+    "I=(I/(pow(10,12)))                                                                   # Moment of inertia(m**4) \n",
+    "#Shearing Stress at A\n",
+    "ta=0\n",
+    "#Maximum Shearing Stress\n",
+    "Q=round(3.25*38.33*(38.33/2),0)\n",
+    "tE=((5)*(2.387*(pow(10,-6))))/((0.2146*(pow(10,-6)))*(0.003))                        \n",
+    "tE=round(tE/1000,2)                                                                  # Largest shearing stress\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Shearing stress at A = %lf ksi' %ta)\n",
+    "print ('Case(a) Maximum shearing stress = %lf MPa' %tE)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.05, Page number 417"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Shear center O of a channel section of uniform thickness = 1.600000 in\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "b=4                                                                                      # Distance(in)\n",
+    "h=6                                                                                      # Distance(in)\n",
+    "t=0.15                                                                                   # Thickness(in)  \n",
+    "s=symbols('s')                                                                           # Variable declaration\n",
+    "V=symbols('V')                                                                           # Variable declaration \n",
+    "I=symbols('I')                                                                           # Variable declaration\n",
+    "b=symbols('b')                                                                           # Variable declaration\n",
+    "\n",
+    "#Calculation         \n",
+    "q=(V*s*t*h)/(2*I)                                                                        # First moment\n",
+    "F=integrate(q,(s,0,b))                                                                   # Magnitude of shearing force\n",
+    "e=(F*h)/(V)                                                                              # Distance e from the center line of the web BD to the shear center O\n",
+    "I=((1/12)*t*(h**3)) + 2*(((1/12)*b*(t**3)) + (b*t*((h/2)**2)))                           # Moment of inertia\n",
+    "e=(4)/(2+0.5)                                                                            # Distance(in)\n",
+    "\n",
+    "# Result\n",
+    "print ('Shear center O of a channel section of uniform thickness = %lf in' %e)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.06, Page number 418"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Shearing stress in flanges = 2.222222 ksi\n",
+      "Shearing stress in web = 3.055556 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "V=2.5                                                                             # Force(kips)\n",
+    "b=4                                                                               # Distance(in)\n",
+    "t=0.15                                                                            # Thickness(in)\n",
+    "h=6                                                                               # Height(in)\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "tB=(6*V*b)/((t*h)*(6*b+h))                                                        # Horizontal shearing stress(ksi)\n",
+    "tMAX=(3*(V)*(4*b+h))/(2*t*h*(6*b+h))                                              # Shearing stress in web(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Shearing stress in flanges = %lf ksi' %tB)\n",
+    "print ('Shearing stress in web = %lf ksi' %tMAX)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 6.07, Page number 419"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Maximum shearing stress = 68.860000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "V=2.5                                                              # Force(kip)\n",
+    "OC=1.6+1.143                                                       # Distance(in)\n",
+    "a=4+6+4                                                            # Distance(in)\n",
+    "b=0.15                                                             # Distance(in)\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "T=V*OC                                                             # Torque(kip.in)\n",
+    "TmaxBend=3.06                                                      # Maximum value of stress(ksi)\n",
+    "c1=(1/3)*(1-(0.630*(b/a)))                                          \n",
+    "tmaxTwist=(T/(c1*a*(b**2)))                                        # Stress due to twisting(ksi)  \n",
+    "tmax=3.06 + 65.8                                                   # Combined stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Maximum shearing stress = %lf ksi' %tmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 6.6, Page number 422"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Combined stress along the vertical leg :-\n",
+      "-3.0*P*(-0.25*a + 0.25*y)*(0.25*a + 1.25*y)/(a**3*t)\n",
+      "Combined stress along the horizontal leg :-\n",
+      "3.0*P*(-0.25*a + 0.25*y)*(-0.25*a + 0.75*y)/(a**3*t)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "b=symbols('b')                                                               # Variable declaration\n",
+    "h=symbols('h')                                                               # Variable declaration  \n",
+    "t=symbols('t')                                                               # Variable declaration\n",
+    "a=symbols('a')                                                               # Variable declaration\n",
+    "y=symbols('y')                                                               # Variable declaration \n",
+    "P=symbols('P')                                                               # Variable declaration\n",
+    "t1=symbols('t1')                                                             # Variable declaration\n",
+    "\n",
+    "#Calculation         \n",
+    "#Principal Axes\n",
+    "Inn=(1/12)*(b)*(pow(h,3))                                                    # Moment of inertia\n",
+    "Imm=(1/3)*(b)*(pow(h,3))                                                     # Moment of inertia \n",
+    "Iy=(2)*(1/3)*(t/cos((math.pi)/4))*(pow((a*cos((math.pi)/4)),3))              # Centroidal moment of inertia at y   \n",
+    "Iz=(2)*(1/12)*(t/cos((math.pi)/4))*(pow((a*cos((math.pi)/4)),3))             # Centroidal moment of inertia at z\n",
+    "\n",
+    "#Shearing Stresses Due to Vy\n",
+    "Y=(1/2)*(a+y)*(cos((math.pi)/4))-(1/2)*(a)*(cos((math.pi)/4))                # Distance\n",
+    "Q=(1/2)*(t)*(a-y)*(y)*cos((math.pi)/4)\n",
+    "Vy=P*(cos((math.pi)/4))\n",
+    "t1=(Vy*Q)/(Iz*t)                                                             # Stress\n",
+    "\n",
+    "\n",
+    "#Shearing Stresses Due to Vz\n",
+    "Z=(1/2)*(a+y)*cos((math.pi)/4)\n",
+    "Q=(1/2)*(a**2-y**2)*(t)*(cos((math.pi)/4))\n",
+    "Vz=P*(cos((math.pi)/4))\n",
+    "t2=(Vz*Q)/(Iy*t)                                                             # Stress\n",
+    "\n",
+    "#Combined Stresses. \n",
+    "#Along the Vertical Leg\n",
+    "te=factor(t1+t2)                                                             # Stress \n",
+    "\n",
+    "#Along the Horizontal Leg.\n",
+    "tf=factor(t2-t1)                                                             # Stress\n",
+    "\n",
+    "# Result\n",
+    "print ('Combined stress along the vertical leg :-' )\n",
+    "print(te)\n",
+    "print ('Combined stress along the horizontal leg :-')\n",
+    "print(tf)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_7_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_7_1.ipynb
new file mode 100644
index 00000000..a6edd31d
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_7_1.ipynb
@@ -0,0 +1,729 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 7 : Transformations of Stress and Strain"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 7.01, Page number 446"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Principal planes = 26.550000 degree\n",
+      "Case(a) Principal planes = 116.550000 degree\n",
+      "Case(b) Maximum principal stress = 70.000000 MPa\n",
+      "Case(b) Minimum principal stress = -30.000000 MPa\n",
+      "Case(c) Maximum shearing stress = 50.000000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Sx=50                                                                               # Stress in x(MPa)\n",
+    "n=-1\n",
+    "Sy=n*10                                                                             # Stress in y(MPa)\n",
+    "txy=40                                                                              # Shearing stress(MPa)  \n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a) Principal axes\n",
+    "phy1=(53.1)/2                                                                       # Angle(degree) \n",
+    "phy2=(233.1)/2                                                                      # Angle(degree)\n",
+    "\n",
+    "# Case(b) Principal stresses\n",
+    "Smax=20+sqrt(30**2+40**2)                                                           # Maximum principal stress(MPa)\n",
+    "Smin=20-sqrt(30**2+40**2)                                                           # Maximum principal stress(MPa)\n",
+    "Sxl=(50-10)/(2) + ((50+10)/(2))*cos(53.1*((math.pi)*2)/(360)) +40*sin(53.1*((math.pi)*2)/(360))  \n",
+    "\n",
+    "# Case(c) Maximum shearing stress\n",
+    "tmax=sqrt(30**2+40**2)                                                              # Maximum shearing stress(MPa)\n",
+    "Sl=(50-10)/2                                                                        # Normal stress on each of four walls(MPa)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Principal planes = %lf degree' %phy1)\n",
+    "print ('Case(a) Principal planes = %lf degree' %phy2)\n",
+    "print ('Case(b) Maximum principal stress = %lf MPa' %Smax)\n",
+    "print ('Case(b) Minimum principal stress = %lf MPa' %Smin)\n",
+    "print ('Case(c) Maximum shearing stress = %lf MPa' %tmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.1, Page number 447"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Normal stress = 8.840000 ksi\n",
+      "Case(a) Shearing stress = 7.960000 ksi\n",
+      "Case(b) Principal plane angle = -30.500000 degree\n",
+      "Case(b) Principal plane angle = 119.000000 degree\n",
+      "Case(c) Maximum stress at point H = 13.524834 ksi\n",
+      "Case(c) Minimum stress at point H = -4.684834 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "P=150                                                                                # Horizontal force(lb)\n",
+    "T=(150*18)/(1000)                                                                    # Force couple system(kip.in)\n",
+    "Mx=(150*10)/(1000)                                                                   # Force couple system(kip.in)\n",
+    "sx=0                                                                                 # Stress at x\n",
+    "M=1.5                                                                                # Torque(kip.in)\n",
+    "c=0.6                                                                                # Radius(in)\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Stresses S x , S y , T xy at Point H\n",
+    "sy=round(((M)*(c))/((1/4)*(math.pi)*(pow(0.6,4))),2)                                 # Stress(ksi)\n",
+    "txy=round(((T)*(c))/((1/2)*(math.pi)*(pow(0.6,4))),2)                                # Shearing stress(ksi)\n",
+    "\n",
+    "#Case(b) Principal Planes and Principal Stresses\n",
+    "phyp1=(n*61)/2                                                                       # Angle(degree)\n",
+    "phyp2=180-61                                                                         # Angle(degree)\n",
+    "\n",
+    "Smax=8.84/2 + sqrt(4.42**2 + 7.96**2)                                                # Maximum stress(ksi)  \n",
+    "Smin=8.84/2 - sqrt(4.42**2 + 7.96**2)                                                # Minimum stress(ksi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Normal stress = %lf ksi' %sy)\n",
+    "print ('Case(a) Shearing stress = %lf ksi' %txy)\n",
+    "print ('Case(b) Principal plane angle = %lf degree' %phyp1)\n",
+    "print ('Case(b) Principal plane angle = %lf degree' %phyp2)\n",
+    "print ('Case(c) Maximum stress at point H = %lf ksi' %Smax)\n",
+    "print ('Case(c) Minimum stress at point H = %lf ksi' %Smin)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 7.02, Page number 454"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) radius of circle = 50.000000 MPa\n",
+      "Case(b) Maximum principal stress = 70.000000 MPa\n",
+      "Case(b) Minimum principal stress = -30.000000 MPa\n",
+      "Case(c) Maximum shearing stress = 50.000000 MPa\n",
+      "Case(c) Minimum shearing stress = 20.000000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "n=-1\n",
+    "Sx=50                                                               # Force at x(MPa)\n",
+    "Sy=n*10                                                             # Force at y(MPa)\n",
+    "OC=20                                                               # Force(MPa)  \n",
+    "CA=50                                                               # Force(MPa)\n",
+    "BC=50                                                               # Force(MPa)\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a) Construction of Mohr’s Circle\n",
+    "Save=(Sx+Sy)/2                                                      # Average stress(MPa)\n",
+    "CF=50-20                                                            # Force(MPa)  \n",
+    "FX=40                                                               # Force(MPa) \n",
+    "R=sqrt(30**2 + 40**2)                                               # Radius of circle(MPa)\n",
+    "# case(b) Principal Planes and Principal Stresses\n",
+    "Smax=OC+CA                                                          # Maximum stress(MPa) \n",
+    "Smin=OC-BC                                                          # Minimum stress(MPa)\n",
+    "phyp=(53.1)/2                                                       # Angle(degree)\n",
+    "# case(c) Maximum Shearing Stress\n",
+    "tmax=50                                                             # Maximum shearing stress(MPa) \n",
+    "Save=20                                                             # Maximum normal stress(MPa) \n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) radius of circle = %lf MPa' %R)\n",
+    "print ('Case(b) Maximum principal stress = %lf MPa' %Smax)\n",
+    "print ('Case(b) Minimum principal stress = %lf MPa' %Smin)\n",
+    "print ('Case(c) Maximum shearing stress = %lf MPa' %tmax)\n",
+    "print ('Case(c) Minimum shearing stress = %lf MPa' %Save)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.2, Page number 457"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Principal planes angle = 33.700000 MPa\n",
+      "Case(b) Maximum principal stress = 132.000000 MPa\n",
+      "Case(b) Minimum principal stress = 28.000000 MPa\n",
+      "Case(c) Stress in x direction = 48.416456 MPa\n",
+      "Case(c) Stress in y direction = 111.583544 MPa\n",
+      "Case(c) Stress in x and y direction = 41.309560 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "sx=100                                                                  # Force(MPa)\n",
+    "sy=60                                                                   # Force(MPa)\n",
+    "CF=20                                                                   # Force(MPa)\n",
+    "FX=48                                                                   # Force(MPa) \n",
+    "OC=80                                                                   # Force(MPa)\n",
+    "CA=52                                                                   # Force(MPa)\n",
+    "BC=52                                                                   # Force(MPa)  \n",
+    "\n",
+    "# Calculation\n",
+    "#Construction of Mohr’s Circle\n",
+    "R=sqrt(20**2+48**2)                                                     # Radius of circle(MPa)\n",
+    "\n",
+    "        \n",
+    "#Case(a) Principal Planes and Principal Stresses\n",
+    "phyp=(67.4)/2                                                           # Angle(degree)\n",
+    "Smax=OC+CA                                                              # Maximum stress(MPa)\n",
+    "Smin=OC-BC                                                              # Min stress(MPa)\n",
+    "\n",
+    "#Case(b) Stress Components on Element Rotated 30\n",
+    "phy=180-60                                                              # Angle(degree)\n",
+    "Sxl=80-(52*(cos(52.6*(math.pi*2)/(360))))\n",
+    "Syl=80+(52*(cos(52.6*(math.pi*2)/(360))))\n",
+    "txlyl=52*(sin(52.6*(math.pi*2)/(360)))\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Principal planes angle = %lf MPa' %phyp)\n",
+    "print ('Case(b) Maximum principal stress = %lf MPa' %Smax)\n",
+    "print ('Case(b) Minimum principal stress = %lf MPa' %Smin)\n",
+    "print ('Case(c) Stress in x direction = %lf MPa' %Sxl)\n",
+    "print ('Case(c) Stress in y direction = %lf MPa' %Syl)\n",
+    "print ('Case(c) Stress in x and y direction = %lf MPa' %txlyl)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.3, Page number 458"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Shearing stress t0 for which the largest normal stress is 10 ksi = 4.472856 ksi\n",
+      "Case(b) Maximum shearing stress = 6.000000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "S0=8                                                                         # Stress(ksi)\n",
+    "Sx=8                                                                         # Stress in x direction(ksi)\n",
+    "Sy=0                                                                         # Stress in y direction(ksi)   \n",
+    "Smax=10                                                                      # Maximum stress(ksi)\n",
+    "\n",
+    "# Calculation\n",
+    "#Construction of Mohr’s Circle\n",
+    "Save=(1/2)*(Sx+Sy)                                                           # Average stress(ksi)  \n",
+    "R=10-4                                                                       # Radius of mohr's circle(ksi) \n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Shearing Stress t0\n",
+    "phyp=(48.2)/2                                                                # Angle(degree)               \n",
+    "t0=R*sin(48.2*((math.pi)*2)/(360))                                           # Shearing stress(ksi)\n",
+    "\n",
+    "#Case(b) Maximum Shearing Stress\n",
+    "tmax=R                                                                       # Maximum shearing stress(ksi)\n",
+    "phyx=(90-48.2)/(2)                                                           \n",
+    "\n",
+    "#Result\n",
+    "print ('Case(a) Shearing stress t0 for which the largest normal stress is 10 ksi = %lf ksi' %t0)\n",
+    "print ('Case(b) Maximum shearing stress = %lf ksi' %tmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 7.03, Page number 466"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Principal stress at A = 8.000000 ksi\n",
+      "Case(a) Principal stress at B = 1.500000 ksi\n",
+      "Case(b) Principal plane = 33.700000 ksi\n",
+      "Case(c) Maximum shearing stress = 4.000000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "n=-1\n",
+    "Sx=6\n",
+    "Sy=3.5\n",
+    "OC=4.75\n",
+    "CA=3.25\n",
+    "BC=3.25\n",
+    "\n",
+    "#Calculation         \n",
+    "# Case(a) Principal Planes and Principal Stresses\n",
+    "Save=(Sx+Sy)/2                                                                    # Average stress(ksi)\n",
+    "R=sqrt(1.25**2 + 3**2)                                                            # Radius of circle(ksi)\n",
+    "Sa=OC+CA                                                                          # Principal stress(ksi)\n",
+    "Sb=OC-BC                                                                          # Principal stress(ksi) \n",
+    "phyp=(67.4)/2\n",
+    "\n",
+    "# Case(b) Maximum shearing stress\n",
+    "tmax=(1/2)*(Sa)                                                                   # Maximum torque(ksi)\n",
+    " \n",
+    "#Result\n",
+    "print ('Case(a) Principal stress at A = %lf ksi' %Sa)\n",
+    "print ('Case(a) Principal stress at B = %lf ksi' %Sb)\n",
+    "print ('Case(b) Principal plane = %lf ksi' %phyp)\n",
+    "print ('Case(c) Maximum shearing stress = %lf ksi' %tmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.4, Page number 472"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Factor of safety with respect to maximum shearing stress criteria = 1.923077 \n",
+      "Case(b) Factor of safety with respect to maximum-distortion-energy criterion = 2.190000 \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "#Mohr’s Circle\n",
+    "Sx=80                                                                                 # Stress at x(MPa)\n",
+    "sy=-40                                                                                # Stress at y(MPa) \n",
+    "CF=60                                                                                 # Stress(MPa) \n",
+    "FX=25                                                                                 # Stress(MPa)\n",
+    "OC=20                                                                                 # Stress(MPa)\n",
+    "CA=65                                                                                 # Stress(MPa)\n",
+    "BC=65                                                                                 # Stress(MPa)\n",
+    "Save=(1/2)*(sx+sy)                                                                    # Stress average(MPa)                                                                \n",
+    "R=sqrt(60**2+25**2)                                                                   # radius of mohr's circle(MPa)  \n",
+    "Sy=250                                                                                # Tensile strength(MPa)   \n",
+    "tm=65                                                                                 # Stress(MPa) \n",
+    "\n",
+    "#Principal Stresses\n",
+    "sa=OC+CA                                                                              # Stress at A(MPa)\n",
+    "sb=OC-BC                                                                              # Stress at B(MPa)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Maximum-Shearing-Stress Criterion                                                                                # \n",
+    "ty=(1/2)*(Sy)                                                                         # Shearing stress at yield(MPa)\n",
+    "FS1=(ty/tm)                                                                           # Factor of safety\n",
+    "\n",
+    "#Case(b) Maximum-Distortion-Energy Criterion\n",
+    "FS2=round(sqrt((250**2)/(85**2+45**2+85*45)),2)                                       # Factor of safety  \n",
+    "\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Factor of safety with respect to maximum shearing stress criteria = %lf ' %FS1)\n",
+    "print ('Case(b) Factor of safety with respect to maximum-distortion-energy criterion = %lf ' %FS2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.5, Page number 481"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Normal stress  = 4230.000000 \n",
+      "Case(a) Maximum shearing stress = 2115.000000 \n",
+      "Case(b) Stress in direction perpendicular to helical weld = 4140.000000 \n",
+      "Case(b) Stress in direction parallel to helical weld = 1344.000000 \n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "p=180                                                                          # Internal gage pressure(psi)\n",
+    "t=(5/16)                                                                       # Length(in)\n",
+    "r=(15-t)                                                                       # Distance(in)\n",
+    "\n",
+    "\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Spherical Cap\n",
+    "s=s1=s2=((p)*(r))/(2*t)                                                          # Stress(psi)\n",
+    "tmax=(1/2)*s1                                                                  # Maximum shearing stress(psi)  \n",
+    "\n",
+    "#Case(b) Cylindrical Body of the Tank\n",
+    "t=3/8                                                                          # Distance(in) \n",
+    "r=15-t                                                                         # Distance(in)  \n",
+    "s1=(p*r)/(t)                                                                   # Stress(psi)\n",
+    "s2=(1/2)*s1                                                                    # Stress(psi)\n",
+    "Save=(1/2)*(s1+s2)                                                             # Stress average(psi)                                \n",
+    "R=(1/2)*(s1-s2)                                                                # Stress(psi) \n",
+    "\n",
+    "#Stresses at the Weld\n",
+    "Sw=round(Save-(R*cos(50*(((math.pi)*2)/360))),-1)                              # Stress at the weld(psi)\n",
+    "tw=round(R*sin(50*(((math.pi)*2)/360)),0)                                      # Shearing stress at the weld(psi)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Normal stress  = %lf ' %s)\n",
+    "print ('Case(a) Maximum shearing stress = %lf ' %tmax)\n",
+    "print ('Case(b) Stress in direction perpendicular to helical weld = %lf ' %Sw)\n",
+    "print ('Case(b) Stress in direction parallel to helical weld = %lf ' %tw)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 7.04, Page number 490"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Principal strain = 483.000000 u\n",
+      "Case(a) Principal strain = -83.000000 u\n",
+      "Case(b) Maximum shearing strain = 566.000000 u \n",
+      "Case(b) Normal strain = 200.000000 u\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "n=-1\n",
+    "Sx=6                                                                        # Stress in x direction()\n",
+    "Sy=3.5                                                                      # Stress in y direction()\n",
+    "BC=3.25                                                                       \n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Principal Axes and Principal Strains\n",
+    "Ex=4*(pow(10,-6))                                                           # Distance(u) \n",
+    "Ey=0                                                                        # Distance(u)\n",
+    "OC=(Ex+Ey)/(2)                                                              # Radius(u) \n",
+    "OY=200                                                                      # Radius(u)\n",
+    "\n",
+    "R=sqrt(200**2 + 200**2)                                                     # Radius(u)\n",
+    "\n",
+    "Ea=200 + 283                                                                # Strain at point A(u)\n",
+    "Eb=200 - 283                                                                # Strain at point A(u)\n",
+    "\n",
+    "#Case(b) Maximum shearing strain\n",
+    "ymax=283*2                                                                  # Maximum shearing strain(u)\n",
+    "El=200                                                                      # Normal strain(u)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Principal strain = %lf u' %Ea)\n",
+    "print ('Case(a) Principal strain = %lf u' %Eb)\n",
+    "print ('Case(b) Maximum shearing strain = %lf u ' %ymax)\n",
+    "print ('Case(b) Normal strain = %lf u' %El)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 7.05, Page number 494"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Maximum in plane shearing strain = 0.000450 rad\n",
+      "Case(b) Maximum shearing strain = -0.000150 u\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "#Variable declaration\n",
+    "Ea=400*(pow(10,-6))                                                       # Principal strain(in./in)\n",
+    "Eb=-50*(pow(10,-6))                                                       # Principal strain(in./in)\n",
+    "v=0.30                                                                    # Poisson's ratio\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "#Case(a) Maximum In-Plane Shearing Strain\n",
+    "Ymaxinplane=Ea-Eb                                                         # Maximum in-plane shearing strain(rad)\n",
+    "#Case(b) Maximum Shearing Strain\n",
+    "Ec=n*(v/(1-v))*(Ea+Eb)                                                    # Strain(in./in)                                                               # Maximum shearing strain(rad)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Maximum in plane shearing strain = %lf rad' %Ymaxinplane)\n",
+    "print ('Case(b) Maximum shearing strain = %lf u' %Ec)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.6, Page number 496"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Gage pressure inside the tank = 546.000000 psi\n",
+      "Case(b) Principal stress = 4.370000 ksi\n",
+      "Case(b) Principal stress = 8.740000 ksi\n",
+      "Case(b) Maximum shearing stress = 4.370000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "s1=symbols('s1')                                                          # Variable declaration\n",
+    "s2=symbols('s2')                                                          # Variable declaration\n",
+    "E1=255*(pow(10,-6))                                                       # Strain(in./in)   \n",
+    "E2=60*(pow(10,-6))                                                        # Strain(in./in)\n",
+    "G=11.2*(pow(10,6))                                                        # Modulus of rigidity(psi)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Gage Pressure Inside Tank\n",
+    "ymax=E1-E2                                                                # Maximum in plane shearing strain(rad)\n",
+    "tmax=(round(G*ymax,0))/(pow(10,3))                                        # Shearing stress(ksi) \n",
+    "p=(2184*4*0.75)/12                                                        # Gage pressure(psi)\n",
+    "\n",
+    "#Principal Stresses and Maximum Shearing Stress\n",
+    "s2=round(2*tmax,2)                                                        # Principal Stress(ksi)\n",
+    "s1=round(2*s2,2)                                                          # Principal Stress(ksi)\n",
+    "tmax=(1/2)*(s1)                                                           # Shearing stress(ksi) \n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Gage pressure inside the tank = %lf psi' %p)\n",
+    "print ('Case(b) Principal stress = %lf ksi' %s2)\n",
+    "print ('Case(b) Principal stress = %lf ksi' %s1)\n",
+    "print ('Case(b) Maximum shearing stress = %lf ksi' %tmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 7.7, Page number 497"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Strain component are :-\n",
+      "{yxy: 750.577367205543, ex: 40.0000000000000, ey: 860.050456293436}\n",
+      "Case(b) Principal strains = -106.000000 ksi\n",
+      "Case(b) Principal strains = 1006.000000 ksi\n",
+      "Case(b) Principal strains = -367.605634 ksi\n",
+      "Case(c) Maximum shearing strain = 1374.000000 ksi\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "E1=40                                                                              # Strain(u) \n",
+    "E2=980                                                                             # Strain(u) \n",
+    "E3=330                                                                             # Strain(u)\n",
+    "exp1=symbols('exp1')                                                               # Variable declaration\n",
+    "exp2=symbols('exp2')                                                               # Variable declaration\n",
+    "exp3=symbols('exp3')                                                               # Variable declaration\n",
+    "ex=symbols('ex')                                                                   # Variable declaration\n",
+    "ey=symbols('ey')                                                                   # Variable declaration\n",
+    "yxy=symbols('yxy')                                                                 # Variable declaration\n",
+    "v=0.29\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "#Strain Components ex, ey, yxy\n",
+    "exp1=ex*1 + ey*0 + yxy*0*1-40                                                      # Strain equations\n",
+    "exp2=ex*(pow(0.5,2)) + ey*(pow(0.866,2)) + yxy*(0.866*0.5)-980                     # Strain equations\n",
+    "exp3=ex*(pow(-0.5,2)) + ey*(pow(0.866,2)) + yxy*(0.866*-0.5)-330                   # Strain equations\n",
+    "Sol=solve((exp1,exp2,exp3),ex,ey,yxy)                                                  #  \n",
+    "\n",
+    "\n",
+    "#Principal Strains\n",
+    "Eave=(1/2)*(860+40)                                                                # Strain(u)\n",
+    "R=sqrt(375**2+410**2)                                                              # Radius(u)\n",
+    "phyp=(42.4)/2                                                                      # Angle(degree)\n",
+    "Ea=-106                                                                            # Strain(u)\n",
+    "Eb=1006                                                                            # Strain(u)\n",
+    "Ec=n*(v/(1-v))*(Ea+Eb)                                                             # Strain(u)\n",
+    "\n",
+    "#Maximum Shearing Strain\n",
+    "Ymax=(1006+368)\n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Strain component are :-')\n",
+    "print(Sol)\n",
+    "print ('Case(b) Principal strains = %lf ksi' %Ea)\n",
+    "print ('Case(b) Principal strains = %lf ksi' %Eb)\n",
+    "print ('Case(b) Principal strains = %lf ksi' %Ec)\n",
+    "print ('Case(c) Maximum shearing strain = %lf ksi' %Ymax)\n"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_8_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_8_1.ipynb
new file mode 100644
index 00000000..7b673ecf
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_8_1.ipynb
@@ -0,0 +1,370 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 8 : Principal Stresses under a Given Loading"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 8.1, Page number 520"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The specification, smax<= 150 MPa, is not satisfied\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "Ma=160*0.375                                                       # Torque on rod AC(kN.m)\n",
+    "Va = 160                                                           # Force(kN)\n",
+    "S=511*(pow(10,-6))                                                 # Inertia(m**3)   \n",
+    "yb=90.4                                                            # Distance(mm)\n",
+    "c=103                                                              # Distance(mm) \n",
+    "I=52.9*(pow(10,-6))                                                # Moment oof inertia(m**4) \n",
+    "t=0.00787                                                          # Distance(m)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Normal Stresses on Transverse Plane\n",
+    "#At point a:\n",
+    "Sa=round((Ma/S)/(1000),1)                                          # Stress at A(MPa) \n",
+    "#At point b:\n",
+    "Sb=round((Sa*(yb/c)),0)                                            # Stress at B(MPa)   \n",
+    "\n",
+    "#Shearing Stresses on Transverse Plane \n",
+    "#At point a:\n",
+    "Q=0\n",
+    "ta=0\n",
+    "#At point b:\n",
+    "Q=round((206*12.6*96.7)/(1000),0)                                  \n",
+    "Q=(Q)/(pow(10,6))\n",
+    "tb=round(((Va*Q)/(I*t))/(pow(10,3)),1)                             # Shearing stress(MPa) \n",
+    "\n",
+    "#Principal Stress at Point b\n",
+    "Smax=round((1/2)*Sb + math.sqrt(pow((1/2)*Sb,2) + pow(tb,2)),1)    # Stress maximum(MPa)\n",
+    "\n",
+    "# Result\n",
+    "print ('The specification, smax<= 150 MPa, is not satisfied' )"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 8.2, Page number 521"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "We now select the lightest shape available, namely :-\n",
+      "W21*62\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "\n",
+    "#Variable declaration\n",
+    "Aweb=8.40                                                             # Area of cross section(in**2)\n",
+    "S=127                                                                     \n",
+    "yb=9.88                                                               # Distance(in)\n",
+    "c=10.50                                                               # Distance(in)\n",
+    "V=12.2                                                                # Force(kips)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Reactions at A and D\n",
+    "sumMd=0                                                               # Equilibrium equations\n",
+    "sumMa=0                                                               # Equilibrium equations\n",
+    "\n",
+    "#Shear and Bending-Moment Diagrams\n",
+    "Mmax=2873                                                             # Maximum moment(kip.ft)  \n",
+    "Vmax=43                                                               # Maximum force(kips)\n",
+    "\n",
+    "#Section Modulus\n",
+    "Sall=24                                                               # Maximum stress(ksi) \n",
+    "Smin=round((Mmax/Sall),1)                                             # Minimum section modulus(in**3) \n",
+    "\n",
+    "#Selection of Wide-Flange Shape\n",
+    "\n",
+    "#   W24*68          154\n",
+    "#   W21*62          127\n",
+    "#   W18*76          146\n",
+    "#   W16*77          134\n",
+    "#   W14*82          123\n",
+    "#   W12*96          131\n",
+    "\n",
+    "# We now select the lightest shape available, namely W21*62\n",
+    "\n",
+    "#Shearing Stress\n",
+    "tm=round(Vmax/Aweb,2)                                                # Shearing stress(ksi)\n",
+    "\n",
+    "\n",
+    "#Principal Stress at Point b\n",
+    "Sa=round(Mmax/S,1)                                                   # Stress at A(ksi)\n",
+    "Sb=round(Sa*(yb/c),1)                                                # Stress at B(ksi)\n",
+    "\n",
+    "tb=round(V/Aweb,2)\n",
+    "smax=round((1/2)*Sb + math.sqrt(pow((1/2)*Sb,2) + pow(tb,2)),1)\n",
+    "\n",
+    "# Result\n",
+    "print ('We now select the lightest shape available, namely :-')\n",
+    "print('W21*62')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 8.3, Page number 522"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Diamter of shaft = 51.704299 mm\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "# Variable declaration\n",
+    "P=30                                                                      # Power(kW)\n",
+    "tall=50                                                                   # Shearing stress(MPa)\n",
+    "f=8                                                                       # Frequency(Hz)\n",
+    "Te=597                                                                    # Torque at E(N.m)\n",
+    "rE=0.16                                                                   # Radius(m) \n",
+    "\n",
+    "# Calculation         \n",
+    "# Torques Exerted on Gears\n",
+    "Te=(P/(2*(math.pi)*f))                                                    # Torque exerted on gear E(N.m)\n",
+    "Fe=Te/rE                                                                  # Tangential force(kN)\n",
+    "Tc=20/(2*(math.pi)*8)                                                     # Torque(N.m)\n",
+    "Fc=6.63                                                                   # Force(kN)\n",
+    "Td=10/(2*(math.pi)*8)                                                     # Torque(N.m)\n",
+    "Fd=2.49                                                                   # Force(kN) \n",
+    "\n",
+    "# Critical Transverse Section\n",
+    "Tor=math.sqrt(1160**2 + 373**2 + 597**2)                                  # Maximum value of torque(N.m)\n",
+    "\n",
+    "\n",
+    "# Diameter of Shaft.\n",
+    "c=((((27.14*(pow(10,-6)))*(2/(math.pi)))**(1/3))*(1000))*2                # Diameter(mm)     \n",
+    "\n",
+    "# Result\n",
+    "print ('Diamter of shaft = %lf mm' %c)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Example 8.01, Page number 529"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Case(a) Normal stress = 107.429587 MPa\n",
+      "Case(a) Shearing stress = -52.526646 MPa\n",
+      "Case(b) Principal axis angle = 22.200000 degree\n",
+      "Case(b) Maximum principal stress at point k = 128.799534 MPa\n",
+      "Case(b) Minimum principal stress at point k = -21.399534 MPa\n",
+      "Case(c) Maximum shearing stress at point k = 75.100000 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "n=-1                                                                     \n",
+    "P1=15                                                                            # Force(kN)\n",
+    "P2=18                                                                            # Force(kN) \n",
+    "a=50                                                                             # Distance(mm)\n",
+    "b=60                                                                             # Distance(mm)  \n",
+    "c=0.020                                                                          # Distance(m)\n",
+    "F=P1                                                                             # Force(kN)\n",
+    "V=P2                                                                             # Force(kN) \n",
+    "t=0.040                                                                          # Distance(m)  \n",
+    "Iz=125.7*(pow(10,-9))                                                            # Moment of inertia(m**4)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Internal Forces in Given Section\n",
+    "T=P2*a                                                                           # Torque(N.m)\n",
+    "My=P1*a                                                                          # Moment(N.m) \n",
+    "Mz=P2*b                                                                          # Moment(N.m)\n",
+    "# Case(a) Normal and Shearing Stresses at Point K\n",
+    "# Geometric Properties of the Section\n",
+    "A=(math.pi)*(c**2)                                                               # Area of cross section(m**2)\n",
+    "Iy=(1/4)*(math.pi)*(c**4)                                                        # Moment of inertia(m**4)\n",
+    "Jc=(1/2)*(math.pi)*(c**4)                                                        # Moment of inertia(m**4)\n",
+    "Q=(A/2)*((4*c)/(3*(math.pi)))\n",
+    "t=2*c                                                                            # Distance(m)\n",
+    "# Normal Stresses\n",
+    "Sx=(n*(F/A))/(1000) + ((My*c)/(Iy))/(1000000)                                    # Normal stress(MPa)\n",
+    "# Shearing Stresses\n",
+    "txyV=((V*Q)/(Iz*t))/(1000)                                                       # Shearing stress(MPa)\n",
+    "txytwist=((n*(T*c))/(Jc))/(1000000)                                              # Shearing stress(MPa) \n",
+    "txy=(txyV + txytwist)                                                            # Shearing stress(MPa)\n",
+    "# Case(b) Principal Planes and Principal Stresses at Point K\n",
+    "OC=CD=(1/2)*(107.4)                                                              # Stress(MPa)  \n",
+    "DX=52.5                                                                          # Stress(MPa) \n",
+    "phyp=44.4/2                                                                      # Angle(degree)\n",
+    "R=sqrt(53.7**2 + 52.5**2)                                                        # Stress(MPa)\n",
+    "Smax=OC+R                                                                        # Maximum principal stress(MPa)\n",
+    "Smin=OC-R                                                                        # Minimum principal stress(MPa)\n",
+    "# Case(c) Maximum shearing stress at point k\n",
+    "tmax=75.1                                                                        # Shearing stress(MPa) \n",
+    "\n",
+    "# Result\n",
+    "print ('Case(a) Normal stress = %lf MPa' %Sx)\n",
+    "print ('Case(a) Shearing stress = %lf MPa' %txy)\n",
+    "print ('Case(b) Principal axis angle = %lf degree' %phyp)\n",
+    "print ('Case(b) Maximum principal stress at point k = %lf MPa' %Smax)\n",
+    "print ('Case(b) Minimum principal stress at point k = %lf MPa' %Smin)\n",
+    "print ('Case(c) Maximum shearing stress at point k = %lf MPa' %tmax)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## SAMPLE PROBLEM 8.5, Page number 532"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Normal stress at H = 66.000000 MPa\n",
+      "Shearing stress at H = 17.530000 MPa\n",
+      "Principal axis angle = 13.980000 degree\n",
+      "Maximum shearing stress at point k = 37.362420 MPa\n",
+      "Maximum principal stress at point k = 70.362420 MPa\n",
+      "Minimum principal stress at point k = -4.362420 MPa\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "\n",
+    "#Variable declaration\n",
+    "#Free Body. Entire Crankshaft\n",
+    "Vx=-30                                                                        # Force(kN)\n",
+    "P=50                                                                          # Force(kN)\n",
+    "Vz=-75                                                                        # Force(kN)\n",
+    "Mx=(50)*(0.130) - (75)*(0.2)                                                  # Moment(kN.m)\n",
+    "My=0                                                                          # Moment\n",
+    "Mz=30*0.1                                                                     # Moment(kN.m)\n",
+    "A=0.040*0.140                                                                 # Area(m**2)   \n",
+    "Ix=(1/12)*(0.040)*(pow(0.140,3))                                              # Moment of inertia(m**4)\n",
+    "Iz=(1/12)*(pow(0.040,3))*(0.140)                                              # Moment of inertia(m**4)\n",
+    "a=0.020                                                                       # Distance(m)\n",
+    "b=0.025                                                                       # Distance(m)\n",
+    "t=0.040                                                                       # Distance(m)\n",
+    "OC=33.0                                                                       # Stress(MPa)\n",
+    "\n",
+    "#Calculation         \n",
+    "#Normal Stress at H\n",
+    "Sy=round(((P/A) + ((Mz)*a)/Iz + ((Mx)*b)/Ix)/(1000),0)                        # Normal stress at H(MPa) \n",
+    "\n",
+    "\n",
+    "#Shearing Stress at H\n",
+    "Q=(0.040*0.045*0.0475)\n",
+    "tyz=round((((-(Vz)*(Q))/(Ix*t))/1000),2)                                      # Shearing stress at H(MPa)\n",
+    "\n",
+    "\n",
+    "#Principal Stresses, Principal Planes, and Maximum Shearing Stress at H.\n",
+    "phyp=27.96/2\n",
+    "R=sqrt(33**2 + 17.52**2)\n",
+    "Smax=OC+R\n",
+    "Smin=OC-R\n",
+    "\n",
+    "\n",
+    "# Result\n",
+    "print ('Normal stress at H = %lf MPa' %Sy)\n",
+    "print ('Shearing stress at H = %lf MPa' %tyz)\n",
+    "print ('Principal axis angle = %lf degree' %phyp)\n",
+    "print ('Maximum shearing stress at point k = %lf MPa' %R)\n",
+    "print ('Maximum principal stress at point k = %lf MPa' %Smax)\n",
+    "print ('Minimum principal stress at point k = %lf MPa' %Smin)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_9_1.ipynb b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_9_1.ipynb
new file mode 100644
index 00000000..28e8d677
--- /dev/null
+++ b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/Chapter_9_1.ipynb
@@ -0,0 +1,87 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Chapter 9 : Deflection of Beams"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true
+   },
+   "source": [
+    "## EXAMPLE 9.08, Page number 583"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Reactions at the supports for the prismatic beam :-\n",
+      "0.625*L*w\n",
+      "Reactions at the supports for the loading :-\n",
+      "0.375*L*w\n"
+     ]
+    }
+   ],
+   "source": [
+    "import math\n",
+    "from sympy import Symbol\n",
+    "\n",
+    "#Variable declaration\n",
+    "w=symbols('w')\n",
+    "L=symbols('L')\n",
+    "E=symbols('E')\n",
+    "I=symbols('I')\n",
+    "Rb=symbols('Rb')\n",
+    "n=-1\n",
+    "\n",
+    "#Calculation         \n",
+    "yBW=(n*w*(L**4))/(8*E*I)\n",
+    "yBR=(Rb*(L**3))/(3*E*I)\n",
+    "Rb=(3/8)*(w)*(L)\n",
+    "Ra=w*L - Rb\n",
+    "Ma=(1/2)*(w)*(L**2) - Rb*L\n",
+    "\n",
+    "\n",
+    "\n",
+    "# Result\n",
+    "print ('Reactions at the supports for the prismatic beam :-')\n",
+    "print(Ra)\n",
+    "print ('Reactions at the supports for the loading :-')\n",
+    "print(Rb)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch1_2.png b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch1_2.png
new file mode 100644
index 00000000..f9bfbad4
Binary files /dev/null and b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch1_2.png differ
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch3_2.png b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch3_2.png
new file mode 100644
index 00000000..c6a024c2
Binary files /dev/null and b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch3_2.png differ
diff --git a/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch9_2.png b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch9_2.png
new file mode 100644
index 00000000..19a3da79
Binary files /dev/null and b/Mechanics_of_Materials_by_Ferdinand_P.Beer,_E.Russel_Jhonston_Jr.,_John.T._DEwolf/screenshots/Ch9_2.png differ
-- 
cgit