From 8fa3a985b0772b28f8e6e6f5aec18bca1c0f7332 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Mon, 11 Jan 2016 23:30:05 +0600 Subject: Added(A)/Deleted(D) following books A Engineering_Mechanics_of_Solids_by_Popov_E_P/Chapter1.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter10.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter11.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter12.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter2.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter4.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter6.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter7.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter8.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter9.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/charpter_3.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/charpter_3_1.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/Untitled.png A Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/cap2.png A Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/cap3.png A Microwave_Engineering_by_G._S._Raghuvanshi/Ch1.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch10.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch11.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch12.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch2.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch3.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch4.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch5.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch6.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch7.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch8.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/Ch9.ipynb A Microwave_Engineering_by_G._S._Raghuvanshi/screenshots/12refCoeff.png A Microwave_Engineering_by_G._S._Raghuvanshi/screenshots/1RefCoeff.png A Microwave_Engineering_by_G._S._Raghuvanshi/screenshots/6axialPhasVel.png --- .../Chapter1.ipynb | 437 +++++++ .../chapter10.ipynb | 896 +++++++++++++ .../chapter11.ipynb | 375 ++++++ .../chapter12.ipynb | 405 ++++++ .../chapter2.ipynb | 327 +++++ .../chapter4.ipynb | 447 +++++++ .../chapter5.ipynb | 870 +++++++++++++ .../chapter6.ipynb | 578 +++++++++ .../chapter7.ipynb | 260 ++++ .../chapter8.ipynb | 332 +++++ .../chapter9.ipynb | 246 ++++ .../charpter_3.ipynb | 289 +++++ .../charpter_3_1.ipynb | 289 +++++ .../screenshots/Untitled.png | Bin 0 -> 21406 bytes .../screenshots/cap2.png | Bin 0 -> 13440 bytes .../screenshots/cap3.png | Bin 0 -> 18752 bytes .../Ch1.ipynb | 811 ++++++++++++ .../Ch10.ipynb | 687 ++++++++++ .../Ch11.ipynb | 113 ++ .../Ch12.ipynb | 482 +++++++ .../Ch2.ipynb | 1319 ++++++++++++++++++++ .../Ch3.ipynb | 258 ++++ .../Ch4.ipynb | 1069 ++++++++++++++++ .../Ch5.ipynb | 1034 +++++++++++++++ .../Ch6.ipynb | 600 +++++++++ .../Ch7.ipynb | 667 ++++++++++ .../Ch8.ipynb | 542 ++++++++ .../Ch9.ipynb | 1041 +++++++++++++++ .../screenshots/12refCoeff.png | Bin 0 -> 22298 bytes .../screenshots/1RefCoeff.png | Bin 0 -> 47894 bytes .../screenshots/6axialPhasVel.png | Bin 0 -> 36520 bytes 31 files changed, 14374 insertions(+) create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/Chapter1.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter10.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter11.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter12.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter2.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter4.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter6.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter7.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter8.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter9.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/charpter_3.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/charpter_3_1.ipynb create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/Untitled.png create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/cap2.png create mode 100644 Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/cap3.png create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch1.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch10.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch11.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch12.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch2.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch3.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch4.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch5.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch6.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch7.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch8.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/Ch9.ipynb create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/screenshots/12refCoeff.png create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/screenshots/1RefCoeff.png create mode 100644 Microwave_Engineering_by_G._S._Raghuvanshi/screenshots/6axialPhasVel.png diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/Chapter1.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/Chapter1.ipynb new file mode 100644 index 00000000..ed833104 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/Chapter1.ipynb @@ -0,0 +1,437 @@ +{ + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + }, + "name": "", + "signature": "sha256:5ef00909be24a2b4d65cd7f64da2e07a8b79e5ac34c1eea3e4cbb11c87e75590" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1 : Stress, Axial loads and Safety concepts" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.1 page number 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "import math\n", + "d_bolt = 20.0 #mm,diameter,This is not the minimum area\n", + "d_bolt_min = 16.0 #mm This is at the roots of the thread \n", + "#This yealds maximum stress \n", + "A_crossection = (math.pi)*(d_bolt**2)/4 #mm*2\n", + "A_crossection_min = (math.pi)*(d_bolt_min**2)/4 #mm*2 ,This is minimum area which yeilds maximum stress\n", + "load = 10.0 #KN\n", + "BC = 1.0 #m\n", + "CF = 2.5 #m\n", + "contact_area = 200*200 # mm*2 , The contact area at c\n", + "\n", + "#caliculations \n", + "#Balancing forces in the x direction:\n", + "# Balncing the moments about C and B:\n", + "Fx = 0 \n", + "R_cy = load*(BC+CF) #KN , Reaction at C in y-direction\n", + "R_by = load*(CF) #KN , Reaction at B in y-direction\n", + "#Because of 2 bolts\n", + "stress_max = (R_by/(2*A_crossection_min))*(10**3) # MPA,maximum stess records at minimum area\n", + "stress_shank = (R_by/(2*A_crossection))*(10**3) # MPA\n", + "Bearing_stress_c = (R_cy/contact_area)*(10**3) #MPA, Bearing stress at C\n", + "\n", + "print\"The bearing stress at C is \",(Bearing_stress_c) ,\"MPA\"\n", + "print\"The maximum normal stress in BD bolt is: \",round(stress_max),\"MPA\"\n", + "print\"The tensile strss at shank of the bolt is: \",round(stress_shank),\"MPA\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The bearing stress at C is 0.875 MPA\n", + "The maximum normal stress in BD bolt is: 62.0 MPA\n", + "The tensile strss at shank of the bolt is: 40.0 MPA\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.2 page number 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "load_distributed = 20 #KN/m*2, This is the load distributed over the pier\n", + "H = 2 # m, Total height \n", + "h = 1 #m , point of investigation \n", + "base = 1.5 #m The length of crossection in side veiw \n", + "top = 0.5 #m ,The length where load is distributed on top\n", + "base_inv = 1 #m , the length at the point of investigation \n", + "area = 0.5*1 #m ,The length at a-a crossection \n", + "density_conc = 25 #KN/m*2\n", + "#caliculation of total weight \n", + "\n", + "v_total = ((top+base)/2)*top*H #m*2 ,The total volume \n", + "w_total = v_total* density_conc #KN , The total weight\n", + "R_top = (top**2)*load_distributed #KN , THe reaction force due to load distribution \n", + "reaction_net = w_total + R_top\n", + "\n", + "#caliculation of State of stress at 1m \n", + "v_inv = ((top+base_inv)/2)*top*h #m*2 ,The total volume from 1m to top\n", + "w_inv = v_inv*density_conc #KN , The total weight from 1m to top\n", + "reaction_net = w_inv + R_top #KN\n", + "Stress = reaction_net/area #KN/m*2\n", + "print\"The total weight of pier is\",w_total,\"KN\"\n", + "print\"The stress at 1 m above is\",Stress,\"MPA\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total weightof pier: 25.0 KN\n", + "The stress at 1 m above is 28.75 MPA\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.3 page number 27" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "from math import pow\n", + "d_pins = 0.375 #inch\n", + "load = 3 #Kips\n", + "AB_x = 6 #inch,X-component\n", + "AB_y = 3 #inch,Y-component \n", + "BC_y = 6 #inch,Y-component\n", + "BC_x = 6 #inch,X-component\n", + "area_AB = 0.25*0.5 #inch*2 \n", + "area_net = 0.20*2*(0.875-0.375) #inch*2 \n", + "area_BC = 0.875*0.25 #inch*2 \n", + "area_pin = d_pins*2*0.20 #inch*2 \n", + "area_pin_crossection = 3.14*((d_pins/2)**2)\n", + "#caliculations\n", + "\n", + "slope = AB_y/ AB_x #For AB\n", + "slope = BC_y/ BC_x #For BC\n", + "\n", + "#momentum at point C:\n", + "F_A_x = (load*AB_x )/(BC_y + AB_y ) #Kips, F_A_x X-component of F_A\n", + "\n", + "#momentum at point A:\n", + "F_C_x = -(load*BC_x)/(BC_y + AB_y ) #Kips, F_C_x X-component of F_c\n", + "\n", + "#X,Y components of F_A\n", + "F_A= (pow(5,0.5)/2)*F_A_x #Kips\n", + "F_A_y = 0.5*F_A_x #Kips\n", + "\n", + "#X,Y components of F_C \n", + "F_C= pow(2,0.5)*F_C_x #Kips\n", + "F_C_y = F_C_x #Kips\n", + "\n", + "T_stress_AB = F_A/area_AB #Ksi , Tensile stress in main bar AB\n", + "stress_clevis = F_A/area_net #Ksi ,Tensile stress in clevis of main bar AB\n", + "c_strees_BC = F_C/area_BC #Ksi , Comprensive stress in main bar BC\n", + "B_stress_pin = F_C/area_pin #Ksi , Bearing stress in pin at C\n", + "To_stress_pin = F_C/area_pin_crossection #Ksi , torsion stress in pin at C\n", + "\n", + "print\"Tensile stress in main bar AB:\",round(T_stress_AB,2),\"Ksi\"\n", + "print\"Tensile stress in clevis of main bar AB:\",round(stress_clevis,2),\"Ksi\"\n", + "print\"Comprensive stress in main bar BC:\",round(-c_strees_BC,2),\"Ksi\"\n", + "print\"Bearing stress in pin at C:\",round(-B_stress_pin,2),\"Ksi\"\n", + "print\"torsion stress in pin at C:\",round(To_stress_pin,2),\"Ksi\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Tensile stress in main bar AB: 17.89 Ksi\n", + "Tensile stress in clevis of main bar AB: 11.18 Ksi\n", + "Comprensive stress in main bar BC: 12.93 Ksi\n", + "Bearing stress in pin at C: 18.86 Ksi\n", + "torsion stress in pin at C: -25.62 Ksi\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.4 page number 38" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "strength_steel = 120 #Ksi\n", + "factor = 2.5\n", + "F_C = 2.23 #Ksi\n", + "\n", + "#caliculations\n", + "\n", + "stress_allow = strength_steel/factor #Ksi\n", + "A_net = F_C/strength_steel #in*2 , \n", + "#lets adopt 0.20x0.25 in*2 and check wether we are correct or not? \n", + "\n", + "A_net_assumption = 0.25*0.20 #in*2 , this is assumed area which is near to A_net\n", + "stress = 2.23/A_net_assumption #Ksi\n", + "factor_assumed = strength_steel/stress \n", + "\n", + "if factor_assumed > factor :\n", + " print \"The factor\",factor,\"is less than assumed factor\",round(factor_assumed,1),\"so this can be considered\"\n", + "else:\n", + " print \"The assumed factor\",factor, \"is more than assumed factor\",factor_assumed,\"factor_assumed\"\n", + " \n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The factor 2.5 is less than assumed factor 2.7 so this can be considered\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.6 page number 35" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "mass = 5 #Kg\n", + "frequency = 10 #Hz\n", + "stress_allow = 200 #MPa\n", + "R = 0.5 #m\n", + "\n", + "#caliculations \n", + "from math import pi\n", + "w = 2*pi*frequency #rad/sec\n", + "a = (w**2)*R #m*2/sec\n", + "F = mass*a #N\n", + "A_req = F/stress_allow #m*2 , The required area for aloowing stress\n", + "print\"The required size of rod is:\",round(A_req,2),\"m*2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required size of rod is: 49.35 m*2\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.7 page number 45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "D_n = 5.0 #kips, dead load\n", + "L_n_1 = 1.0 #kips ,live load 1\n", + "L_n_2 = 15 #kips ,live load 2\n", + "stress_allow = 22 #ksi\n", + "phi = 0.9 #probalistic coefficients\n", + "y_stress = 36 #ksi,Yeild strength\n", + "#According to AISR \n", + "\n", + "#a\n", + "p_1 = D_n + L_n_1 #kips since the total load is sum of dead load and live load\n", + "p_2 = D_n + L_n_2 #kips, For second live load\n", + "\n", + "Area_1 = p_1/stress_allow #in*2 ,the allowable area for the allowed stress\n", + "Area_2 = p_2/stress_allow #in*2\n", + "print \"the allowable area for live load\",L_n_1,\"is\",round(Area_1,3),\"in*2\"\n", + "print \"the allowable area for live load\",L_n_2,\"is\",round(Area_2,3),\"in*2\"\n", + "\n", + "#b\n", + "#area_crossection= (1.2*D_n +1.6L_n)/(phi*y_stress)\n", + "\n", + "area_crossection_1= (1.2*D_n +1.6*L_n_1)/(phi*y_stress) #in*2,crossection area for first live load\n", + "area_crossection_2= (1.2*D_n +1.6*L_n_2)/(phi*y_stress) #in*2,crossection area for second live load\n", + "print \"the crossection area for live load\",L_n_1,\"is\",round(area_crossection_1,3),\"in*2\"\n", + "print \"the crossection area for live load\",L_n_2,\"is\",round(area_crossection_2,3),\"in*2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the allowable area for live load 1.0 is 0.273 in*2\n", + "the allowable area for live load 15 is 0.909 in*2\n", + "the crossection area for live load 1.0 is 0.235 in*2\n", + "the crossection area for live load 15 is 0.926 in*2\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.8 page number 51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "A_angle = 2 #in*2 \n", + "stress_allow = 20 #ksi, The maximum alowable stress\n", + "F = stress_allow*A_angle #K, The maximum force\n", + "AD = 3 #in, from the figure\n", + "DC = 1.06 #in, from the figure\n", + "strength_AWS = 5.56 # kips/in,Allowable strength according to AWS\n", + "\n", + "#caliculations \n", + "#momentum at point \"d\" is equal to 0\n", + "R_1 = (F*DC)/AD #k,Resultant force developed by the weld\n", + "R_2 = (F*(AD-DC))/AD #k,Resultant force developed by the weld\n", + "\n", + "l_1 = R_1/strength_AWS #in,Length of the Weld 1\n", + "l_2 = R_2/strength_AWS #in,Length of the Weld 2\n", + " \n", + "print \"Length of the Weld 1:\",round(l_1,2),\"in\"\n", + "print \"Length of the Weld 2:\",round(l_2,2),\"in\" \n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Length of the Weld 1: 2.54 in\n", + "Length of the Weld 2: 4.65 in\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "code", + "collapsed": true, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [ + { + "ename": "IOError", + "evalue": "[Errno 2] No such file or directory: 'arr'", + "output_type": "pyerr", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mIOError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'arr'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mC:\\Users\\Kowshik\\AppData\\Local\\Enthought\\Canopy\\User\\lib\\site-packages\\numpy\\lib\\npyio.pyc\u001b[0m in \u001b[0;36mload\u001b[1;34m(file, mmap_mode)\u001b[0m\n\u001b[0;32m 367\u001b[0m \u001b[0mown_fid\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 368\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbasestring\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 369\u001b[1;33m \u001b[0mfid\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"rb\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 370\u001b[0m \u001b[0mown_fid\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 371\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgzip\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mGzipFile\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'arr'" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter10.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter10.ipynb new file mode 100644 index 00000000..695fe138 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter10.ipynb @@ -0,0 +1,896 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:42031753a466b3ba5ee8c11468e375015d1a3d943c879daacc89b28eec81ab67" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10:Deflections of beams " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.1 page number 501" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "dia = 400 #mm - The diameter of a pulley\n", + "E = 200 #Gpa - Youngs modulus\n", + "t = 0.6 #mm - The thickness of band\n", + "c = t/2 #mm - The maximum stress is seen \n", + "#Caliculations\n", + "\n", + "stress_max = E*c*(10**3)/(dia/2) #Mpa - The maximum stress on the crossection occurs at the ends\n", + "print \"The maximum bending stress developed in the saw \",stress_max,\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum bending stress developed in the saw 300.0 Mpa\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.3 page number 512" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "import numpy\n", + "l_ab = 1.0 #L in - The length of the beam\n", + "F_D = 1.0 #W lb/in - The force distribution \n", + "F = F_D*l_ab #WL - The force applied\n", + "#Beause of symmetry the moment caliculations can be neglected\n", + "#F_Y = 0\n", + "R_A = F/2 #wl - The reactive force at A\n", + "R_B = F/2 #wl - The reactive force at B\n", + "#EI - The flxure rigidity is constant and 1/EI =1 # k\n", + "\n", + "#part - A\n", + "#section 1--1\n", + "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n", + "v = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " v[i] = R_A - F_D*l_1[i] \n", + " M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2\n", + "# (EI)y'' = M_1[i] we will integrate M_1[i] twice where variable is l_1[i]\n", + "#(EI)y'- \n", + "\n", + "M_1_intg1 = R_A*(l_1[i]**2)/4 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**3)*l_1[i]/24 #integration of x**n = x**n+1/n+1\n", + "#(EI)y- Using end conditions for caliculating constants \n", + "\n", + "M_1_intg2 = R_A*(l_1[i]**3)/12.0 - F_D*(l_1[i]**4)/24.0 + F_D*(l_ab**3)*l_1[i]/24.0 \n", + "#Equations \n", + "\n", + "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M_1_intg2 = [0,0,0,0,0,0,0,0,0,0,0]\n", + "Y = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " M_1_intg2[i] = (l_1[i]**3)/12.0 - (l_1[i]**4)/24.0 - l_1[i]/24.0 # discluding every term for ruling out float values\n", + " Y[i] = M_1_intg2[i] #W(l**4)/EI k = 1/EI\n", + "#The precision is very less while caliculating through this equation because the least count in X direction is 0.1\n", + "print \"a) The maximum displacement in y direction is\",min(Y),\"W(l**4)/EI \"\n", + "print \"a) The maximum deflection occured at\",l_1[Y.index(min(Y))],\"L\"\n", + "\n", + "#Part - B\n", + "#Graphs\n", + "import numpy as np\n", + "values = M_1\n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "print \"b) The above graph is bending moment graph\"\n", + "import numpy as np\n", + "values = Y \n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "print \"b)The above graph is beam displacement graph\"\n", + "print \"b)The maximum occures in the middle from the above graph \"\n", + "\n", + "\n", + " \n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) The maximum displacement in y direction is -0.0130208333333 W(l**4)/EI \n", + "a) The maximum deflection occured at 0.5 L\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FeX5xvHvQwIJKLIoiywVBRTFIiggKmqURXaxWq0L\nAWsrYllcWkUoBeuCWvtTgxsqKK64IwrIphFrEYMCVgkoILKJgoIskpiQ5/dHjjFGAklOkjnL/bmu\nXGbmvDPnZsyZ58y8M++YuyMiIlIl6AAiIhIZVBBERARQQRARkRAVBBERAVQQREQkRAVBRESAcigI\nZtbDzFaY2edmduM+Xm9lZgvNLMvMrt/H6wlmtsTMXg83i4iIlF1YBcHMEoD7gR7AccDFZnZskWbf\nAsOAu4tZzQhgOaAbIkREAhTuEUJHYJW7r3X3HGAqcG7hBu6+xd0XAzlFFzazJkAv4DHAwswiIiJh\nCLcgNAbWF5reEJpXUvcAfwPywswhIiJhCrcglPk0j5n1Ab5x9yXo6EBEJHCJYS6/EWhaaLop+UcJ\nJXEq0M/MegHJwCFm9qS7pxZuZGbqWxARKQN3L9WX7XCPEBYDLc2smZlVAy4CphfT9hfB3H2Uuzd1\n9yOBPwBvFS0Ghdrqx52xY8cGniFSfrQttC20Lfb/UxZhHSG4e66ZDQVmAwnAJHfPNLPBodcnmllD\nIAM4BMgzsxHAce6+q+jqwskiIiLhCfeUEe4+C5hVZN7EQr9v5penlfa1jneAd8LNIiIiZac7laNI\nSkpK0BEihrbFz7QtfqZtER4r67mmymJmHukZRUQijZnhldypLCIiMUIFQUREABUEEREJUUEQERFA\nBUFEREJUEEREBFBBEBGREBUEEREBVBBERCREBUFERAAVBBERCVFBEBERoByGvxaJNzNmLCAtbQ7Z\n2YkkJeUyfHh3evc+I+hYImFTQRAphRkzFjBixGxWr76tYN7q1aMBVBQk6mn4a5ESyMrNYtnmZQwa\n/Q9W7GgIjT+AGlvhqxNhUwfa1f+MGY/cx+E1Dw86qghQtuGvVRBEitibt5fMrZlkbMzgg40fkLEp\ng+VblnP0oUfzzZIEvlp8FWzqALvrweEfQeMM6hz/HNbkO6onVqdj4450aNSBDo070L5Re2on1w76\nnyRxSAVBpJTcnbXb1xbs+DM2ZfDRVx9x+MGH06FxBzo06kDHxh1p27AtNarW4Jxz/s6cObf+aj3n\nnDOGWbP+yRfbv8hf18b8dS3ZvIRGNRsVrKdDow60bdiW6lWrB/CvlXgSSEEwsx7AvUAC8Ji731nk\n9VbA40A7YLS7/zs0vynwJFAfcOARd0/bx/pVEKTcfL3r6/wd/8YMPtiUv+NOSkz6xQ67faP21Kle\nZ5/L76sPoXnzUdx3X4999iHk5uWSuSWTjE0/H21kbsmk1WGtCo4iOjbuyHH1jiOxirr0pPxUekEw\nswRgJdAV2AhkABe7e2ahNvWAI4D+wLZCBaEh0NDdl5rZwcCHQP/Cy4baqSBImezI3sGHmz78xc54\nR/aO/B1xaGfcoVEHGh/SuFTrnTFjARMmzCUrK4Hk5L0MG9atVB3KWblZLN28tOAo4oONH7Bhxwba\nNmz7i9NNzes0x6xUn2eRAkEUhFOAse7eIzQ9EsDd79hH27HArp8Kwj5enwZMcPf5RearIEiB4i75\nzM7NZtnXy34+9bMxg3Xfr+OEhif84tt/i7otInIn+33W9yzetLjgtNUHGz/gh5wfaN+o/S/yF+60\n1uWvsj9lKQjhHqM2BtYXmt4AnFzalZhZM/JPKS0KM4/EsILTNWv+CfUyoVEG7z9zLfWX72bjj+s4\n+tCj6di4I52bdubaTtfSul5rqiZUDTp2idRKrkWXo7rQ5aguBfM279pc0LH9YMaDZGzKKOi0rrnz\nMOY+sYuvPnwQsvI7rXX5q4Qr3IIQ9lf30Omil4AR7r4r3PVJ7LovbTarq7aHa46E3CTY2JEdXwyg\n1Y9LWfbcR9SoWiPoiOWq4cEN6XtMX/oe0xfI7wBfs20NGZsyGDnhXr46uiqc0RT+dynMG8/q1bcx\nYcIYFQQps3ALwkagaaHppuQfJZSImVUFXgaedvdpxbUbN25cwe8pKSmkpKSUNqdEuXXfr+Ojli/D\n0S/DK0/Bl2cWvFb9zHExVwz2xcxoXrc5zes25+GVK/jynXGQvB26jIK/tIbZ/8eeLI1GE6/S09NJ\nT08Pax3h9iEkkt+p3AXYBHxAkU7lQm3HATsLdSobMAX41t2v3c97qA8hjuXm5TJh0QRue/c2aq9s\nzeopc2Bv0i/anHPOGN5885aAEgbjV5e/NlkIfQdzaNJuPvjHXI6qc1Rw4SQilKUPIayvE+6eCwwF\nZgPLgefdPdPMBpvZ4FCohma2HrgW+LuZrQudJjoNuAw4y8yWhH56hJNHYsviTYvp+GhH3vj8Df57\nxX+573e30LzZP3/RpnnzUQwb1i2ghMEZPrw7zZuP/nnGhlM4am5P+rbuRsdHO3LHf+4gZ29OcAEl\nKunGNIk4O7J3MOatMTz/6fPc1e0uBrQZUHBlULiXfMaS4rbFF9u+4OqZV7NhxwYm9pnIqU1PDTqq\nBEB3KktUc3emrZjG8DeH0+2obtzV7S4Oq3FY0LGikrvz4vIXuebNa+h3TD/Gdxlf7M12EptUECRq\nrft+HcNmDWPl1pVM7DORM5udeeCF5IC2Z21n1PxRTFsxjf875/+4qPVFEXkfhpQ/FQSJOoU7jYef\nPJwbT7uRpMSkAy8opbJw/UIGvzGYRjUb8WDvB9XpHAdUECSqLN60mCtfv5I61evwUO+HOPrQo4OO\nFNNy9uZwz/v3cNd7d/HXU//K9adcHzU37knpqSBIVNhfp7FUPHU6x4dKv+xUpDTcnVczX6X1g63Z\n+eNOPrn6E1JPSFUxqGRH1jmSmZfMZMwZY7jghQu46o2r2LZnW9CxJALoCEEqxU+dxp99+xkP935Y\nncYRQp3OsUunjCTiFO40HnHyCG447QZ1GkcgdTrHHhUEiSjqNI4u6nSOLSoIEhHUaRzd1OkcG9Sp\nLIFSp3FsUKdz/NIRgpQLdRrHJnU6Ry+dMpJKp07j+KBO5+ijgiAVZl/P723QroY6jePIvjqd57y5\nUM91jlAqCFIhCp5lvPq2/BlJO6jVvwv22zXc1+cedRrHmZ86nTM3riT31dPZ+P6UgteaNx/Nffed\no6IQAVQQpEL84ulcrV6FnsNhTTfOyq3DW2/8O9hwEgh3p+2l5/Nxo/dhZT+YNx6y8ofXjscn2EUi\nXWUkFSI7O/To7ZRx0O0GeOVpeG0yebtqBppLgmNm1NnUBh5Ynj/jzx3h4K8AyMpKCDCZhEMFQQ4o\nKSkXTrsTWj8Pk98reMB9cvLegJNJkJKSciGrNrzxMCwdBKldocYW/V1EMRUEOaAjL9pJ4sl3wpPz\nYHd9IH6fZSw/+8Vznd8dDSv6U+1Pv+XyIZ2CDSZllhjuCsysB3AvkAA85u53Fnm9FfA40A4Y7e7/\nLumyErxJH01i1o5pTDztIV749OFCz+/toY7DOPfT//8JE8aQlZVAUlWjeqszuGfLLfTKPoOaSTql\nGG3C6lQ2swRgJdAV2AhkABe7e2ahNvWAI4D+wLafCkJJlg21U6dyQJ7937PcMPcG3h74Ni0PbRl0\nHIkC7s6QGUPI3JrJrEtnUaNqjaAjxa0gOpU7Aqvcfa275wBTgXMLN3D3Le6+GMgp7bISnFcyX+H6\nOdcz+7LZKgZSYmbGg70f5IhaR9B/an+ycrOCjiSlEG5BaAysLzS9ITSvopeVCjTz85kMmTGEmZfM\npHX91kHHkShTxaow+dzJ1EquxYUvXkjO3qLfBSVShduHEM65nBIvO27cuILfU1JSSElJCeNtZX/e\n+uItBk0bxPSLp9Pu8HZBx5EolVglkWd+9wznv3A+l716Gc/+7lkSquhy1IqUnp5Oenp6WOsItw+h\nEzDO3XuEpm8C8vbVOWxmY4FdhfoQSrSs+hAqz3vr3uO858/jxd+/qMHppFxk5WbR97m+NK7ZmMnn\nTqaK6cLGyhJEH8JioKWZNTOzasBFwPTi8oWxrFSwxZsWc97z5/H0755WMZByk5yYzLSLprFm2xr+\nMuMv6MtdZAt76Aoz68nPl45OcvfxZjYYwN0nmllD8q8gOgTIA3YCx7n7rn0tu4/16wihgn389cd0\nf6o7j/R9hH7H9As6jsSgHdk76PZUN05rehr/7v5vjX1VCTSWkZTaiq0rOHvK2dxzzj1cdPxFQceR\nGPbdnu84e8rZ9D26L7ecrbGOKprGMpJSWbNtDd2e6sb4LuNVDKTC1a1elzkD5vBy5suMf/dXJwMk\nAoR9p7JEp/Xfr6fLk10Y1XkUA9sODDqOxIn6B9VnXuo8znj8DGpUrcGITiOCjiSFqCDEoc27NtPl\nyS4M6ziMIR2GBB1H4kyjmo2YnzqfM584k+pVq3PlSVcGHUlCVBDizNYfttL1ya6knpDKdadcF3Qc\niVNH1D6CeanzSHkiheqJ1RlwwoCgIwkqCHFle9Z2uj/Vnb5H92X06aODjiNxrkXdFswZMIcuT3ah\netXqXHDcBUFHinsqCHFiZ/ZOej7Tk9N/czq3d7ldl/1JRDiu3nHMunQW5zx9DtUTq9P76N5BR4pr\nuuw0DvyQ8wO9n+1Ny7otmdhnooqBRJxFGxbR97m+PHv+s3Q9qmvQcWKC7kOQX8nOzebcqedS76B6\nPHHuExpPRiLWgi8XcP4L5/PKha9w+hGnBx0n6qkgyC/k7M3h9y/+nsQqiUy9YCqJVXSGUCLb3NVz\nufSVS3njkjfo2Lhj0HGimm5MkwJ78/aSOi2VnLwcnj3/WRUDiQrdmndjUr9J9H2uL8s2Lws6TtxR\nQYhBeZ7Hn17/E1t2b+HlC1+mWkK1oCOJlFjfY/pyf8/76fFMDzK3ZB54ASk3+toYY9ydYTOHseq7\nVbx56ZskJyYHHUmk1H7f+vfsyd1Dt6e6kT4onRZ1WwQdKS6oIMQQd+eGuTfwwaYPmJ86n4OqHRR0\nJJEySz0hlT05e+j6ZFcWXL6A39T6TdCRYp4KQgy5+Z2bmbNmDm8PfJtDkg4JOo5I2Aa3H8ye3D10\nebILCwYt4PCahwcdKaapIMSIO/9zJ89/+jzvDHqHutXrBh1HpNxc0+kafsj5ga5PdSV9YDr1DqoX\ndKSYpU7lGDBh0QQe/ehR5g2YR/2D6gcdR6TcjTp9FP2P6U/3p7uzbc+2oOPELBWEKDfpo0ncvfBu\n5qXOo/EhjYOOI1Jhbj37VlKOSKHnMz3Zmb0z6DgxSTemRbFn//csf5v7N9IHptPy0JZBxxGpcO7O\nkBlDyNyayaxLZ1Gjao2gI0Us3akcR17JfIW/zPwL8wbMo3X91kHHEak0eZ7HoGmD2LxrM9Mvnq5L\nq4sRyJ3KZtbDzFaY2edmdmMxbdJCry8zs3aF5t9kZp+a2f/M7FkzSwo3TzyY+flMhswYwsxLZqoY\nSNypYlWYfO5kaifX5sIXLyRnb07QkWJGWEcIZpYArAS6AhuBDOBid88s1KYXMNTde5nZycB97t7J\nzJoBbwHHunu2mT0PzHT3KUXeI+6PEGbMWEBa2hyysxPZVW8Vn7d9g9kD36RTk05BRxMJzI97f+T8\nF86nRtUaXJp8FQ9MmE92diJJSbkMH96d3r3PCDpioMpyhBDuZacdgVXuvjYUYCpwLlD4fvN+wBQA\nd19kZrXNrAGwA8gBapjZXqAG+UVFCpkxYwEjRsxm9erboOl70PFBGs3ow7dtf4QmQacTCU61hGq8\n+PsXOSWtM5ctHcHOuUvB8096rF6d/wCoeC8KpRXuKaPGwPpC0xtC8w7Yxt2/A/4NrAM2AdvdfV6Y\neWJOWtqc/GLQaDH84Tx45Sk2LXyaCRPmBh1NJHDJicnUnXs2OxNrQ6+/APlnE1avvk2fkTII9wih\npOdyfnXYYmbNgWuAZsD3wItmdqm7P1O07bhx4wp+T0lJISUlpQxRo1N2diJU/w7+0B9efwRWnwNA\nVpaeayACsHdPDXj2DRiUAu0fhsVDgPj7jKSnp5Oenh7WOsItCBuBpoWmm5J/BLC/Nk1C81KA/7r7\ntwBm9gpwKrDfghBvkpJyoddQyPwdrOhfMD85eW+AqUQiR1JSLmQfAi8/C3/sDGu6wXct4u4zUvTL\n8s0331zqdYR7ymgx0NLMmplZNeAiYHqRNtOBVAAz60T+qaGvye+M7mRm1S3/mY5dgeVh5ok57S5L\npOpvZsO8OwrmNW8+imHDugWYSiRyDB/enebNR8PWVvDOGOg/kKNajNRnpAzCOkJw91wzGwrMBhKA\nSe6eaWaDQ69PdPeZZtbLzFYBu4HLQ68tNbMnyS8qecBHwCPh5Ik1X+38ise/fog7Tr6NOcvHk5WV\nQHLyXoYN66HOMpGQnz4LEyaMYU9WFT6ptZEzbtyuz0gZ6Ma0COXu9HmuDyc2PJFbzr4l6DgiUePL\n7V/S/tH2zE+dT5sGbYKOExg9QjOGTFoyia92fsWYM8cEHUUkqhxR+wju6noXA14dQHZudtBxooqO\nECLQF9u+oMOjHUgflM7x9Y8POo5I1HF3+j/fn9b1WnN7l9uDjhMIHSHEgL15exk4bSA3nnajioFI\nGZkZj/R5hMlLJrNw/cKg40QNFYQIc+/79+I4151yXdBRRKJag4Mb8ECvB0idlsruH3cHHScq6JRR\nBPn0m09JmZLCoj8t4qg6RwUdRyQmpL6aSs1qNXmg9wNBR6lUOmUUxXL25pA6LZXbzr5NxUCkHKX1\nTOP1z15nzuo5QUeJeCoIEeLWBbfS4KAG/PnEPwcdRSSm1E6uzaR+k7hi+hV6/OYB6JRRBMjYmEGf\n5/qwZPASGtVsFHQckZg0dOZQvs/+nqfOeyroKJVCp4yi0J6cPQx4dQBpPdJUDEQq0J1d72TRhkW8\nvPzloKNELB0hBOyaN69h867NTL1gatBRRGLe+xvep//U/iy9aikND24YdJwKpSOEKPP2F2/z0vKX\neKBXfF39IBKUTk06cUW7K7jy9SuJ5S+aZaWCEJDvs77n8tcu55G+j3BojUODjiMSN8amjGXd9+t4\nYukTQUeJODplFJA/vvZHqlapysS+E4OOIhJ3Pv76Y7o82YWMP2fQrHazoONUCJ0yihKvrXiN9LXp\n3N397qCjiMSlNg3a8NdT/srlr11OnucFHSdiqCBUsi27t3DVjKuY0n8KNZNqBh1HJG799dS/8uPe\nH0lblBZ0lIihU0aVyN05/4XzaV6nOf/q/q+g44jEvVXfraLTY5149/J3ObbesUHHKVc6ZRThnv74\naT779jM98EYkQrSo24Jbz76V1Gmp5OzNCTpO4FQQKsn679dz/Zzreeq8p0hOTA46joiEDD5pMIdW\nP5Tb343P5yYUpoJQCfI8jz9O/yPDTx5Ou8PbBR1HRAoxMyb1m8QDGQ+weNPioOMEKuyCYGY9zGyF\nmX1uZjcW0yYt9PoyM2tXaH5tM3vJzDLNbLmZdQo3TyR6KOMhdmTvYGTnkUFHEZF9aHxIY+7rcR+p\nr6ayJ2dP0HECE1ZBMLME4H6gB3AccLGZHVukTS+ghbu3BK4EHir08n3ATHc/FmgDZIaTJxJ99u1n\njE0fy5P9nySxSmLQcUSkGH84/g8cX/94/v7W34OOEphwjxA6Aqvcfa275wBTgXOLtOkHTAFw90VA\nbTNrYGa1gNPdfXLotVx3/z7MPBElNy+XgdMGMvbMsRxz2DFBxxGR/TAzHuz9IFM/nco7a98JOk4g\nwi0IjYH1haY3hOYdqE0T4Ehgi5k9bmYfmdmjZlYjzDwR5a737qJG1Rr8peNfgo4iIiVwWI3DeKTP\nIwx6bRA7sncEHafShXsOo6Q3CBS9FtZD730iMNTdM8zsXmAk8I+iC48bN67g95SUFFJSUsqStVIt\n3byUe96/hw+v/JAqpr57kWjR++jeTFsxjetmX8dj/R4LOk6Jpaenk56eHtY6wroxLdQJPM7de4Sm\nbwLy3P3OQm0eBtLdfWpoegVwJvlFYqG7Hxma3xkY6e59irxH1N2Ylp2bTftH2/PXU/7KwLYDg44j\nIqW0M3snbR5uw4SeE+hzdJ8DLxCBgrgxbTHQ0syamVk14CJgepE204HUUMBOwHZ3/9rdNwPrzezo\nULuuwKdh5okIY9PH0qJuC1JPSA06ioiUQc2kmjxx7hNc+fqVbP1ha9BxKk3YQ1eYWU/gXiABmOTu\n481sMIC7Twy1+elKpN3A5e7+UWj+CcBjQDVgdei174usP6qOEN5b9x4XvHgBy65aRv2D6gcdR0TC\ncP3s61m3Yx0vXPACZqX6sh24shwhaCyjcrTrx120fbgt/+r2L8479ryg44hImLJyszjpkZMYffpo\nLvntJUHHKRUVhIANeWMIe3L38ET/J4KOIiLl5MNNH9LzmZ4sGbyExocUvYgycmlwuwDNXjWbmatm\ncl+P+4KOIiLl6KRGJzG041CumH5FzD92UwWhHGzbs40rpl/B5H6TqZVcK+g4IlLObup8E9/t+Y6J\nH8b2Ew51yqgcXPrKpRxa/VDSeupBGyKxasXWFXSe3Jn3//Q+Leq2CDrOAemUUQBe/PRFFm9azB1d\n7wg6iohUoFaHtWLMGWMYOG0ge/P2Bh2nQqgghOGrnV8xdNZQnuz/JDWqxtSoGyKyD8NOHkZSQhJ3\n/zc2n4euU0Zl5O70fa4v7Rq20xPQROLIl9u/pP2j7ZmfOp82DdoEHadYOmVUiSYvmcymnZsYc+aY\noKOISCU6ovYR3NX1Lga8OoDs3Oyg45QrHSGUwRfbvqDjYx15e+DbHF//+KDjiEglc3f6P9+f1vVa\nc3uXyHz0po4QKkGe5zHotUHccOoNKgYiccrMeKTPI0xeMpmF6xcGHafcqCCU0r3v30ue53HdKdcF\nHUVEAtTg4AY80OsBUqelsvvH3UHHKRc6ZVQKy7cs58wnzmTRnxZxVJ2jgo4jIhFgwKsDqJVUi/t7\n3R90lF/QKaMKlLM3hwGvDuC2s29TMRCRAhN6TmD6yunMXT036Chh0xHCfsyYsYC0tDlkZyeyvsVb\n1Gn9IxnXLIy6YXBFpGLNXT2XS1+4jOPfvYy8H2qSlJTL8OHd6d37jMAyleUIIdxHaMasGTMWMGLE\nbFavvg0aZUCHhzhi8kXMPPrdQP8ni0jk+XFFEtkfN+Xt5G9g1r8BWL16NEBU7S90yqgYaWlz8otB\n4h44LxVmpfHlJ2lMmBD9h4UiUr7S0uaw4+V3oMkiOPZlAFavvi3q9hcqCMXIzg4dPJ2cBt8eA59e\nBEBWVkKAqUQkEmVnJ0LOQfDaJDjnOkjMAqJvf6GCUIykpFxI3gan3g3zfh64Ljk5Nge1EpGyS0rK\nzf9l3emwuS10eBCIvv2FCkIxhg/vTu0+vWFFf9jaCoDmzUcxbFi3gJOJSKQZPrw7zZvn9xkw/3bo\nfAfNWl0XdfuLsK8yMrMewL1AAvCYu9+5jzZpQE/gB2CQuy8p9FoCsBjY4O5997FsIFcZbdyxkWPT\njuPEDwbBjjokJ+9l2LBuUdVBJCKVZ8aMBUyYMJesrAQ+b/0qp5/QlqlXTgksT6U/Uzm0M18JdAU2\nAhnAxe6eWahNL2Cou/cys5OB+9y9U6HXrwNOAmq6e799vEcgBWHw64OplVyLu7rdVenvLSLR7cvt\nX3LiIyey/OrlNDi4QSAZgrgxrSOwyt3XunsOMBU4t0ibfsAUAHdfBNQ2swahwE2AXsBjQMRc3L9y\n60peznyZkZ1HBh1FRKLQEbWPILVNKrcsiK6h8cMtCI2B9YWmN4TmlbTNPcDfgLwwc5SrMW+P4fpT\nrqdu9bpBRxGRKDXq9FFM/WQqa7atCTpKiYV7Y1pJz+UU/fZvZtYH+Mbdl5hZyv4WHjduXMHvKSkp\npKTst3lYFm9azH/W/YfHz328wt5DRGJfvYPqMfzk4Yx5ewzP/O6ZCn+/9PR00tPTw1pHuH0InYBx\n7t4jNH0TkFe4Y9nMHgbS3X1qaHoFkAIMBwYAuUAycAjwsrunFnmPSu1D6PZUN84/9nyuan9Vpb2n\niMSmXT/uokVaC9687E3aNmxbqe8dRB/CYqClmTUzs2rARcD0Im2mA6mhgJ2A7e6+2d1HuXtTdz8S\n+APwVtFiUNnmrZnH2u1ruaLdFUHGEJEYcXC1gxl9+mhGzR8VdJQSCasguHsuMBSYDSwHnnf3TDMb\nbGaDQ21mAmvMbBUwEbi6uNWFkyVc7s7IeSO59axbqZpQNcgoIhJDBrcfzIqtK3hn7TtBRzkgjXYa\n8uKnL3LHe3eQ8ecMqpju1xOR8vP0x0/zQMYD/PeP/6200ZL1PIQyytmbw+i3RjO+y3gVAxEpd5f8\n9hJ+yPmB6SuLnlGPLNr7AY8vfZymtZrS7ajous1cRKJDFavC7Wffzqi3RrE3L3LHN4r7gvBDzg/c\n/M7NjO8yXg++EZEK06tlLw6tfihPLnsy6CjFivuCMGHRBE5pcgodG3cMOoqIxDAz446udzA2fSxZ\nuVlBx9mnuC4I2/Zs4+6Fd3Pr2bcGHUVE4sCpTU+l3eHteDDjwaCj7FNcX2U0ct5Ivv3hWx7t92iF\nrF9EpKhPv/mUs6acxefDPqdWcq0Ke59KH+20MlRUQdi4YyNtHm7DsquW0eSQJuW+fhGR4gyaNoim\nhzTllrMrbvA7FYRS0PDWIhKUyhgeWwWhhFZuXclpk0/js2GfaURTEQnEtW9eS05eDvf3ur9C1q+C\nUEIXvngh7Rq246bTbyrX9YqIlNSW3Vs49oFj+eDPH3BUnaPKff26U7kEFm9azHvr32NEpxFBRxGR\nOFZ4eOxIEXcF4ab5NzHmjDHUqFoj6CgiEueuO+U65q+Zz9LNS4OOAsRZQdDw1iISSSJteOy4KQga\n3lpEIlEkDY8dNwXhpeUv4Ti/b/37oKOIiBSollCNf571T0bOH0nQF/nERUHQ8NYiEsl+Gh77tZWv\nBZojLvaOGt5aRCJZwfDY84MdHjvmC4KGtxaRaNCrZS8Oq3FYoMNjx3xB0PDWIhINImF47LALgpn1\nMLMVZva/+xRZAAAKd0lEQVS5md1YTJu00OvLzKxdaF5TM3vbzD41s0/MbHi4WYrS8NYiEk2CHh47\nrKErzCwBWAl0BTYCGcDF7p5ZqE0vYKi79zKzk4H73L2TmTUEGrr7UjM7GPgQ6F942dDyZR66QsNb\ni0i0+eSbTzh7ytlhD48dxNAVHYFV7r7W3XOAqcC5Rdr0A6YAuPsioLaZNXD3ze6+NDR/F5AJNAoz\nT4GNOzby6EePMjZlbHmtUkSkwh1f/3h6tezF3f+9u9LfO9yC0BhYX2h6Q2jegdr84gEEZtYMaAcs\nCjNPgX++80+uaHeFnnUgIlHn5pSbeXDxg3y96+tKfd/EMJcv6bmcooctBcuFThe9BIwIHSn8yrhx\n4wp+T0lJISUlZb9vtnLrSl5Z8Qorh64sYTwRkchxRO0jSG2Tyi0Lbinx8Njp6emkp6eH9b7h9iF0\nAsa5e4/Q9E1AnrvfWajNw0C6u08NTa8AznT3r82sKvAGMMvd7y3mPUrdh6DhrUUk2m3ZvYVWD7Qi\n488ZZRoeO4g+hMVASzNrZmbVgIuA6UXaTAdSQwE7AdtDxcCAScDy4opBmQJpeGsRiQH1DqrHiJNH\nVOrw2GEVBHfPBYYCs4HlwPPunmlmg81scKjNTGCNma0CJgJXhxY/DbgMOMvMloR+eoSTBzS8tYjE\njsoeHjumnpg2b808hswYwvKrl2tEUxGJCRMWTWDWqlnMvHRmqZaL6yemaXhrEYlFlTk8dswUBA1v\nLSKxqDKHx46JgqDhrUUkllXW8NgxsffU8NYiEssqa3jsqC8IGt5aROJBZQyPHfUFQcNbi0g8qIzh\nsaO6IGh4axGJJxU9PHZU34eg4a1FJN6UdHjsstyHELUFYeOOjbR5uA3LrlqmEU1FJK4MmjaIpoc0\n5Zazbym2TVwVhMGvD6ZWci3u6nZXAKlERILz5fYvOfGRE1l+9XIaHNxgn23ipiCs3LqSzo93ZuXQ\nldStXjegZCIiwbn2zWvJycspdnjsuCkIGt5aROLdgYbHjouxjDS8tYhIxQyPHXUFQcNbi4jku7bT\nteU6PHZUFYR5a+axdvtarmh3RdBRREQCVzOpJqNPH82o+aPKZX1RUxA0vLWIyK9dedKVZG7NLJfh\nsaOmIGh4axGRX0tKTOKWs24pl+Gxo6IgaHhrEZHiXXz8xez+cXfYw2OHvXc1sx5mtsLMPjezG4tp\nkxZ6fZmZtSvNsqDhrUVE9iehSgLju4wPe3jssAqCmSUA9wM9gOOAi83s2CJtegEt3L0lcCXwUEmX\n/YmGtxYR2b9eLXtxaI1DwxoeO9wjhI7AKndf6+45wFTg3CJt+gFTANx9EVDbzBqWcFkActcewpal\nFTPcq4hILDAz7ux6Jze+OZKuPUaWaR3hFoTGwPpC0xtC80rSplEJlgXgm+deZcSI2cyYsSDMuCIi\nsWvbx7nsXl2L+Tvql2n5cAtCSbu0wzvXs7UVq1ffxoQJc8NajYhILEtLm8MPr78Cne8o0/LhFoSN\nQNNC003J/6a/vzZNQm1KsmzIOGAcK1a8S3p6ejh5RURiUnp6OitX/ge+eQmeOLNM6wi3ICwGWppZ\nMzOrBlwETC/SZjqQCmBmnYDt7v51CZcNGQeMo1Wr00lJSQkzsohI7ElJSeGYYzoD42DLi2VaR1gF\nwd1zgaHAbGA58Ly7Z5rZYDMbHGozE1hjZquAicDV+1u2uPdq3nwUw4bpslMRkeIMH96d5s1Hl3n5\nqBj++pxz/s6wYd3o3fuMoOOIiES0GTMWMGHCXGbPvjU+nocgIiL7FxfPQxARkYqhgiAiIoAKgoiI\nhKggiIgIoIIgIiIhKggiIgKoIIiISIgKgoiIACoIIiISooIgIiKACoKIiISoIIiICKCCICIiISoI\nIiICqCCIiEiICoKIiAAqCCIiEqKCICIiQBgFwczqmtlcM/vMzOaYWe1i2vUwsxVm9rmZ3Vho/r/M\nLNPMlpnZK2ZWq6xZREQkfOEcIYwE5rr70cD80PQvmFkCcD/QAzgOuNjMjg29PAdo7e4nAJ8BN4WR\nJS6kp6cHHSFiaFv8TNviZ9oW4QmnIPQDpoR+nwL030ebjsAqd1/r7jnAVOBcAHef6+55oXaLgCZh\nZIkL+mP/mbbFz7QtfqZtEZ5wCkIDd/869PvXQIN9tGkMrC80vSE0r6g/AjPDyCIiImFK3N+LZjYX\naLiPl0YXnnB3NzPfR7t9zSv6HqOBH9392QO1FRGRimPuB9xn73tBsxVAirtvNrPDgbfdvVWRNp2A\nce7eIzR9E5Dn7neGpgcBfwa6uHtWMe9TtoAiInHO3a007fd7hHAA04GBwJ2h/07bR5vFQEszawZs\nAi4CLob8q4+AvwFnFlcMoPT/IBERKZtwjhDqAi8AvwHWAhe6+3YzawQ86u69Q+16AvcCCcAkdx8f\nmv85UA34LrTKhe5+dRj/FhERCUOZC4KIiMSWiLlTubgb2Iq0SQu9vszM2lV2xspyoG1hZpeGtsHH\nZvaembUJImdFK8nfRKhdBzPLNbPfVWa+ylTCz0eKmS0xs0/MLL2SI1aaEnw+DjOzN81saWhbDAog\nZqUws8lm9rWZ/W8/bUq+33T3wH/IP520CmgGVAWWAscWadMLmBn6/WTg/aBzB7gtTgFqhX7vEYvb\noiTboVC7t4A3gPODzh3g30Rt4FOgSWj6sKBzB7gtxgHjf9oOwLdAYtDZK2h7nA60A/5XzOul2m9G\nyhFCsTewFVJwI5y7LwJqm9m+7n2IdgfcFu6+0N2/D03G6k19JfmbABgGvARsqcxwlawk2+IS4GV3\n3wDg7lsrOWNlKcm2+Ao4JPT7IcC37p5biRkrjbu/C2zbT5NS7TcjpSCU5Aa2fbWJxR1hSW/m+8kV\nxOZNfQfcDmbWmPydwUOhWbHaIVaSv4mWQF0ze9vMFpvZgEpLV7lKsi0eBVqb2SZgGTCikrJFolLt\nN8O57LQ8lfSDXPQS1FjcAZT432RmZ5F/l/dpFRcnMCXZDvcCI93dzcz49d9HrCjJtqgKnAh0AWoA\nC83sfXf/vEKTVb6SbItRwFJ3TzGz5sBcMzvB3XdWcLZIVeL9ZqQUhI1A00LTTcmvZPtr0yQ0L9aU\nZFsQ6kh+FOjh7vs7ZIxWJdkOJwFT82sBhwE9zSzH3adXTsRKU5JtsR7Y6u57gD1mtgA4AYi1glCS\nbXEqcBuAu682sy+AY8i/LyrelGq/GSmnjApuYDOzauTfwFb0Qz0dSIWCO6C3+89jKcWSA24LM/sN\n8ApwmbuvCiBjZTjgdnD3o9z9SHc/kvx+hCExWAygZJ+P14DOZpZgZjXI70BcXsk5K0NJtsUKoCtA\n6Hz5McCaSk0ZOUq134yIIwR3zzWzocBsfr6BLdPMBoden+juM82sl5mtAnYDlwcYucKUZFsA/wDq\nAA+Fvh3nuHvHoDJXhBJuh7hQws/HCjN7E/gYyCP/5tCYKwgl/Lu4HXjczJaR/6X3Bnf/rtiVRjEz\new44EzjMzNYDY8k/fVim/aZuTBMRESByThmJiEjAVBBERARQQRARkRAVBBERAVQQREQkRAVBREQA\nFQQREQlRQRAREQD+H2Gz7ECR6pNEAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "b) The above graph is bending moment graph\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEACAYAAABCl1qQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VNXWx/HvSiihSAkgHcEY6QLSIhZigQSQYgHEhoA0\nBWyvgheRgHJFvYoCFsSA2EDFQjS0iERQKQLShFCiIKCgKL2ElPX+kRFDnGRCJpkzSdbnefJwzpm9\nZ345JLOyT9kjqooxxhiTnQCnAxhjjPF/ViyMMcZ4ZMXCGGOMR1YsjDHGeGTFwhhjjEdWLIwxxnjk\ndbEQkUgRSRCRHSIyMos2k12PbxCRFp76isjzIrLV1f4TESnvbU5jjDG551WxEJFAYCoQCTQC+ohI\nw0xtOgOXqGooMAh4LQd9FwONVbUZsB143JucxhhjvOPtyKINsFNVd6lqMjAH6J6pTTdgFoCqrgIq\niEi17Pqqapyqprn6rwJqeZnTGGOMF7wtFjWBPRnW97q25aRNjRz0BegPzPcypzHGGC94WyxyOleI\n5ObJRWQ0cEZV389Nf2OMMXmjmJf99wG1M6zXJn2EkF2bWq42xbPrKyL3AJ2B67N6cRGxia2MMeY8\nqep5/wHv7chiDRAqInVFpATQG4jJ1CYGuBtARMKAw6p6ILu+IhIJPAp0V9XT2QVQVftSZezYsY5n\n8Jcv2xe2H2xfZP2VW16NLFQ1RUSGAYuAQCBaVbeKyGDX49NUdb6IdBaRncAJoF92fV1PPQUoAcSJ\nCMAKVb3Pm6zGGGNyz9vDUKjqAmBBpm3TMq0Py2lf1/ZQb3MZY4zJO3YHdyERHh7udAS/Yfsine2H\nf9i+8J54cwzLaSKiBTm/Mcb4moigDpzgNsYYUwRYsTDGGOORFQtjjDEeWbEwxhjjkRULY4wxHlmx\nMMYY45EVC2OMMR5ZsTDGGOORFQtjjDEeWbEwxhjjkRULY4wxHlmxMMYY45EVC2OMMR5ZsTDGGOOR\nFQtjjDEeWbEwxhjjkRULY4wpIrz5sDivi4WIRIpIgojsEJGRWbSZ7Hp8g4i08NRXRIJFJE5EtovI\nYhGp4G1OY4wp6r786ctc9/WqWIhIIDAViAQaAX1EpGGmNp2BS1Q1FBgEvJaDvqOAOFW9FFjiWnfL\nPlbVGGM8U1XGLB2T6/7ejizaADtVdZeqJgNzgO6Z2nQDZgGo6iqggohU89D3bB/Xvz2yCtCq9x3E\nxi7z8tswxpjCbdz7z7F5x0+57u9tsagJ7Mmwvte1LSdtamTTt6qqHnAtHwCqZhVgXflERjyw0AqG\nMcZk4YsvvuaZVS9x4vPXc/0c3haLnB4Dkhy2+dfzafpxpqxfp/hJfgpsx5QpcTmMYowxRcsT703h\nzJnqsPWmXD+Ht8ViH1A7w3pt0kcI2bWp5Wrjbvs+1/IB16EqRKQ68HuWCT5qBBcMZGvCMuLj43Px\nLRhjTOH11dKv2LJ7AXzUABiX6+fxtlisAUJFpK6IlAB6AzGZ2sQAdwOISBhw2HWIKbu+MUBf13Jf\n4LMsExycA62qE9zuQsLDw738dowxpnD5vcrvlG5XAf56D4jK9fN4VSxUNQUYBiwCtgAfqOpWERks\nIoNdbeYDP4nITmAacF92fV1PPRHoICLbgetc61kQqm0N4VDztaRpmjffjjHGFCopaSlExUfxyOUP\nExLyhFfPJQX50lMR0YiIJxg27Aae3j+SB8Me5LYmtzkdyxhj/MLbG95m+rrpLLtnGfPnL2fKlDgW\nLXoaVc3JeeRzFPhi8Xf+xYmLGbFgBJvv20yxgGIOJzPGGGclpybT4JUGRHeLJrxu+NntIpKrYlFo\npvvocHEHqpSpwvub3nc6ijHGOG7WhlnUrVD3nELhjUIzsgD4etfX9I/pT8L9CRQPLO5gMmOMcU5S\nShKXTr2U2bfMpl3tduc8VuRHFgDt67anXoV6zNowy3NjY4wppKJ/iKZRlUb/KhTeKFQjC4AVe1Zw\n28e3sX3YdkoWK+lQMmOMccap5FOETgnl096f0rpm6389biMLlytqX0HjKo2J/iHa6SjGGONz09ZO\no2WNlm4LhTcK3cgCYM2va+g+pzs7h++kVPFSDiQzxhjfO3HmBJdMuYSFdyykWbVmbtvYyCKDVjVa\n0bpGa15fk/tJs4wxpqB55ftXuLrO1VkWCm8UypEFwMYDG+n4TkcSRyRSpkQZHyczxhjfOpZ0jEum\nXMLSvktpVKVRlu1sZJHJZVUv45qLrmHq6qlORzHGmHz38qqX6XBxh2wLhTcK7cgCYMsfWwh/K5yd\nI3ZSrmQ5HyYzxhjfOXTqEKFTQlkxYAWhlUKzbWsjCzcaVWlEx5COvLzyZaejGGNMvnlxxYt0q9/N\nY6HwRqEeWQDs+HMHV0RfwY7hO6hYqqKPkhljjG8cPHmQ+lPrs2bgGupVrOexvY0sshBaKZRu9bvx\n4ooXnY5ijDF57vlvn6dno545KhTeKPQjC4CfD/1Mq+mt2DZsG5VLV/ZBMmOMyX8Hjh+g4SsN2TBk\nA7XL1/bcARtZZKtexXr0bNST57993ukoxhiTZyZ+M5E7L7szx4XCG0ViZAGw58gemr3ejK33b6Vq\n2ar5nMwYY/LXvqP7aPpaU36870eqX1A9x/1sZOFB7fK1ueuyu5j4TTaf0GqMMQXEf5f/l/4t+p9X\nofBGkRlZAOw/vp/GrzZm45CN1CxXMx+TGWNM/tl9eDeXv3E5CfcnUKVMlfPq68jIQkSCRSRORLaL\nyGIRqZBFu0gRSRCRHSIy0lN/EekgImtEZKPr32u9yfm3amWr0b95f/67/L958XTGGOOIp5c9zeCW\ng8+7UHjDq5GFiDwHHFTV51xFoKKqjsrUJhDYBtwA7AO+B/qo6tas+otIc2C/qu4XkcbAIlWt5eb1\nz2tkAfDHiT9o8EoD1g1ax0UVLsrNt22MMY5J/CuRtm+2Zfvw7QSXCj7v/k6ds+gG/P2xdLOAHm7a\ntAF2quouVU0G5gDds+uvqutVdb9r+xaglIjkyeekVilThSEth/DUsqfy4umMMcanxi8bz/A2w3NV\nKLzhbbGoqqoHXMsHAHeXGdUE9mRY3+valtP+twBrXYUmTzzS7hE+S/iMnX/tzKunNMaYfJdwMIEF\nOxbwYNiDPn/tYp4aiEgcUM3NQ6Mzrqiqioi7Y0KZt4mbbW77uw5BTQQ6ZJUvKirq7HJ4eDjh4eFZ\nNT0ruFQww9sMZ/zX43n7prc9tjfGGH8QFR/FQ2EPUT6ofI77xMfHEx8f7/Vre3vOIgEId51bqA4s\nVdUGmdqEAVGqGulafxxIU9Vns+svIrWAJcA9qroii9c/73MWfzty+giXTLmE5f2W06ByA88djDHG\nQZsObKLDOx3YOWInZUuUzfXzOHXOIgbo61ruC3zmps0aIFRE6opICaC3q1+W/V1XRcUCI7MqFN4q\nH1Seh8MeJio+Kj+e3hhj8tTY+LE82u5RrwqFN7wdWQQDHwJ1gF1AL1U9LCI1gOmq2sXVrhPwEhAI\nRKvqMx76PwGMAnZkeLkOqnow0+vnemQBcPzMcS6ZfAlxd8XRtGrTXD+PMcbkp3W/rePG929k54id\nlC5e2qvnyu3IokjdlOfOC9+9wLd7vuWT3p/kUSpjjMlbN75/IxEhEQxvO9zr57LpPnJpaOuhrNy7\nknW/rXM6ijHG/MvKvSvZeGAjA1sOdDRHkS8WpYuX5vGrHufJpU86HcUYY/7lyaVPMvrq0QQVC3I0\nR5EvFgADWw5k44GNrNy70ukoxhhz1vLdy9nx1w76tejndBQrFgBBxYJ44ponbHRhjPEbqsqYpWN4\n8ponKRFYwuk4Viz+1q95P3b+tZPlu5c7HcUYY/jq56/49div3NXsLqejAFYszioeWJwn2z/JE0uf\noCBfIWaMKfj+HlWMbT+WYgEeJ9rwCSsWGdx52Z3sP76fJT8vcTqKMaYIW7hzIUeSjnBbk9ucjnKW\nFYsMigUUY2z7sYxZOsZGF8YYR/w9qhgXPo7AgECn45xlxSKT3o17czTpKAt2LnA6ijGmCJq3bR4p\naSnc3PBmp6Ocw4pFJoEBgYwLH8eTS5+00YUxxqfSNI0nlz7J+GvHEyD+9fbsX2n8xM0NbyYlLYV5\n2+Y5HcUYU4TM3TKXoGJBdL20q9NR/sWKhRsBEsD4a8fz5NInSdM0p+MYY4qA1LRUouKjGH/teETO\ne+qmfGfFIgtdL+1KULEg5m6Z63QUY0wRMHvzbCqWqkhESITTUdyyYpEFEWH8teOJio8iNS3V6TjG\nmEIsJS2FcV+P46lrn/LLUQVYschWREgEFUtVZPbm2U5HMcYUYm9veJta5WpxXb3rnI6SpSL/eRae\nfPXzVwz+YjBb79/qN3dSGmMKjzOpZ6g/tT7v3PQOV9W5Kt9fzz7PIp9cV+86apWrxdsb3nY6ijGm\nEJrxwwwurXSpTwqFN2xkkQPf/PINd316F9uGbfOL2R+NMYXD6ZTThE4J5eNeH9OmZhufvKaNLPLR\nVXWuon6l+sz4YYbTUYwxhcgba9+gebXmPisU3sh1sRCRYBGJE5HtIrJYRCpk0S5SRBJEZIeIjMxp\nfxGpIyLHReSR3GbMS+OvHc+E5RM4nXLa6SjGmELgZPJJJn4zkfHh452OkiPejCxGAXGqeimwxLV+\nDhEJBKYCkUAjoI+INMxh/xeBWC/y5ak2NdvQoloLpq2Z5nQUY0wh8Or3r9KudjtaVG/hdJQc8aZY\ndANmuZZnAT3ctGkD7FTVXaqaDMwBunvqLyI9gJ+ALV7ky3Pjrx3PxG8ncjL5pNNRjDEF2LGkYzz/\n3fOMCx/ndJQc8+Za0KqqesC1fACo6qZNTWBPhvW9QNvs+otIWeAx4AbgUS/y5bnm1ZpzZe0reWX1\nKzQ63JbJkxeTlFSMkiVTGDGiI126XON0RGOMH4qNXXbO+0XVWw9wfb3raXxhY6ej5Vi2xUJE4oBq\nbh4anXFFVVVE3F2WlHmbuNmWuX8UMElVT0oObmWMioo6uxweHk54eLinLl4ZFz6Oq6ZfTcV3+vPz\ntv+d3Z6YmL5LrGAYYzKKjV3GAw8sIjFxQvqGoMMEXF6DV4Pf8Mnrx8fHEx8f7/Xz5PrSWRFJAMJV\ndb+IVAeWqmqDTG3CgChVjXStPw6kqeqzWfUXkWVAbddTVADSgDGq+qqbDD65dDaz6sOasH9jH1h+\nTs0kImIMCxc+5fM8xhj/FRHxBIsXP/3PhvCxUGE3EadqO/J+4cSlszFAX9dyX+AzN23WAKEiUldE\nSgC9Xf2y7K+q16hqPVWtB7wETHBXKJxUOzEcwl6CoMPnbD992n8+1coY4x+SkjIcwCn1J7SZCl8/\nWeDeL7wpFhOBDiKyHbjOtY6I1BCRWABVTQGGAYtIP1n9gapuza5/QVAxrQLs6AJhk87ZHhRkEw4a\nY85VsmTKPyvt/gdbb4FDFxe49wu7gzsXYmOXcd/oOfwS8QFM2Q6nKhES8h9efjnSzlkYY85x9pzF\n/gfg/oYw7QdCKr/u2PtFbg9DWbHIpdjYZQyJfRCSStJ43w0MH97BCoUxxq3Y2GXc9/kjpKQKTfdE\nOPp+YcXCAQeOH+Cy1y/jiz5f0Lpma8dyGGP823d7vuOWD29h89DNVCpdydEsNjeUA6qWrcqkiEn0\nm9ePpJQkp+MYY/zQqeRT9J/XnymdpjheKLxhxcJLfZr0ISQ4hAnLJzgdxRjjh8Z9PY6mVZtya6Nb\nnY7iFTsMlQd+PfYrzV9vzuK7FtO8WnOn4xhj/MT3+77nxtk3snHIRqqWdTfJhe/ZYSgH1bigBs91\neI5+8/qRnJrsdBxjjB9ISkmi37x+TIqY5DeFwhtWLPJI32Z9qVqmKs9++6zTUYwxfmDC8glcXPFi\n+jTp43SUPGGHofLQL0d+oeUbLYnvG1+gJggzxuSt9fvX0/Gdjqwfsp4aF9RwOs457DCUH6hTvg5P\nX/s0/eb1IyUtxXMHY0yhk5yaTL95/Xj2hmf9rlB4w4pFHhvUchAXlLyASSsmeW5sjCl0nvv2OaqW\nqco9ze9xOkqessNQ+eDnQz/Tenprvu3/LfUr13c6jjHGR378/UfCZ4WzdtBa6pSv43Qct+wwlB+p\nV7EeY9uPpX9Mf1LTCtZkYcaY3ElJS6HfvH48fe3TflsovGHFIp/c3+Z+AiSAqaunOh3FGOMDk1ZM\n4oKSFzCo5SCno+QLOwyVj3b8uYMroq9g1b2rCAkOcTqOMSafbDu4jStnXMnqgau5uOLFTsfJlh2G\n8kOhlUJ5/KrHuffze0nTNKfjGGPyQWpaKgNiBjC2/Vi/LxTesGKRzx4Me5BTyad4Y61vPm/XGONb\nr3z/CiLC/W3udzpKvrLDUD6w5Y8ttH+rPWsGruGiChc5HccYk0cS/0qk7Ztt+W7Ad1xa6VKn4+SI\nHYbyY42qNOKhsIcY9MUgCkJxM8Z4lqZpDPx8IKOuGlVgCoU3rFj4yKPtHuXgyYPMXD/T6SjGmDzw\nxto3OJF8gofCHnI6ik/kuliISLCIxInIdhFZLCIVsmgXKSIJIrJDREbmpL+IXCYiK0Rks4hsFJGS\nuc3pL4oHFmdGtxmM/HIk+47uczqOMcYLvxz5hTFLxzCz+0wCAwKdjuMT3owsRgFxqnopsMS1fg4R\nCQSmApFAI6CPiDTMrr+IFAPeAQapahOgPVAo5v1uVq0Z97e+nyGxQ+xwlDEFlKoy8POBPBT2EI2q\nNHI6js94Uyy6AbNcy7OAHm7atAF2quouVU0G5gDdPfTvCGxU1U0AqnpItfBcd/qfq//D7sO7eX/T\n+05HMcbkwlvr3+KPE3/waLtHnY7iU94Ui6qqesC1fABw9+keNYE9Gdb3urZl1/9SQEVkoYisFZFC\n9T9SIrAEM7vP5OHFD7P/+H6n4xhjzsO+o/sY+eVIZnafSfHA4k7H8ali2T0oInFANTcPjc64oqoq\nIu6Oq2TeJm62Ze5fDLgKaAWcApaIyFpV/cpdxqioqLPL4eHhhIeHu/1e/EnLGi3p37w/w+YPY26v\nuU7HMcbkgKoyJHYIQ1sNpVm1Zk7HybH4+Hji4+O9fp5c32chIglAuKruF5HqwFJVbZCpTRgQpaqR\nrvXHgTRVfTar/iLSG+ikqve4+jwBnFbV/7nJUCDus3DndMppWkxrwfjw8fRs3NPpOMYYD97b+B4T\nv53I2kFrKRFYwuk4uebEfRYxQF/Xcl/gMzdt1gChIlJXREoAvV39suu/GGgqIqVcJ7vbAz96kdMv\nBRULYka3GYxYOIKDJw86HccYk40Dxw/w8OKHmdl9ZoEuFN7wZmQRDHwI1AF2Ab1U9bCI1ACmq2oX\nV7tOwEtAIBCtqs9k19/12B3A46QfsopV1X9daeVqV2BHFn97ZNEj/Hb8N96/xU54G+Ovbv3wVkKD\nQ3nmhmecjuK13I4sbLoPh51MPkmz15vxvw7/o3uD7p47GGN8au6WuYxZOoYfBv9AULEgp+N4zab7\nKKBKFy9NdLdo7pt/H4dOHXI6jjEmg4MnDzJ8wXBmdJtRKAqFN2xk4SeGzR/GieQTzOxu04EY4y/u\n+OQOqpapyosRLzodJc/YyKKAm3jDROJ3xbNgxwKnoxhjgJhtMazau4qnr3va6Sh+wYqFnyhboizT\nu05n8BeDOZp01Ok4xhRph04dYmjsUKK7RVO6eGmn4/gFOwzlZwZ9PghBmNZ1mtNRjCmy+s3rR5ni\nZZjaearTUfKcHYYqJJ7v8DwLdi5gyU9LnI5iTJG0cOdC4nfFM/GGiU5H8StWLPxM+aDyTLtxGgM/\nH8jxM8edjmNMkXI06SiDPh/E9K7TKVuirNNx/IodhvJT93x2D+VKlmNyp8lORzGmyBjyxRDSNI03\nur7hdJR8Y4ehCpkXI17k460fs3z3cqejGFMkfPXzV8zfMZ/nOzzvdBS/ZMXCTwWXCubVzq8yIGYA\nJ5NPOh3HmELt+Jnj3BtzL6/f+Drlg8o7Hccv2WEoP9fn4z7UvKAm/+v4r0l3jTF5ZMSCERxJOsKs\nHrM8Ny7gbG6oQurgyYM0fa0pn/b+lLBaYU7HMabQWb57Obd9fBubhm4iuFSw03HynZ2zKKQql67M\ny5Ev039ef06nnHY6jjGFysnkkwyIGcArnV8pEoXCG1YsCoCejXrSsEpDnvr6KaejGFOojF06lpY1\nWtKjQQ+no/g9OwxVQOw/vp9mrzdj/u3zaVmjpdNxjCnwVu1dRY8PerBxyEaqlKnidByfscNQhVy1\nstV4oeML9JvXjzOpZ5yOY0yBlpSSRL95/Xg58uUiVSi8YSOLAkRV6Tq7K61rtGZs+FgAYmOXMXny\nYpKSilGyZAojRnSkS5drHE5qjH/I6vdj9JLRbD24lY97fYzIef+RXaDldmRRLD/CmPwhIky7cRrN\npzXnpoY3sWfNYR54YBGJiRPOtklMHA1gBcMUebGxy9z+fuw8sY03f3mTDUM2FLlC4Q0bWRRA0eui\neXXNqwR/HMGXi//7r8cjIsawcKGdDDdFW0TEEyxenOmzKALPUPbh2rx6x/+4q9ldzgRzmM/PWYhI\nsIjEich2EVksIhWyaBcpIgkiskNERnrqLyJBIjJbRDaKyBYRGZXbjIVV/xb9qVSqEolVV7l9/PTp\nQB8nMsb/JCW5OXBy1TOUOFWeOy+70/eBCjhvTnCPAuJU9VJgiWv9HCISCEwFIoFGQB8Raeih/20A\nqnoZ0BIYLCJ1vMhZ6IgI07tOZ2+dlVB5678eDwpKdSCVMf6lZMmUczdU3QhtptJ0dyc7/JQL3hSL\nbsDf98bPAtxdqNwG2Kmqu1Q1GZgDdPfQ/zegjKvQlAHOAPbRcZlcVOEiBoYMpmTvDiD/FIeQkP8w\nfHgHB5MZ4x9GjOhISEj6OTwCUqB7f6psbMOjg29xNlgBletzFiJySFUrupYF+Ovv9QxtbgUiVHWg\na/1OoK2qDs+uv4i8C3QESgMPquqbWWQokucs/pamaTSf1JIzmypT7ecrCQpKZfjwDnZy2xiX2Nhl\nTJkSx/YLV3C00k+8df1MbryxvdOxHJUvV0OJSBxQzc1DozOuqKqKiLt37czbxM22c/q7CkopoDoQ\nDCwXkSWq+rO7jFFRUWeXw8PDCQ8Pz+rbKXQCJIBP75lLWHQYbz31lM0dZUwmXbpcQ/mmAdz0weus\nHbiGiypc5HQkn4uPjyc+Pt7r5/FmZJEAhKvqfhGpDixV1QaZ2oQBUaoa6Vp/HEhT1Wez6i8irwLf\nqeq7rj7RwEJV/chNhiI9svjb/B3z6T+vP0vuXkLjCxs7HccYv7HxwEY6vNOBd296lw4hdngWnLmD\nOwbo61ruC3zmps0aIFRE6opICaC3q192/ROA6wBEpAwQBvz7LK45q3NoZ17o+AKR70Wy6/Aup+MY\n4xcS/0qk03udmNJpihWKPODNyCIY+BCoA+wCeqnqYRGpAUxX1S6udp2Al4BAIFpVn/HQvyQQDTQj\nvZjNUNUXsshgI4sMJq+azNTVU/mm/zdcWOZCp+MY45jfjv3GVTOv4tF2jzKk1RCn4/gV+zwLA6TP\novnFji9Y2ncp5UqWczqOMT53+PRh2r/Vnl6NejH6mtGeOxQxViwMkD5/1LD5w9hycAsL7lhAULEg\npyMZ4zMnk08S8W4Eraq34sWIF+1+CjesWJiz0jSNOz65g9Mpp/mo50cUC7ApwEzhl5yazE0f3ERw\nqWDe6vEWAWKTartjU5SbswIkgFk9ZnEq+RSDPh+EFVRT2KVpGv1j+iMiRHeLtkKRD2yPFlIlAkvw\nca+P2XpwKyO/HOm5gzEFlKry0MKH2H14Nx/e+iHFA4s7HalQsmJRiJUpUYbY22OZv2M+z337nNNx\njMkXE5ZP4OvdXxPTJ4ZSxUs5HafQsoPZhVxwqWAW3bmIq2deTXCpYO69/F6nIxmTZ177/jXeWv8W\n3/T/hgpBbie+NnnEikURULNcTRbduYj2b7UnuFQwNze82elIxnjtg80fMGH5BJb3W061su5mJTJ5\nyYpFERFaKZTY22OJfC+SCkEVuK7edU5HMibXFu1cxIiFI/jyri+pV7Ge03GKBDtnUYS0qN6Cj3p+\nxG1zb2PNr2ucjmNMrqzcu5K7Pr2LT3t/StOqTZ2OU2RYsShirrnoGt7s9iZdZ3cl4WCC03GMOS8/\n/v4jPeb0YFaPWbSr3c7pOEWKHYYqgrrV78bh04eJeDeCb/p9Q+3ytZ2OZIxHuw7vIvK9SCZFTKJT\naCen4xQ5ViyKqLub3c3Bkwfp+G5HlvdbTuXSlZ2OZEyWDhw/QMd3OjLyypH0adrH6ThFkh2GKsIe\nvuJhbmpwE53f68yxpGNOxzHGrSOnj9DpvU7c3vR2hrUZ5nScIsvmhiriVJXBXwzmp0M/EXt7LCWL\nlXQ6kjFnnUo+ReR7kTS9sClTOk2xiQHzgE0kaHItNS2V3nN7A/DBrR8QGBDocCJjICUthVs+vIUy\nxcvw7s3v2nxPecQmEjS5FhgQyHs3v8fh04cZGjvUJh40jkvTNO6NuZczqWdsBlk/Yf8DBoCSxUry\nae9PWb9/PaO/sg+MMc5RVR6Le4ztf25nbs+5lAgs4XQkgxULk8EFJS9g/h3z+TThU15c8aLTcUwR\n9dy3z7EocRFf3P4FZUqUcTqOcbFLZ805KpeuzOI7F3P1zKupVKoSfZv3dTqSKUKmr53OtLXT+Kb/\nNwSXCnY6jskg1yMLEQkWkTgR2S4ii0XE7ZSPIhIpIgkiskNERmbY3lNEfhSRVBG5PFOfx13tE0Sk\nY24zmtypXb42C+9cyKglo4jZFuN0HFNEfLzlY6K+jmLxXYupcUENp+OYTLw5DDUKiFPVS4ElrvVz\niEggMBWIBBoBfUSkoevhTcBNwLJMfRoBvV3tI4FXRezslq81qNyAz/t8zr0x9/L1rq+djmMKuSU/\nLeG++fcRe3sslwRf4nQc44Y3b8LdgFmu5VlADzdt2gA7VXWXqiYDc4DuAKqaoKrb3fTpDsxW1WRV\n3QXsdD2P8bFWNVox59Y59Jrbix9++8HpOKaQ+n7f9/T5uA8f9fyI5tWaOx3HZMGbYlFVVQ+4lg8A\nVd20qQnQ6BnEAAAQ6UlEQVTsybC+17UtOzVc7c6nj8kn19W7jte6vEaX97uw488dTscxhUzCwQS6\nzelGdLdorrnoGqfjmGxke4JbROIAd58qcs61laqqIuLu4vy8umA/y+eJioo6uxweHk54eHgevaT5\n280Nb+bQqUN0fLcj3/T7hprlrHYb7/1y5Bci3o3g2RuepWv9rk7HKbTi4+OJj4/3+nlyfQe3iCQA\n4aq6X0SqA0tVtUGmNmFAlKpGutYfB9JU9dkMbZYCj6jqOtf6KABVnehaXwiMVdVVbjLYHdw+9Ny3\nz/H2hrdZ1m+ZXalivPLHiT+4eubVDGk1hAfDHnQ6TpHixB3cMcDf11X2BT5z02YNECoidUWkBOkn\nrt1dXpMxeAxwm4iUEJF6QCiw2oucJo88duVjdA7tTJf3u3DizAmn45gC6ljSMTq/35lbG91qhaIA\n8WZkEQx8CNQBdgG9VPWwiNQApqtqF1e7TsBLQCAQrarPuLbfBEwGKgNHgB9UtZPrsf8A/YEU4AFV\nXZRFBhtZ+JiqMiBmAL8e+5WYPjF2d605L0kpSXR+vzOhwaG81uU1mxjQATaRoPGZlLQUbv3wVoKK\nBfHeze/ZxIMmR1LTUuk1txcBEsCcW+bYz41DrFgYnzqdcprIdyNpXKUxnbQXU6bEkZRUjJIlUxgx\noiNdutiVLUVdbOwyJk9eTFJSMUqUTEa6bSCtXBJf9PnCpsJ3UG6LhU33YXIlqFgQMX1iuHxya2av\n2MihxcvPPpaYmH6xnBWMois2dhkPPLCIxMQJ6Ruuf5ySCT/wbodoKxQFlN0ZbXKtXMly1Pq6M4dq\nHYC2k89uT0ycwJQpcQ4mM06bPHnxP4Wi3f+gwTySZmzgzVe/dTaYyTUbWRjvHC8Pb8dB/6vS11cP\nAw3g9Gk7Hl2UJSUVA0mDsJegzVSY8Q2crGw/FwWYjSyMV0qWTIEjF8HbS6Dpe3D39VAxkaCgVKej\nGQellD8A94RDo7kwawkcrQVgPxcFmBUL45URIzoSEjIa/rwUor+D7TcSMLgptXr+RWqavTEUNSlp\nKTz37XNsajObSr+XhBnL4VAIACEh/2H48A4OJzS5ZVdDGa/Fxi5jypQ4Tp8OJCgolVsGNuT949M5\nmXyS6G7RNLmwidMRjQ9s2L+BATEDqBBUgeldp7Pluz3n/FwMH97BLnrwA3bprPEraZrGm+veZPRX\noxnWehiPX/243cBXSCWlJPH0sqeZtnYaE2+YSL/m/exmOz9mxcL4pb1H9zLkiyH8cuQXortF07pm\na6cjmTy0cu9KBsQMIDQ4lFe7vGofWlQAWLEwfktVmb15Ng8vepi7m93NuPBxlCpeyulYxgsnzpxg\nzNIxzN48m5ciXqJX4142miggnJhI0JgcERFub3o7G4du5Jcjv3DZ65exbPcyzx2NX/rq56+47PXL\n+P3E72wauoneTXpboSgCbGRhfG5ewjzun38/3ep3Y+INEylXspzTkUwOHDl9hEfjHmXBzgW83uV1\nulzaxelIJhdsZGEKjO4NurP5vs2cST1Dk1ebsGDHAqcjGQ8+3/Y5TV5rQoAEsHnoZisURZCNLIyj\nlvy0hIGfD+SqOlcxKWISlUpXcjqSyeCPE3/wwMIHWL1vNW92e5PwuuFORzJespGFKZCuv/h6Ng3d\nRHCpYJq81oSPfvwI+wPAearK7E2zafpaU2pcUIONQzdaoSjibGRh/MZ3e75jQMwAGlZuyCudX6H6\nBdWdjlQk7Tu6j6GxQ/np0E/M6D6DNjXbOB3J5CEbWZgCr13tdvww+AcaVWlEs9ebMfOHmTbK8CFV\nZfra6TSf1pzLq1/OusHrrFCYs2xkYfzS+v3r6T+vP5VLV+aNrm9Qt0JdpyMVaj8d+omBnw/kaNJR\nZnSbQdOqTZ2OZPKJIyMLEQkWkTgR2S4ii0WkQhbtIkUkQUR2iMjIDNt7isiPIpIqIi0zbO8gImtE\nZKPr32u9yWkKnubVmrN64Gquq3cdrd5oxZRVU0jTNKdjFTqpaalMWjGJNtPb0OmSTqwYsMIKhXHL\nq5GFiDwHHFTV51xFoKKqjsrUJhDYBtwA7AO+B/qo6lYRaQCkAdOAR1R1natPc2C/qu4XkcbAIlWt\n5eb1bWRRBGw7uI0BMQMAiO4WTf3K9R1OVDhs+WMLA2IGUCKwBG92fZPQSqFORzI+4NQ5i27ALNfy\nLKCHmzZtgJ2quktVk4E5QHcAVU1Q1e2ZO6jqelXd71rdApQSkeJeZjUFVP3K9VnWbxm3NbmNK2dc\nyTPLnyE5NdnpWAVWcmoyT339FO3fak/fZn1Z2nepFQrjkbfFoqqqHnAtHwCqumlTE9iTYX2va1tO\n3QKsdRUaU0QFSADD2gxjzaA1xO+Op+2bbVm/f73TsQqctb+updX0VqzYu4J1g9YxpNUQAsSuczGe\nefxYVRGJA6q5eWh0xhVVVRFxd0wo18eJXIegJgL2iSkGgLoV6rLwjoXM2jCLju90ZODlAxnTfgxB\nxYKcjubXTiWfYtzX45i5fiYvdHyBO5reYfM5mfPisVioapZv1CJyQESquc4tVAd+d9NsH1A7w3pt\n0kcX2RKRWsAnwF2q+nNW7aKios4uh4eHEx4e7umpTQEnItzT/B4iL4nk/vn302JaC6K7RdOudjun\no/ml5buXMyBmAC2qt2DT0E1cWOZCpyMZH4qPjyc+Pt7r58mLE9x/quqzIjIKqODmBHcx0k9wXw/8\nCqzGdYI7Q5ulwP+p6lrXegXga2Csqn6WzevbCW7D3C1zGbFgBD0b9WTC9RMoW6Ks05H8wrGkY4z6\nchSfbfuMVzq/Qo8G7k4pmqLGkc+zEJFg4EOgDrAL6KWqh0WkBjBdVbu42nUCXgICgWhVfca1/SZg\nMlAZOAL8oKqdROQJYBSwI8PLdVDVg5le34qFAeDPk3/Sa8YdfPvrd1T88xKCT1bnvm63MuSWuwkM\nCHQ6nk+kpqXy4x8/Mn3BO3y6Oo4/KvxE5cP1eDHiv/TubhP/mXT24UemSIuNXcYDDywi8XhvqLMc\naq2ieL1YilU4zRUXhdG2ZlvCaqX/W7Wsu+swCp79x/ezau8qVu5dycp9K1n761rKSQWObKnA8YQh\nsPtq+L0pISGjefnlCPv8awNYsTBFXETEEyxe/PS/tl/b5REenXQDq/alv6mu3rea8kHlzxaPsFph\nNK/W3O9PkJ9OOc2639alF4d9K1m1dxVHk47StlZbwmqG0bZWW9rUbEOfHi+63Q8REWNYuPApB5Ib\nf5PbYuHxBLcxBUFSkvsf5bTjF9AptBOdQjulr2saO/7cwcq9K1m1bxVvb3ibbX9uo8mFTc4ZfVxc\n8WLHrhZSVRIPJZ4zatjyxxYaVG5AWM0wbgy9kaeufYrQ4NB/ZcxqP5w+XTQOxZn8Y8XCFAolS6a4\n3R4UlHrOeoAEUL9yfepXrk/f5n0BOJl8krW/rmXVvlV8svUTHot7jKTUpHOKR5uabSgfVD5fsh8+\nfZjV+1afM2ooXbz02VFD7ya9ubz65ZQuXtrjc+V0PxhzvuwwlCkUzp6zSJxwdltIyH94+eXIXB2r\n33t0L6v2rjp7+Grdb+u4qMJF5xSQxhc2pljA+f29lZKWwubfN58d2azcu5K9R/dyefXLzx5Oaluz\nLTXLnc99q//I6/1gCh87Z2GKvNjYZUyZEsfp04EEBaUyfHiHPHuDTE5N/teb/L5j+2hZveXZ4hFW\nK+xfn8Hx67Ff0/u4Rg3rfltH7XK1zznX0OTCJudddLKTn/vBFHxWLIzxsUOnDqUfPnIVj1X7VlGm\neBnCaoWhKCv3ruRU8qmzhSGsVhita7amQpDbyZmN8QkrFsY4TFXZ+ddOVu5dSYAE0LZWW0Iqhti0\nGsav2NVQxjhMRNi+8jfenbyNpKRivF1yKyNGdLRDQKZQsGJhTB5xd3I5MTF9vk0rGKags7mJjckj\nkycvPqdQACQmTmDKlDiHEhmTd6xYGJNH7IY4U5hZsTAmj9gNcaYws2JhTB4ZMaIjISHnfCYYISH/\nYfhw++wuU/DZpbPG5CG7Ic74O7vPwhhjjEe5LRZ2GMoYY4xHViyMMcZ4ZMXCGGOMR1YsjDHGeJTr\nYiEiwSISJyLbRWSxiLidSlNEIkUkQUR2iMjIDNt7isiPIpIqIpe76VdHRI6LyCO5zWiMMSZveDOy\nGAXEqeqlwBLX+jlEJBCYCkQCjYA+ItLQ9fAm4CZgWRbP/yIQ60W+IiU+Pt7pCH7D9kU62w//sH3h\nPW+KRTdglmt5FtDDTZs2wE5V3aWqycAcoDuAqiao6nZ3TywiPYCfgC1e5CtS7JfhH7Yv0tl++Ift\nC+95UyyqquoB1/IBoKqbNjWBPRnW97q2ZUlEygKPAVFeZDPGGJOHsp2iXETigGpuHjpnTgNVVRFx\nd3dcbu6YiwImqepJsU+NMcYY/6CqufoCEoBqruXqQIKbNmHAwgzrjwMjM7VZClyeYX0Z8LPr6xDw\nJ3BfFhnUvuzLvuzLvs7vKzfv+d58+FEM0Bd41vXvZ27arAFCRaQu8CvQG+jjpt3ZEYSqnp1IR0TG\nAsdU9VV3AXJzy7oxxpjz5805i4lABxHZDlznWkdEaohILICqpgDDgEWkn6z+QFW3utrdJCJ7SB99\nxIrIAi+yGGOMyUcFeiJBY4wxvuH3d3BndVNfpjaTXY9vEJEWvs7oK572hYjc4doHG0XkWxG5zImc\nvpCTnwtXu9YikiIiN/syny/l8HckXER+EJHNIhLv44g+k4PfkcoislBE1rv2xT0OxMx3IjJDRA6I\nyKZs2pzf+2ZuT3D74gsIBHYCdYHiwHqgYaY2nYH5ruW2wEqnczu4L64AyruWI4vyvsjQ7ivgC+AW\np3M7+HNRAfgRqOVar+x0bgf3RRTwzN/7gfQLaIo5nT0f9sXVQAtgUxaPn/f7pr+PLLK8qS+DszcH\nquoqoIKIuLvno6DzuC9UdYWqHnGtrgJq+Tijr+Tk5wJgODAX+MOX4XwsJ/viduBjVd0LoKoHfZzR\nV3KyL34DyrmWywF/avq51UJFVZeTfjVpVs77fdPfi0VObupz16Ywvkme7w2OA4D5+ZrIOR73hYjU\nJP2N4jXXpsJ6ci4nPxehQLCILBWRNSJyl8/S+VZO9sV0oLGI/ApsAB7wUTZ/c97vm95cOusLOf0F\nz3wJbWF8Y8jx9yQi1wL9gSvzL46jcrIvXgJGqaq6bu4srJdZ52RfFAcuB64HSgMrRGSlqu7I12S+\nl5N98R9gvaqGi0gIECcizVT1WD5n80fn9b7p78ViH1A7w3pt0itgdm1qubYVNjnZF7hOak8HIlU1\nu2FoQZaTfdESmOOaBKAy0ElEklU1xjcRfSYn+2IPcFBVTwGnRGQZ0AwobMUiJ/uiHTABQFUTReRn\noD7p94QVJef9vunvh6HO3tQnIiVIv6kv8y97DHA3gIiEAYf1nzmrChOP+0JE6gCfAHeq6k4HMvqK\nx32hqheraj1VrUf6eYuhhbBQQM5+R+YBV4lIoIiUJv2EZmGcpDMn+yIBuAHAdYy+PumTlhY15/2+\n6dcjC1VNEZG/b+oLBKJVdauIDHY9Pk1V54tIZxHZCZwA+jkYOd/kZF8ATwIVgddcf1Enq2obpzLn\nlxzuiyIhh78jCSKyENgIpAHTVbXQFYsc/lz8F5gpIhtI/2P5MVX9y7HQ+UREZgPtgcqum5/Hkn44\nMtfvm3ZTnjHGGI/8/TCUMcYYP2DFwhhjjEdWLIwxxnhkxcIYY4xHViyMMcZ4ZMXCGGOMR1YsjDHG\neGTFwhhjjEf/D05C44YG+g5FAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "b)The above graph is beam displacement graph\n", + "b)The maximum occures in the middle from the above graph \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.4 page number 514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "import numpy\n", + "l_ab = 1.0 #L in - The length of the beam\n", + "F_D = 1.0 #W lb/in - The force distribution \n", + "F = F_D*l_ab #WL - The force applied\n", + "#Beause of symmetry the moment caliculations can be neglected\n", + "#F_Y = 0\n", + "R_A = F/2 #wl - The reactive force at A\n", + "R_B = F/2 #wl - The reactive force at B\n", + "#EI - The flxure rigidity is constant and 1/EI =1 # k\n", + "#M_A and M_B are applied at the ends\n", + "\n", + "#part - A\n", + "#section 1--1\n", + "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " M[i] = l_1[i]/2.0 - (l_1[i]**2)/2.0 -1.0/12.0 #The moment euation at 1--1 section\n", + "# M_1 = R_A*l_1[i]/2.0 - F_D*(l_1[i]**2)/2.0 -F_D*(l_ab**2)/12.0 #The moment euation at 1--1 section \n", + "# (EI)y'' = M_1[i] we will integrate M_1[i] twice where variable is l_1[i]\n", + "#(EI)y'\n", + "M_1_intg1 = R_A*(l_1[i]**2)/4 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**2)*l_1[i]/12.0 #integration of x**n = x**n+1/n+1\n", + "#(EI)y\n", + "M_1_intg2[i] = R_A*(l_1[i]**3)/12.0 - F_D*(l_1[i]**4)/24.0 + F_D*(l_ab**2)*(l_1[i]**2)/24.0 \n", + "\n", + "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M_1_intg2 = [0,0,0,0,0,0,0,0,0,0,0]\n", + "Y = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " M_1_intg2[i] = (l_1[i]**3)/12.0 - (l_1[i]**4)/24.0 - (l_1[i]**2)/24.0 # discluding every term for ruling out float values\n", + " Y[i] = M_1_intg2[i] #W(l**4)/EI k = 1/EI\n", + " \n", + "#Part - B\n", + "#Graphs\n", + "import numpy as np\n", + "values = M\n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "print \"b) The above graph is bending moment graph\"\n", + "import numpy as np\n", + "values = Y \n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "\n", + "\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEACAYAAABcXmojAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FGW6/vHvQ1iCKCCigIAyrMLouB0R94ACYTEoKAwi\n4jZubM444wIunKMedZxRWUZ+HhTEGQERQULCkqAERAWXAXVkj4OCLIojImAgy/P7g7YJMUCSTro6\nyf25rr6o5a3qm7q660lVvVVt7o6IiAhAlaADiIhI7FBREBGRMBUFEREJU1EQEZEwFQUREQlTURAR\nkbCIi4KZJZrZGjNbb2b3HabNmND8T8zs7HzT65rZDDNbbWarzKxDpHlERKTkIioKZhYHjAMSgXZA\nfzNrW6BNd6Clu7cCbgPG55s9Gpjr7m2B3wCrI8kjIiKRifRIoT2wwd03uns2MA3oVaBNEjAZwN2X\nA3XNrIGZ1QEucfeJoXk57v5DhHlERCQCkRaFxsCmfOObQ9OO1qYJ8CvgWzObZGb/NLMJZnZMhHlE\nRCQCkRaFoj4jwwpZripwDvC8u58D7AHujzCPiIhEoGqEy38NNM033pQDRwJHatMkNM2Aze7+YWj6\nDAopCmamhzOJiJSAuxf8g/yoIj1S+AhoZWbNzKw60A9ILtAmGbgBINS7aKe7b3f3bcAmM2sdancF\n8Hlhb+LuernzyCOPBJ4hVl7aFtoW2hZHfpVUREcK7p5jZkOABUAc8JK7rzaz20PzX3D3uWbW3cw2\ncOAU0U35VjEUeDVUUDILzBMRkSiL9PQR7j4PmFdg2gsFxoccZtlPgPMizSAiIqVDdzSXIwkJCUFH\niBnaFgdpWxykbRE5i+TcUzSYmcd6RhGRWGNmeAAXmkVEpAJRURARkTAVBRERCVNREBGRMBUFEREJ\nU1EQEZEwFQUREQlTURARkTAVBRERCVNREBGRMBUFEREJU1EQEZEwFQUREQlTURARkTAVBRERCVNR\nEBGRsIh/jlOkMkpNXcKYMWns21eVGjVyGDasCz16XBp0LJGIRVwUzCwReA6IA15096cKaTMG6Abs\nBW509xX55sUBHwGb3f3KSPOIlLXU1CUMH76AzMzHw9MyM0cCqDBIuRfR6aPQDn0ckAi0A/qbWdsC\nbboDLd29FXAbML7AaoYDqwD95qaUC2PGpB1SEAAyMx9n7Nj0gBKJlJ5Irym0Bza4+0Z3zwamAb0K\ntEkCJgO4+3Kgrpk1ADCzJkB34EWg2L8lKhKEffsKP8DOyoqLchKR0hdpUWgMbMo3vjk0rahtngX+\nBORFmEMkamrUyCl0enx8bpSTiJS+SItCUU/5FDwKMDPrCXwTur6gowQpN4YN60KLFiMPmdaixQiG\nDu0cUCKR0hPpheavgab5xpty4EjgSG2ahKb1AZJC1xzigdpm9oq731DwTUaNGhUeTkhIICEhIcLY\nIiX388XksWMfIisrjvj4XIYOTdRFZglURkYGGRkZEa/H3Et+fdfMqgJrgcuBLcAHQH93X52vTXdg\niLt3N7MOwHPu3qHAei4D/lhY7yMz80gySsWirqAHaVvIkZgZ7l7sszARHSm4e46ZDQEWcKBL6kvu\nvtrMbg/Nf8Hd55pZdzPbAOwBbjrc6iLJIhWfuoIepG0hZSWiI4Vo0JGC/Kxr1wdJS3uskOkPMX/+\nowEkCo62hRxNSY8U9JgLKTfUFfQgbQspKyoKUm6oK+hB2hZSVvTsIyk3hg3rQmbmyEPOox/oCpoY\n1RzZudks/WopaZlp7Nq3i1zPJc/zyM3LPThc2LS8os0rSrs9l+0l7qzR5ObVgt0NYUNXTt7zNXcO\nvjmq20IqHl1TkHIlNXUJY8em5+sK2jkqF1Z/yPqBBZkLmL12NvPWz6NFvRZ0b9mdE2udSJzFEVcl\njipWhTgL/Vsl7pDhn+cdrV1xlnn77Q94eeJSdtoudjVYR5XW3/Jt7jYub3453Vp2I7FlIk1qNynz\nbSOxqaTXFFQURA7jy51fMmfdHJLXJrNs8zIuOfUSklon0bN1TxrXLnjjfmzYvns7aZlpzNswj7TM\nNBod14huLbvRrWU3LjrlIqrHVQ86okSJioJIhNydf279J8lrk0lel8zmXZvp0aoHvdr0onOLzhxb\n/digIxZLbl4uH275kHnr5zFvwzzWfbeOjr/qGC4STes0PfpKpNxSURApgX05+1i0cRGz18xmzro5\n1Kpei15tepHUJokLmlxAXJWK05vnmz3fhI8iFmxYQMNjGx4oEK26cfEpF+soooJRURApoh17dzB3\n/VyS1yaz8IuFnNHgDJJaJ5HUJok29dsEHS8qcvNy+WjLR8zbcOAoYs2ONXRs1jFcJE6pc0rQESVC\nKgoiR7D+u/Xh00Irt63k8l9dTlKbJHq06sGJtU4MOl7gvt3z7cGjiMwFnFTrpPBppotPuZgaVWsE\nHVGKSUVBJJ/cvFyWbV4WLgQ/ZP1AUpsDRwOdftWJ+KrxQUeMWbl5uXy89ePwtYjVO1aT0CwhXCRO\nrXtq0BGlCFQUpNLbs38P6V+kk7w2mZR1KTQ6rlH4tNC5J59LFdO9miWxY++OQ65F1D+mfvg00yWn\nXKKjiBiloiCV0tYft5KyLoXZa2ez5MsltG/cPnxE0Kxus6DjVTh5nsfHWz4OX4tY9e0qLjv1Mnq0\n6sENZ95AzWo1g44oISoKUmls+XELk1ZMInldMuu/W09iy0SS2iSR2DKRuvF1g45XqXy39zvSMtOY\n9vk0Ptn2CU93fppr2l2DmX43K2gqClLhZedmM2b5GJ5Y+gR9f92XPm37cMmpl6grZYxY9O9FDJ8/\nnHo16zE6cTRnNjwz6EiVmoqCVGgZGzMYPHcwTWo3YWy3sbQ+oXXQkaQQOXk5TPh4AqMWj6L3ab15\ntNOj1D+mftCxKiU9OlsqpC0/bmHAzAEMenMQj3Z8lPkD5qsgxLCqVapy53l3snrwaqrFVaPt39oy\nZvkYsnOzg44mRaSiIDEpOzebZ95/ht+M/w2n1jmVVXetonfb3jpXXU7Uq1mPMd3GkDEogznr5nDW\nC2eRnpkedCwpAp0+kpizeONiBs8dzMnHnczYbmMrzV3GFZW7k7w2mT+k/YHTTzqdZ7o8Q4t6LYKO\nVeHpmoKUubL+ofitP27lj+l/5J0v3+HZrs/qyKCcKOrnIisni2fff5a/vP8XbjvnNkZcMoLjahwX\nQOLKoaRFAXeP6AUkAmuA9cB9h2kzJjT/E+Ds0LSmwCLgc+BfwLDDLOsSvJSUxd6ixQgHD79atBjh\nKSmLI173/pz9/sx7z/gJT53gDyx8wHfv210KiSUaSvK5+HrX1z5w5kA/+a8n++SVkz03LzeKiSuP\n0L6z+Pv0kiwUXhjigA1AM6AasBJoW6BNd2BuaPh8YFlouCFwVmj4WGBtwWVdRSFmdOky8pAv/s+v\nrl0fjGi9izcu9tOfP907v9LZ13y7ppTSSrRE8rl4f9P7ft7/nefnTzjfl21aFoW0lUtJi0KkF5rb\nAxvcfaO7ZwPTgF4F2iQBk0N79+VAXTNr4O7b3H1laPpuYDVwcoR5pIyU9g/Fb/1xKwNnDeT6mdfz\nyGWPsOD6Bbp2UA5F8rno0KQDy25dxp3/dSdXv3Y1N755I1t/3FraEaWYIi0KjYFN+cY3h6Ydrc0h\nvxFoZs2As4HlEeaRMlJaPxSfk5fDc8ue44zxZ9DkuCasGrxKd8CWY5F+LqpYFQadNYi1Q9bS8NiG\nnDH+DJ5a+hT7cvaVZkwphsLLfNEV9QpwwW98eDkzOxaYAQwPHTH8wqhRo8LDCQkJJCQkFCukRG7Y\nsC5kZo4kM/Px8LQWLUYwdGhikdex5MslDJk7hAbHNmDpzUs5rf5pZRFVoqg0PhcAx9U4jieveJJb\nz7mVe9LuYcLzE3im6zNc2fpK/cFQRBkZGWRkZES8noh6H5lZB2CUuyeGxh8A8tz9qXxt/h+Q4e7T\nQuNrgMvcfbuZVQNSgHnu/txh3sMjySilJzV1CWPHppOVFUd8fC5Dh3YuUu+jbbu38af0P7F442L+\n2uWvOjKoYEr6uTiSBRsW8PsFv6dpnaY82/VZ2p3YrpTSVh6BdEk1s6ocuEB8ObAF+ADo7+6r87Xp\nDgxx9+6hIvKcu3ewA3uFycB37v77I7yHikI5lZOXw98++BuPvfMYt5x9Cw9e+mC5+51jCU52bjbP\nf/g8j73zGAPOGMAjlz3C8TWPDzpWuRHIYy7cPQcYAiwAVgGvuftqM7vdzG4PtZkLfGFmG4AXgLtC\ni18EXA90NLMVoVfxjjklZr3z5Tuc88I5zFk3hyU3LuHJK55UQZBiqRZXjeEdhrPqrlVk5WTR9m9t\neeGjF8jNK951LCke3bwmpWrb7m3cm34vizYu4q9d/sq17a7VqSIpFSu3rWT4/OH8kPUDY7qN4dJT\nS+/GyYpID8STQOXk5TBm+RjOGH8GjY5txOrBq+n7674qCFJqzmp4FhmDMhhxyQgGzhpIvxn9+HLn\nl0HHqnB0pCARW/rVUgbPHUz9Y+ozrts42p7YNuhIUsHtzd7L0+8+zdgPxjKk/RDuvehejql2TNCx\nYoqefSRRt333du5beB9v/fstnSqSQHz1w1fcm34v729+nz9f8WcdneajoiBRk5OXw/gPx/M/S/6H\nm866iYcufUgPNpNALflyCcPnD6dp7aZM6TNFnRpQUZAoeX/T+9yZeif1atZjXPdx6j8uMSM7N5vb\nU27n0+2fknJdCg2PbRh0pEDpQrOUuZdXvszVr13NAxc/wFs3vKWCIDGlWlw1Xkp6iaQ2SVz40oWs\n/nb10ReSX9CRghyVu/PE0ieY8M8JzBswT4+nkJg3eeVk7l14L69f+3ql7bqq00dSJnLzchk2bxjv\nbnqXuQPmcvJxepCtlA8Lv1jIdW9cx5huY/jt6b8NOk7UqShIqcvKyWLAzAHszNrJzL4zqRNfJ+hI\nIsXy6fZP6TmlJ0PaD+FPF/6pUvVMUlGQUvX9T99z1WtX0ejYRky+ajI1qtYIOpJIiWzetZkeU3pw\nUdOLGNNtDFWrRPpw6PJBF5ql1GzetZlLJl3CuY3OZUqfKSoIUq41qd2Ed256hw3/2cDVr13Nnv17\ngo4U01QU5BCff/M5F750ITeddRPPdH2GKqaPiJR/tWvUJvW6VOofU5+EyQls37096EgxS994CVv6\n1VI6vdKJJy5/gnsuvCfoOCKlqlpcNSYmTaRnq55c8NIFrNmxJuhIMUnXFASAmatnckfKHbza+1U6\nt+gcdByRMvXyype5b+F9zLh2BpeceknQccqELjRLiT3/4fM8/s7jzOk/h3ManRN0HJGoSM9MZ8DM\nAYztNpZ+p/cLOk6pU1GQYnN3Hlr0ENM/n8786+fT/PjmQUcSiaqfu6wOO38Y91xwT4XqsqqiIMWS\nnZvNHSl38Nk3n5F6XSon1jox6Egigdi8azPdX+3OpadeyujE0cRViQs6UqlQUZAi27N/D31n9AVg\n+jXTqVW9VsCJRIL1Q9YPXPP6NdSsWpOpfaZWiO+E7lOQIvl2z7d0eqUTDWo14M1+b1aID79IpOrE\n1yH1ulTq1axHx8kdK3WX1YiLgpklmtkaM1tvZvcdps2Y0PxPzOzs4iwrpeff3/+biyZeROfmnXkp\n6SWqxVULOpJIzKgeV51JvSbRrWU3LnjpAtbuWBt0pEBEVBTMLA4YByQC7YD+Zta2QJvuQEt3bwXc\nBowv6rJSelZsXcHFky7m7g5381inxyrUBTWR0mJm/HfH/+bBSx/kspcvY+lXS4OOVGypqUvo2vXB\nEi8f6ZFCe2CDu29092xgGtCrQJskYDKAuy8H6ppZwyIuK6Vg4RcL6fqProztNpa7zrsr6DgiMe/m\ns2/mlatfofdrvXn989eDjlNkqalLGD58AWlpj5V4HZEWhcbApnzjm0PTitLm5CIsKxGa8tkUBswc\nwBt936B3295BxxEpN7q06ELawDT+kPYH/vLeXygPHV7GjEkjM/PxiNYR6eMCi7qVIjpXMWrUqPBw\nQkICCQkJkayu0vjre39l9PLRvH3D2/z6pF8HHUek3Dmr4Vm8d/N7dJ/SnS93fslzic/FbJfVjIwM\n1q5dCoyKaD2RFoWvgab5xpty4C/+I7VpEmpTrQjLAocWBTm6PM/jj2l/JC0zjXdvfpemdZoefSER\nKVTTOk1ZetNS+kzvQ5/pfZjSZwrHVDsm6Fi/kJCQQJs2F/Pll6NCU/67ROuJ9PTRR0ArM2tmZtWB\nfkBygTbJwA0AZtYB2Onu24u4rHDwwlFCwii6dn2Q1NQlh227L2cfA2YO4KMtH/HOTe+oIEilUJzv\nSEnUia/D3AFzqRNfh46TO/LNnm9Kdf2lZdiwLrRoMTKylbh7RC+gG7AW2AA8EJp2O3B7vjbjQvM/\nAc450rKFrN8rs5SUxd6ixQgHD79atBjhKSmLf9H2h6wfvNPkTt77td7+U/ZPAaQVib7ifEcilZeX\n5w+//bA3H93c1+5YW+rrLw0pKYu9a9cHPbTvLP4+vSQLRfNV2YtCly4jD/mw//zq2vXBQ9pt2bXF\nzxx/pt+Vcpfn5OYElFYk+or6HSlNL378ojd4uoEv/XJpmb1HpEpaFHRHc4zbt6/wyz5ZWQcvdq3d\nsZYLJ15I31/3ZVz3cTF7IUykLBTlO1LabjnnFiZfNZmrX7uaGatmlNn7BKFy/FhpOVajRk6h0+Pj\ncwFYtnkZV792NU9c/gQ3nnVjFJOJxIajfUfKSteWXUkbmEbPKT356oev+H2H31eIm0J1pBDjCrtw\n1KLFCIYO7UzKuhSSpiYxMWmiCoJUWkf6jpS1sxqexXu3vMfEFRMZPn84uXllW4iiQU9JLQdSU5cw\ndmw6WVlxxMfnMnRoZ7Y2WsdDix5i9m9n075x+6AjigSqsO9Ijx6XRu39d2btpPdrvakTX4dXe78a\nE11W9ejsSsLdeWzJY7z8ycvMHzCfVie0CjqSiAD7c/dza/KtrPtuHWkD06hdo3ageVQUKoHcvFwG\nzx3Mh1s+ZO51c2lwbIOgI4lIPu7OHSl3sGnXJpL7J1O1SnCXbfV7ChXcT9k/cc3r1/DF91+QMShD\nBUEkBpkZ47qPI9dzuXv+3eXieUkFqSiUA3mex8BZA6keV52U61I4rsZxQUcSkcOoFleN6ddMJ2Nj\nBmOWjwk6TrGpS2o58PCih9m+ZzsLBy6kelz1oOOIyFHUia9DynUpXPjShTQ/vjlXtrky6EhFpiOF\nGPePT//BlM+mMLPvTGpUrRF0HBEpomZ1mzGr3yxuTr6ZFVtXBB2nyFQUYth7m97jDwv+wJz+czix\n1olBxxGRYjq/yfmM7zGepGlJfL3r66DjFImKQozauHMj10y/hslXTdZvIYiUY9e0u4bB5w3myqlX\nsnv/7qDjHJW6pMagXft2cdHEi7j17FsZ3mF40HFEJELuzq3Jt/Lt3m+Z1W9WVJ5PpvsUKojcvFx6\nTetFk9pNGN9jfIV4loqIHLi5LfEfiZzZ4EyeTXy2zN9P9ylUEPem30tWThZju41VQRCpQKrHVeeN\nvm8wP3M+z3/4fNBxDktdUmPIi/98kZT1KSy7ZRnV4qoFHUdEStnxNY8npX8KF0+6mObHNyexZWLQ\nkX5BRwoxYtG/FzHy7ZGk9E/h+JrHBx1HRMpIi3otmHHtDG6YdQOfbf8s6Di/oKIQA9Z/t57+b/Rn\nWp9pesCdSCVw0SkXMTpxNFdOvZJtu7cFHecQKgoB+/6n7+k5tSePdnyUjr/qGHQcEYmS/mf055az\nbyFpahJ7s/cGHScsoqJgZvXMLN3M1plZmpnVPUy7RDNbY2brzey+fNOfNrPVZvaJmc00szqR5Clv\nsnOzufb1a+nRqge/O/d3QccRkSh78NIHOa3+aQycNZA8zws6DhD5kcL9QLq7twbeCo0fwszigHFA\nItAO6G9mbUOz04Bfu/uZwDrggQjzlBvuzrB5w6hRtQZPd3466DgiEgAzY8KVE9ixdwcPLIyN3V+k\nRSEJmBwangxcVUib9sAGd9/o7tnANKAXgLunu4fL43KgSYR5yo2xH4xl6aalTO0zNSo3sohIbKpR\ntQYz+85k5pqZTPh4QtBxIi4KDdx9e2h4O1DYQ/4bA5vyjW8OTSvoZmBuhHnKhXnr5/HE0ieY039O\n4L/OJCLBO+GYE0i9LpWHFj3Ewi8WBprlqPcpmFk60LCQWYf8Ura7u5kVduvxUW9HNrORwH53n1LY\n/FGjRoWHExISSEhIONoqY9bn33zOoDcHMavfLJrVbRZ0HBGJEa1PaM30a6dz7evXsmjQItqd2K5Y\ny2dkZJCRkRFxjogec2Fma4AEd99mZo2ARe5+WoE2HYBR7p4YGn8AyHP3p0LjNwK/Ay5396xC3qPC\nPObi2z3fcv6L5/M/Hf+H639zfdBxRCQGvfLJK4zKGMWyW5dxUq2TSryeoB5zkQwMCg0PAt4spM1H\nQCsza2Zm1YF+oeUws0TgT0CvwgpCRbIvZx+9p/em/+n9VRBE5LBuOPMGBpwxgF7TevFT9k9Rf/9I\njxTqAdOBU4CNQF9332lmJwMT3L1HqF034DkgDnjJ3Z8ITV8PVAf+E1rl++5+V4H3KPdHCu7OTbNv\nYvf+3Uy/djpVTLeHiMjhuTvXzbwOd2dKnykl2mfoKakx7KmlTzF91XSW3LiEWtVrBR1HRMqBrJws\nOk3uRKdfdeKxTo8Ve3k9JTVGvbnmTcZ9OI7k3yarIIhIkcVXjWf2b2cz9V9Tmbxy8tEXKCV6SmoZ\nWrF1BbfNuY15A+bRuHZhvXBFRA7vxFonktI/hctevoxT655KQrOEMn9PHSmUka0/bqXXtF483+N5\nzj353KDjiEg51fbEtkztM5V+M/qxdsfaMn8/FYUy8FP2T/Sa1ovbzr2Na9pdE3QcESnnLm9+Of/b\n6X/pObUnO/buKNP30oXmUpbnefR/oz/VqlTj71f/Xb+eJiKl5v6F9/PupndZOHAhNarWOGJb9T6K\nEY8seoT0L9J5e9DbxFeNDzqOiFQgeZ5H39f7UrNaTV656pUj/tGp3kcxYOpnU5n8yWRm9ZulgiAi\npa6KVeGVq19h3XfreHTJo2XzHmWy1kpo+eblDJ8/nDn959Dg2MKeCygiErljqh3D7N/OZuKKiUz5\nrNDHxUVERaEUfPXDV/Se3puJvSZyRoMzgo4jIhVcw2MbknJdCnfPv5t3v3q3VNetohCh3ft3kzQ1\niXsuuIeerXsGHUdEKonTTzqdv1/9d655/Roy/5NZauvVheYI5Obl0nt6b0465iT+78r/U08jEYm6\n8R+OZ/Ty0bx/y/scX/P48HRdaA7AA289wK59u/hbj7+pIIhIIO487066t+pOn+l92J+7P+L1qSiU\n0KQVk5i1ZhZv9H2D6nHVg44jIpXY052f5rgax3FHyh1EemZFRaEEFm9czP1v3U9K/xTq1awXdBwR\nqeTiqsQxpfcUVm5byZNLn4xoXXogXjFl/ieTfjP68WrvV2lTv03QcUREAKhVvRZz+s/hgpcuoGW9\nliVej4pCMezM2knPqT155LJHuKL5FUHHERE5ROPajUnun0yXv3cp8TrU+6iIcvJy6DGlB21OaMOY\nbmOCjiMiclip61Lp2aannn1UlobMHcKG/2wg5boUqlbRAZaIxDZ1SS0jqalLaDsokUkZ09k/5XQW\nzHsv6EgiEqNSU5fQteuDJCSMomvXB0lNXRJ0pGIr8Z+8ZlYPeA04FdgI9HX3nYW0SwSeA+KAF939\nqQLz7wGeBuq7+39KmqcspKYu4Y5H/s7mTh/Di8tZ9H1zvlo3EoAePS4NOJ2IxJLU1CUMH76AzMzH\nw9MyM8vf/iKSI4X7gXR3bw28FRo/hJnFAeOARKAd0N/M2uab3xToDHwZQY4y89zYeWw+95+w8En4\nvjkAmZmPM3ZsesDJRCTWjBmTdkhBgPK5v4ikKCQBP/+a9GTgqkLatAc2uPtGd88GpgG98s1/Brg3\nggxlakODZbCnAay4+ZDpWVlxASUSkVi1b1/hJ17K2/4ikqLQwN23h4a3A4U9L7oxsCnf+ObQNMys\nF7DZ3T+NIEOZWbltJV83/QCSJwCHXquJj88NJpSIxKwaNXIKnV7e9hdHvKZgZulAw0Jmjcw/4u5u\nZoV1ESq025CZ1QRGcODUUXjy4XKMGjUqPJyQkEBCQsJhM5eG/bn7GfTmIIa0Gk7ySc+T+ePBQ8IW\nLUYwdGhimb6/iJQ/w4Z1ITNz5CGnkKK5v8jIyCAjIyPi9ZS4S6qZrQES3H2bmTUCFrn7aQXadABG\nuXtiaPwBIA9I5cB1iL2hpk2Ar4H27v5NgXVEvUvqw4seZuW2lcz+7Wzmzn2HsWPTycqKIz4+l6FD\nO5eri0YiEj2pqUtiZn8R9d9oNrM/A9+5+1Nmdj9Q193vL9CmKrAWuBzYAnwA9Hf31QXa/Rs4t7De\nR9EuCh9v+ZjuU7qz8vaVNDquUdTeV0SkNAVxn8KTQGczWwd0Co1jZiebWSqAu+cAQ4AFwCrgtYIF\nIST4u9OAfTn7GPTmIJ7r+pwKgohUSrqjOZ8HFj7Auv+sY8a1M/T7CCJSrpX0SEHPawhZvnk5k1ZO\n4tM7P1VBEJFKS4+5AH7K/okbZ9/I2G5jOanWSUHHEREJjIoCB3ob/abBb7j219cGHUVEJFCV/vTR\nu1+9y6ufvcqnd8bkPXQiIlFVqY8U9mbv5cbZN/K37n+j/jH1g44jIhK4St376O75d7Nj7w7+0fsf\nZbJ+EZGgqPdRMS3euJjXV73OZ3d+FnQUEZGYUSlPH+3ev5ubk2/mhZ4vUK9mvaDjiIjEjEp5+mhw\n6mD25uxlUq9JpbpeEZFYodNHRfTWF2+RvC5Zp41ERApRqU4f7dq3i1uSb2HClROoG1836DgiIjGn\nUp0+un3O7eR5HhOSJpTK+kREYpVOHx1FWmYaCzIX6CY1EZEjqBRFYWfWTm5NvpWJvSZSu0btoOOI\niMSsSnH66ObZNxNfNZ7nezxfSqlERGKbTh8dRuq6VDI2Zui0kYhIEVToovD9T99ze8rt/KP3Pzi2\n+rFBxxElkI+tAAAKO0lEQVQRiXkV+vTRwFkDqRdfj9HdRpdyKhGR2KbTRwW8ueZNlm1exsrbVwYd\nRUSk3CjxzWtmVs/M0s1snZmlmVmhd4OZWaKZrTGz9WZ2X4F5Q81stZn9y8yeKmmWgnbs3cFdqXcx\nqdckalWvVVqrFRGp8CK5o/l+IN3dWwNvhcYPYWZxwDggEWgH9DeztqF5HYEk4DfufjrwlwiyHGLo\nvKH0P70/F59ycWmtUkSkUoikKCQBk0PDk4GrCmnTHtjg7hvdPRuYBvQKzbsTeCI0HXf/NoIsYTNW\nzWDF1hU81umx0lidiEilEklRaODu20PD24EGhbRpDGzKN745NA2gFXCpmS0zswwz+68IsgDwzZ5v\nGDpvKC9f9TI1q9WMdHUiIpXOES80m1k60LCQWSPzj7i7m1lhXYSO1G2oKnC8u3cws/OA6UDzwhqO\nGjUqPJyQkEBCQsIv38idu1LvYtCZg+jQpMMR3lZEpOLJyMggIyMj4vWUuEuqma0BEtx9m5k1Aha5\n+2kF2nQARrl7Ymj8ASDP3Z8ys3nAk+6+ODRvA3C+u39XYB1F6pI67V/TeHTJo3x828fEV40v0f9J\nRKSiKGmX1EhOHyUDg0LDg4A3C2nzEdDKzJqZWXWgX2g5Qu07AZhZa6B6wYJQVNt2b2P4/OG83Otl\nFQQRkQhEUhSeBDqb2ToO7NyfBDCzk80sFcDdc4AhwAJgFfCau68OLT8RaG5mnwFTgRtKEsLduSPl\nDn53zu84r/F5Efx3RESk3N/R/PdP/s5f3v8LH/7uQ6rHVY9iMhGR2FUp72j+etfX3JN2DwuuX6CC\nICJSCsrtz3G6O7el3Mbg8wZzdqOzg44jIlIhlNui8PLKl9ny4xZGXDIi6CgiIhVGuTx9tOmHTdy3\n8D7euuEtqsVVCzqOiEiFUe6OFNydW5Jv4e4Od3NGgzOCjiMiUqGUu6Iw4Z8T+D7re+696N6go4iI\nVDjl6vTRxp0bGfn2SBbfuJiqVcpVdBGRcqHcHCnkeR63JN/Cny78E+1ObBd0HBGRCqncFIXxH45n\nb/Ze7rngnqCjiIhUWOXijuYN323g/BfP592b36VN/TZBRxIRiXlBPBAvam6afRMjLxmpgiAiUsbK\nRVFwnGHnDws6hohIhVcuTh+t/249Leu1DDqKiEi5UdLTR+WiKMR6RhGRWFOhrymIiEh0qCiIiEiY\nioKIiISpKIiISFiJi4KZ1TOzdDNbZ2ZpZlb3MO0SzWyNma03s/vyTW9vZh+Y2Qoz+9DM9APLIiIB\ni+RI4X4g3d1bA2+Fxg9hZnHAOCARaAf0N7O2odl/Bh5y97OBh0PjIiISoEiKQhIwOTQ8GbiqkDbt\ngQ3uvtHds4FpQK/QvK1AndBwXeDrCLKIiEgpiOT50w3cfXtoeDvQoJA2jYFN+cY3A+eHhu8HlprZ\nXzhQnC6IIIuIiJSCIxYFM0sHGhYya2T+EXd3MyvsDrMj3XX2EjDM3WeZ2bXARKDzUfKKiEgZOmJR\ncPfD7qTNbLuZNXT3bWbWCPimkGZfA03zjTflwNECQHt3vyI0PAN48XDvNWrUqPBwQkICCQkJR4ot\nIlLpZGRkkJGREfF6SvyYCzP7M/Cduz9lZvcDdd39/gJtqgJrgcuBLcAHQH93X21m/wR+7+6Lzexy\n4El3/0UPJD3mQkSk+IJ4zMWTQGczWwd0Co1jZiebWSqAu+cAQ4AFwCrgNXdfHVr+NuDPZrYSeCw0\nXqiuXR8kNXVJBFFFRKQoysUD8cBp0WIko0d3pUePS4OOJCIS8yr8A/EyMx9n7Nj0oGOIiFRo5aYo\nAGRlxQUdQUSkQitXRSE+PjfoCCIiFVq5KQotWoxg6FDdxiAiUpYiuaM5arp2fYihQxN1kVlEpIyV\ni95HsZ5RRCTWVPjeRyIiUvZUFEREJExFQUREwlQUREQkTEVBRETCVBRERCRMRUFERMJUFEREJExF\nQUREwlQUREQkTEVBRETCVBRERCRMRUFERMJKXBTMrJ6ZpZvZOjNLM7O6h2k30cy2m9lnJVleRESi\nJ5IjhfuBdHdvDbwVGi/MJCAxguUlJCMjI+gIMUPb4iBti4O0LSIXSVFIAiaHhicDVxXWyN3fAb4v\n6fJykD7wB2lbHKRtcZC2ReQiKQoN3H17aHg70CDKy4uISCk74s9xmlk60LCQWSPzj7i7m1mJfx4t\n0uVFRKR0lPjnOM1sDZDg7tvMrBGwyN1PO0zbZsAcdz+juMurWIiIlExJfo7ziEcKR5EMDAKeCv37\nZlksX5L/lIiIlEwkRwr1gOnAKcBGoK+77zSzk4EJ7t4j1G4qcBlwAvAN8LC7Tzrc8pH9d0REJBIl\nLgoiIlLxxMwdzWaWaGZrzGy9md13mDZjQvM/MbOzo50xWo62LcxsQGgbfGpm75rZb4LIGQ1F+VyE\n2p1nZjlm1jua+aKpiN+RBDNbYWb/MrOMKEeMmiJ8R+qb2XwzWxnaFjcGELPMHe7m4AJtirffdPfA\nX0AcsAFoBlQDVgJtC7TpDswNDZ8PLAs6d4Db4gKgTmg4sTJvi3zt3gZSgD5B5w7wc1EX+BxoEhqv\nH3TuALfFKOCJn7cD8B1QNejsZbAtLgHOBj47zPxi7zdj5UihPbDB3Te6ezYwDehVoE34Zjd3Xw7U\nNbOKeG/DUbeFu7/v7j+ERpcDTaKcMVqK8rkAGArMAL6NZrgoK8q2uA54w903A7j7jihnjJaibIut\nQO3QcG3gO3fPiWLGqPDD3xz8s2LvN2OlKDQGNuUb3xyadrQ2FXFnWJRtkd8twNwyTRSco24LM2vM\ngR3C+NCkinqRrCifi1ZAPTNbZGYfmdnAqKWLrqJsiwnAr81sC/AJMDxK2WJNsfebkXRJLU1F/SIX\n7J5aEXcARf4/mVlH4GbgorKLE6iibIvngPvd3c3M+OVnpKIoyraoBpwDXA4cA7xvZsvcfX2ZJou+\nomyLEcBKd08wsxZAupmd6e4/lnG2WFSs/WasFIWvgab5xptyoKIdqU2T0LSKpijbgtDF5QlAorsf\n6fCxPCvKtjgXmHagHlAf6GZm2e6eHJ2IUVOUbbEJ2OHuPwE/mdkS4EygohWFomyLC4HHAdw908z+\nDbQBPopKwthR7P1mrJw++ghoZWbNzKw60I8DN7fllwzcAGBmHYCdfvDZSRXJUbeFmZ0CzASud/cN\nAWSMlqNuC3dv7u6/cvdfceC6wp0VsCBA0b4js4GLzSzOzI7hwIXFVVHOGQ1F2RZrgCsAQufQ2wBf\nRDVlbCj2fjMmjhTcPcfMhgALONCz4CV3X21mt4fmv+Duc82su5ltAPYANwUYucwUZVsADwPHA+ND\nfyFnu3v7oDKXlSJui0qhiN+RNWY2H/gUyOPATaQVrigU8XPxv8AkM/uEA3/83uvu/wksdBnJd3Nw\nfTPbBDzCgdOIJd5v6uY1EREJi5XTRyIiEgNUFEREJExFQUREwlQUREQkTEVBRETCVBRERCRMRUFE\nRMJUFEREJOz/A6arfahQrjHdAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "b) The above graph is bending moment graph\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEACAYAAAByG0uxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOXZx/HvDUgQBBFQVhVNUUBFIBZoFUmAQIAqWrU2\nIItSaa0siii7RAUFBBSiUqVYA2p9VVzQsCRAAtYqFhRFIQoRLGuEIoIIIcv9/pEDhjBJJjOZOZnJ\n/bmuuTjL85z55TA5d846oqoYY4wxvqjidgBjjDGhy4qIMcYYn1kRMcYY4zMrIsYYY3xmRcQYY4zP\nrIgYY4zxmd9FRETiRCRDRLaKyJhi2sx15n8uIu1K6ysi9UQkVUS+EZEUEanrTG8uIsdE5DPn9Zy/\n+Y0xxvjOryIiIlWBZ4A4oDUQLyKtirTpDfxKVVsAQ4F5XvQdC6Sq6mXAKmf8pG2q2s55/dWf/MYY\nY/zj755IBwo26jtUNQd4DehbpM2NQBKAqq4D6opIo1L6nurj/HuTnzmNMcYEgL9FpCmws9D4Lmea\nN22alNC3oapmOcNZQMNC7S5xDmWli8h1fuY3xhjjh2p+9vf2mSniZZszlqeqKiInp+8BLlTVH0Sk\nPfCOiFyhqke8zGGMMaYc+VtEdgMXFhq/kII9ipLaNHPanOVh+m5nOEtEGqnqPhFpDHwPoKongBPO\n8Kcikgm0AD4t/IaFio4xxpgyUFVv/ug/xd/DWeuBFs5VU9WB24ElRdosAQYCiEgn4JBzqKqkvkuA\nQc7wIOAdp38D54Q8InIpBQXkW0/BVNVeqkyePNn1DBXlZevC1oWti5JfvvBrT0RVc0VkGLACqAos\nUNUtIvJnZ/7zqrpURHqLyDbgKHBnSX2dRU8DXheRIcAO4A/O9OuBR0UkB8gH/qyqh/z5GYwxxvjO\n38NZqOoyYFmRac8XGR/mbV9n+kGgu4fpbwFv+ZPXGGNM+bE71sNcdHS02xEqDFsXv7B18QtbF/4R\nX4+DVWQiouH4cxljTCCJCBrkE+vGGGMqMSsixhhjfGZFxBhjjM+siBhjjPGZFRFjjDE+syJijDGG\n7T9s96mfFRFjjKnk9h/dz6/n/9qnvmFbRPYc2eN2BGOMCQmPrHmEflf186lv2BaRSasnuR3BGGMq\nvIwDGfzfV//Hw10e9ql/2BaR97e+z8Z9G92OYYwxFdqDqQ8y9tqxNKjZwKf+YVtEJneZzOiU0T4/\n3tgYY8Ld6u2r2bx/M8M6eHxGrlfCtogMjRrK7iO7Wbp1qdtRjDGmwsnLz+OBlAeY1m0aEdUifF5O\n2BaRalWq8WTsk4xOHU1OXo7bcYwxpkJZ+PlCap5Vk1tb3+rXcsK2iAD0adGHprWbMv/T+W5HMcaY\nCuPoiaNMSpvE7B6zESnTQ3vPENZFRESY1WMWj655lB+P/+h2HGOMqRBm/nsmnS/uTMdmHf1eVqX4\nPpEh7w6hQc0GTI+d7mIqY4xx354je7hq3lVsGLqB5nWbnzbPl+8TqRRFpKSVZowxlcld797FBbUu\nYFr3aWfMsy+lKkaT2k0Y0WEE41aNczuKMca4ZuO+jSzdupRx15XftrBSFBGA0b8dzQfffcDHuz52\nO4oxxgSdqvJAygNM7jKZc2ucW27LrTRFpFb1WkzpOoVRK0bZDYjGmEoneWsye4/s5e6ou8t1uZWm\niAAMvHogx3KP8cbmN9yOYowxQZOTl8PolNHM7DGTalWqleuy/S4iIhInIhkislVExhTTZq4z/3MR\naVdaXxGpJyKpIvKNiKSISN1C88Y57TNEpEdZslaRKszqMYuxK8eSnZvty49rjDEh54UNL3DhuRfS\n61e9yn3ZfhUREakKPAPEAa2BeBFpVaRNb+BXqtoCGArM86LvWCBVVS8DVjnjiEhr4HanfRzwnIh4\n/Bl69pxIcvLaM6Z3vaQrV15wJYmfJPrzoxtjTEg4dPwQj659lJmxM4u9sTA5eS09e070afn+7ol0\nALap6g5VzQFeA/oWaXMjkASgquuAuiLSqJS+p/o4/97kDPcF/qmqOaq6A9jmLOcMKSlTGDlyhcdC\nMiN2BtP+NY0DPx/w5Wc2xpiQ8fgHj3PDZTdwdaOrPc5PTl7LyJErSEmZ4tPy/S0iTYGdhcZ3OdO8\nadOkhL4NVTXLGc4CGjrDTZx2Jb3fKZmZU0lMTD1jessGLYm/Mp5H0h8prqsxxoS87T9sZ8FnC3gs\n5rFi28ydm0Jm5lSf38PfIuLtZU7e3Lwinpbn3DVY0vsUMy8BSCAj4wPS09PPmDs5ejKvffUaGQcy\nvIhmjDGhZ9yqcYzsOJLGtRt7nJ+ens7XX/+Lk9tLX/hbRHYDFxYav5DT9xQ8tWnmtPE0fbcznOUc\n8kJEGgPfl7Cs3XiUACTQsmVnoqOjz5jboGYDxlw7hodSH/Lc3RhjQthHOz/iw50f8sBvHii2TXR0\nNJdffh1uFpH1QAsRaS4i1Sk46b2kSJslwEAAEekEHHIOVZXUdwkwyBkeBLxTaPofRaS6iFwCtAA+\nKS5cZOR4hg+PLTb88A7D+fL7L0nbnub1D2yMMRWdqjIqZRRTYqZQq3qtEtuOGNGDyMgJPr+XXxcM\nq2quiAwDVgBVgQWqukVE/uzMf15Vl4pIbxHZBhwF7iypr7PoacDrIjIE2AH8wemzWUReBzYDucBf\ntZg7B3v2nMTw4XH06XN9sfkjqkUwrfs0RqWMYv3d66lapao/q8MYYyqENza/QXZuNgOuHlBq25Pb\nyMTESaxYUfb3qhQPYCyJqnLti9cyNGoog9sODmwwY4wJsOO5x2n1bCtevPFFYi6JKVNfewCjD0SE\n2T1nM3H1RI6eOOp2HGOM8UviukTaNGxT5gLiq0pfRAA6NevEdRddx6yPZrkdxRhjfLb/6H5m/HsG\nM7rPCNp7VvrDWSftOLSDqBei2HTPJprUbhKgZMYYEzjDlg6jilRhbq+5PvW3L6Vy+FJEAMakjuHA\nzwdY0HdBAFIZY0zgZBzIoPM/OrPl3i00qNnAp2XYORE/je88nve3vs/GfRvdjmKMMWXyYOqDjL12\nrM8FxFdWRAo5t8a5TO4ymdEpo+07R4wxIWP19tVs3r+ZYR2GBf29rYgUMTRqKLuP7Gbp1qVuRzHG\nmFLl5efxQMoDTOs2jYhqEUF/fysiRVSrUo2ZsTMZnTqanLwct+MYY0yJFn6+kJpn1eTW1re68v5W\nRDzo3aI3TWs3Zf6n892OYowxxTp64iiT0iYxu8fsYr8rJNCsiHggIszqMYtH1zzKj8d/dDuOMcZ4\nNPPfM+l8cWc6NuvoWga7xLcEQ94dQoOaDZgeO70cUhljTPnZc2QPV827ig1DN9C8bvNyWabdJ+Io\nryISiP8kY4wpD3e9excX1LqAad2nldsy7T6RctakdhNGdBjBuFXj3I5ijDGnbNy3kaVblzLuOve3\nTVZESjH6t6P54LsP+HjXx25HMcYYVJUHUh5gcpfJnFvjXLfj+Pd9IpVBreq1mNJ1CqNWjOLDuz4s\n9QqI5OS1zJ2bQnZ2NSIichkxokeJ32lijKm8fNleJG9NZu+RvdwddXeQUpbMiogXBl49kDnr5vDm\n5je57Yrbim2XnLyWkSNXnPal95mZBd8YZoXEGFOYL9uLnLwcHkx9kJmxM6lWpWJsvu1wlheqSBVm\n9ZjFmJVjyM7NLrbd3Lkpp30gADIzp5KYmBroiMaYEOPL9uKFDS/QrE4zerfoHeh4XrMi4qWul3Tl\nyguuJPGTxGLbZGd7/svg+HH72l1jzOnKur04dPwQj659lJmxM127sdATKyJlMCN2BtP+NY0DPx/w\nOD8iItfj9Bo18gIZyxgTgsq6vXj8g8e54bIbuLrR1YGMVWZWRMqgZYOWxF8ZzyPpj3icP2JEDyIj\nJ5w2LTJyPMOHxwYjnjEmhJRle7H9h+0s+GwBj8U8Fqx4XrObDcvowM8HaPVsKz648wNaNmh5xvzk\n5LUkJqZy/HhVatTIY/jwWDupbozxyNvtxR/f/COtz2/Nw10eDmgeu2PdEcgiAgXPq1n73VqWxC8J\n2HsYYwzARzs/4g9v/oGMezOoVb1WQN/L7lgPkuEdhvPl91+Stj3N7SjGmDCmqoxKGcWUmCkBLyC+\n8rmIiEg9EUkVkW9EJEVE6hbTLk5EMkRkq4iM8aa/iIxz2meISI9C09OdaZ85r+B+D6QjoloE07pP\nY1TKKPLy7aS5MSYw3tj8Btm52Qy4eoDbUYrlz57IWCBVVS8DVjnjpxGRqsAzQBzQGogXkVYl9ReR\n1sDtTvs44Dn55Xo2Bfqpajvn5fkyqSC4rfVtnF3tbBZ9scitCMaYMHY89zhjVo5hVo9ZVJGKe9DI\nn2Q3AknOcBJwk4c2HYBtqrpDVXOA14C+pfTvC/xTVXNUdQewDSj8sPwKcYG0iDC752wmrp7I0RNH\n3Y5jjAkziesSadOwDTGXxLgdpUT+FJGGqprlDGcBDT20aQrsLDS+y5lWUv8mTrvCfZoUGk9yDmVN\n9CN7uejUrBPXXXQdsz6a5XYUY0wY2X90PzP+PYMZ3We4HaVUJT58RURSgUYeZp12cbOqqoh4uhyq\n6DTxMK2k/kX1V9U9InIOsFhEBqiqx+NJCQkJp4ajo6OJjo72YvFlN637NKJeiOJP7f9Ek9pNSu9g\njDGleGTNI8RfGc/lDS4P6Pukp6eTnp7u1zJ8vsRXRDKAaFXdJyKNgTRVbVmkTScgQVXjnPFxQL6q\nTi+uv4iMBVDVaU6f5cBkVV1XZNmDgGtUdbiHbAG9xLeoMaljOPDzARb0XRC09zTGhKeMAxl0/kdn\ntty7hQY1g3vtULAv8V0CDHKGBwHveGizHmghIs1FpDoFJ8yXlNJ/CfBHEakuIpcALYBPRKTqyaux\nROQs4AZgkx/5y834zuNJ3prM5/s+dzuKMSbEPZT6EGOuHRP0AuIrf4rINCBWRL4BujrjiEgTEUkG\nUNVcYBiwAtgM/J+qbimpv6puBl532i8D/ursVtQAlovI58BnFJxrme9H/nJzbo1zebjLwzyQ8gDh\nePOmMSY4Vm9fzZfff8nwDmccYKmw7I71cpKbn8tV865iZuxM+lzWJ6jvbYwJfXn5eVwz/xrGXze+\nxO8tCiS7Y91F1apUY2bsTEanjiYnL8ftOMaYELPw84XUPKsmt7a+1e0oZWJFpBz1btGbprWbMv/T\nCnGUzRgTIo6eOMqktEnM7jG7Qn1XiDesiJQjEWFWj1k8uuZRfjz+o9txjDEhYua/Z9L54s50bNax\n9MYVjJ0TCYAh7w6hfs36zIit+DcKGWPctfvwbtr8rQ0bhm6ged3mrmaxcyIVxJSuU0j6PIl1u9aV\n3tgYU2nlaz5/eu9PDPv1MNcLiK+siARA49qNea73c/R7qx+Hsw+7HccYU0HNXTeXH479wMTrXX+K\nk8/scFYADX1vKMdzj7Pw5oVuRzHGVDAb920kdlEs6/60jkvPu9TtOIAdzqpwnur5FP/Z8x9e+eIV\nt6MYYyqQoyeOEr84nqd7Pl1hCoivbE8kwD7b+xk9Xu5Rof7aMMa468/v/Zmfc39m0c0V6/uIbE+k\nAmrXuB3jrxtPv8X97CZEYwxvbXmLldtX8mzvZ92OUi6siATByE4jOe/s83hkzSNuRzHGuGjX4V3c\nk3wPr/7+VepE1HE7TrmwIhIEVaQKL/V9iQWfLWDNjjVuxzHGuCAvP4873rqDkR1HhuRNhcWxIhIk\nDc9pyIIbFzDg7QEcPHbQ7TjGmCCb/uF0AMZcO8blJOXLTqwH2X3L72Pn4Z28edubIfeMHGOMb9bt\nWseNr93I+rvXc+G5F7odp1h2Yj0ETO8+ncyDmfz907+7HcUYEwSHsw/T761+zOszr0IXEF/ZnogL\nNu/fzPX/uJ5/3fUvWjZoWXoHY0zIGvD2AGpWq8nzNzzvdpRS2Z5IiGh9fmumdp1K/OJ4snOz3Y5j\njAmQl794mfV71jO752y3owSM7Ym4RFW55fVbaF63eVh/wIyprL794Vs6/r0jqQNSaduordtxvGJ7\nIiFERJh/w3ze2PwGy7ctdzuOMaYc5eTl0G9xPyZ0nhAyBcRXVkRcVL9mfRbetJC73r2LrJ+y3I5j\njCknj6x5hPPOPo8RHUe4HSXgrIi4LOaSGO5seyeD3x1Mvua7HccY46f0Hem8+NmLvNT3JapI+G9i\nw/8nDAEJ0QkcPHaQxHWJbkcxxvjh4LGDDHh7AC/2fZGG5zR0O05Q2In1CiLzYCadFnQKqZNwxphf\nqCq3vnErF9W5iKfinnI7jk+CemJdROqJSKqIfCMiKSJSt5h2cSKSISJbRWRMaf2d6WkickREEoss\nK0pENjnLmuNr9ooosl4kT/V8ivjF8fyc87PbcYwxZTT/0/lkHsxkWvdpbkcJKn8OZ40FUlX1MmCV\nM34aEakKPAPEAa2BeBFpVUr/48BEYLSH95wHDFHVFkALEYnzI3+Fc0ebO4hqHMWoFaPcjmKMKYMt\n+7cwftV4/nnLP4moFuF2nKDyp4jcCCQ5w0nATR7adAC2qeoOVc0BXgP6ltRfVX9W1Q+B0+7CE5HG\nQG1V/cSZtLCY9wxpz/V5jtRvU3lry1tuRzHGeCE7N5v4xfE83u1xWp3fqvQOYcafItJQVU9el5oF\neDqL1BTYWWh8lzPNm/5FT2o0dfqftLvQssJGnYg6vPL7V7gn+R52Hd5VegdjjKvGrhxLZL1I7m5/\nt9tRXFGtpJkikgo08jBrQuERVVUR8XQmu+g08TCtpP4+S0hIODUcHR1NdHR0eS4+oDo168SIDiMY\n8PYAVg5YSdUqVd2OZIzxYNnWZSzespiNf9kYkk/lTk9PJz093a9l+Hx1lohkANGqus851JSmqi2L\ntOkEJKhqnDM+DshX1eml9ReRQcA1qjrcGW8MrFbVVs54PNBFVf/iIVvIXZ1VVF5+Ht0WdqNHZA/G\ndx7vdhxjTBFZP2XR7vl2vHrLq0Q3j3Y7TrkI9mNPlgCDnOFBwDse2qyn4AR4cxGpDtzu9POm/2k/\niKruBQ6LSEcpKPkDinnPsFC1SlUW3byIOevmsG7XujL3T05eS8+eE4mOTqBnz4kkJ68NQEpjQpc/\nvyP5ms/gdwdzV7u7wqaA+ExVfXoB9YCVwDdAClDXmd4ESC7UrhfwNbANGFdaf2feDuB/wBEKzqm0\ndKZHAZucZc0tIZuGize/elMvnXOp/nj8R6/7vP/+Go2MHK+gp16RkeP1/ffXBDCpMaHD39+Rpz56\nSjvO76gnck8EOGlwOdvOMtUCu9kwBAx9byjHco+x6OZFXrXv2XMiKSlTPEyfxPLlj5V3PGNCjj+/\nIxv3bSR2USzr/rSOS8+7NFARXWFP8Q1TT/V8ivV71vPyFy971T472/P1EseP2wl6Y8D335Gfc34m\nfnE8T/d8OuwKiK+siISAWtVr8ervX+X+Fffz7Q/flto+IiLX4/QaNfLKO5oxIcnX35H7l9/PNU2u\noX+b/oGIFZKsiISIdo3bMf668fRb3I+cvJwS244Y0YPIyNOuwiYycjzDh8cGMqIxIcOX35G3trzF\nyu0rebb3s4GOF1LsnEgIydd8+rzah6jGUUzpeubx3MKSk9eSmJjK8eNVqVEjj+HDY+nT5/ogJTWm\n4ivL78iuw7uIeiGKJX9cQsdmHYOcNHh8OSdiRSTEZP2URdvn2/LaLa/RpXkXt+MYE/Yq0z1bdmK9\nEmh4TkNevPFFBrw9gIPHDrodx5iwN/3D6YgIY64dU3rjSsj2RELU/cvv57+H/8ubt70Zko9bMCYU\nrNu1jhtfu5ENQzfQrE4zt+MEnO2JVCLTuk8j82Amf//0725HMSYsHc4+TL+3+jGvz7xKUUB8ZXsi\nIWzL/i1c/9L1rB28tlI+gtqYQBrw9gBqVqvJ8zc873aUoLE9kUqm1fmtmNp1KvGL48nOzS69gzHG\nKy9/8TLr96wP2a+5DSbbEwlxqsotr9/CxedebB94Y8rBtz98S8e/dyR1QCptG7V1O05Q2Z5IJSQi\nzL9hPm9ueZNlW5e5HceYkJaTl0O/xf2Y0HlCpSsgvrIiEgbq16zPwpsWMmTJELJ+yiq9gzHGo0fW\nPMJ5Z5/HiI4j3I4SMqyIhImYS2K4s+2dDH53MPma73YcY0JO+o50XvzsRV7q+xJVxDaN3rI1FUYS\nohM4eOwgc9fNdTuKMSHl4LGDDHh7AC/2fZGG5zR0O05IsRPrYSbzYCadFnSqlCcFjfGFqnLrG7dy\nUZ2LKv3FKXZi3RBZL5Knej5F/OJ4jp446nYcYyq8+Z/OJ/NgJtO6T3M7SkiyPZEwdcdbd1DrrFqV\n6kYpY8pqy/4tdP5HZz648wO7YRfbEzGFPNfnOVZuX2mPRTGmGAd+PsBtb9zG490etwLiB8/fEWlC\nXp2IOizrv4xuC7sB8Kf2f3I5kTEVx/6j++m2sBt9L+/L3e3vdjtOSLMiEsYuq38ZqweupuvCruRr\nPkOjhrodyRjXfX/0e7ot7MZNl9/EozGP2lOw/WRFJMy1qN+CtEFpdE3qiqry52v+7HYkY1yT9VMW\nXRd25dZWt5IQnWAFpBxYEakEflXvVwWFxNkjuefX97gdyZig2/fTPromdeX2K25ncvRkt+OEDZ9P\nrItIPRFJFZFvRCRFROoW0y5ORDJEZKuIjCmtvzM9TUSOiEhikWWlO8v6zHk18DV/ZRNZL5K0QWlM\n/3A6z37yrNtxjAmqvUf2EpMUwx+v/KMVkHLmz9VZY4FUVb0MWOWMn0ZEqgLPAHFAayBeRFqV0v84\nMBEY7eE9Feinqu2c1wE/8lc6l553KWmD0njy30+SuC6x9A7GhIGTBaT/Vf15uMvDbscJO/4UkRuB\nJGc4CbjJQ5sOwDZV3aGqOcBrQN+S+qvqz6r6IVDcF2TYQUw/XHLeJaQPTmf2x7OZ8/Ect+MYE1B7\njuwhOimagVcPZOL1E92OE5b8KSINVfXkI2OzAE8PnGkK7Cw0vsuZ5k3/4u4WTHIOZdknwkfN6zYn\nfVA6c9bN4amPKvdjHkz42n14N9EvRXNn2zsZ33m823HCVokn1kUkFWjkYdaEwiOqqiLiaaNfdJp4\nmFZS/6L6q+oeETkHWCwiA1R1kaeGCQkJp4ajo6OJjo72YvGVx8V1LyZ9cDoxSTEoyqjfjHI7kjHl\nZtfhXcQkxXB3+7t56NqH3I5TYaWnp5Oenu7XMnx+7ImIZADRqrpPRBoDaaraskibTkCCqsY54+OA\nfFWdXlp/ERkEXKOqw4t5/2Ln22NPvLfzx53EJMXwl2v+wujfejoNZUxosc+074L92JMlwCBneBDw\njoc264EWItJcRKoDtzv9vOl/2g8iIlVPXo0lImcBNwCb/MhvgAvPvZD0wek8v+F5Znw4w+04xvjl\nvz/+l+ikaP76679aAQkSf/ZE6gGvAxcBO4A/qOohEWkCzFfVPk67XsDTQFVggao+UVJ/Z94OoDZQ\nHTgExAL/BdYCZznLSgVGedrlsD2Rstt9eDcxSTHc1e4uxl53xoV2xlR43x36jpikGEZ0HMF9ne5z\nO05I8mVPxJ7ia07ZfXg3XRd2ZdDVg+xEpAkpOw7tICYphvs73W9fbesHX4qI3bFuTmlap+mpR6Tk\na75dEmlCwvYfthOTFMPo345mWIdhbsepdOxR8OY0TWo3IW1QGq9seoVH1zzqdhxjSvTtD98SnRTN\ng7990AqIS6yImDM0rt2YtEFpvPblaySkJ7gdxxiPMg9mEpMUw9hrx3Jvh3vdjlNpWRExHjU6pxFp\ng9J4Y/MbTE6bjJ1jMhXJtoPbiEmKYfx14+2Boi6zImKK1fCchqQNSmPxlsU8nPawFRJTIWz931Zi\nkmKYdP0k+2qDCsCKiCnRBbUuIG1QGu9+/S4TV0+0QmJc9fWBr4lJiiGhSwJ3R9k3ElYEVkRMqc6v\ndT6rBq7i/a3vM37VeCskxhUZBzLotrAbj8Y8ypD2Q9yOYxxWRIxXThaS5ZnLGbtyrBUSE1Rb9m+h\n28JuTOk6hbva3eV2HFOIFRHjtQY1G7BywEpSv03lodSHrJCYoNi8fzPdF3XniW5PMLjtYLfjmCKs\niJgyqV+zPisHrmT1jtWMThlthcQE1Ffff0X3hd2Z3n06A68e6HYc44EVEVNm9c6ux8oBK1nz3RpG\nrRhlhcQExJfff0nsoliejH2SO9rc4XYcUwwrIsYn5519HisHruTDnR9y3/L7rJCYcrUpaxOxi2KZ\n1WMW/dv0dzuOKYEVEeOzujXqkjIghY93f8yIZSOskJhy8fm+z+nxcg+e7vk08VfFux3HlMKKiPFL\n3Rp1Sbkjhf/s+Q/Dlg6zQmL8snHfRnq+3JM5cXO4/crb3Y5jvGCPgjfl4nD2YeJejqNto7Y80/sZ\nqkgVkpPXMnduCtnZ1YiIyGXEiB706XO921GNy4r7XHy29zN6vdKLZ3o/w62tb3U7ZqVkj4I3rqkT\nUYfldyyn1yu9uOf9e/idxHP/falkZk491SYzcwKAFZJKLDl5LSNHrjjjc7Ht6Dc8/t8JPNf7OW5p\nfYuLCU1Z2Z6IKVdHso/Q65Ve7Fh/lN1/2wB6+hHTnj0nsXz5Yy6lM27r2XMiKSlTTp/YeAPV7+zC\na3cs4uZWN7sTzADB/451Y85QO6I2y/ov46eIg3DD3SD5p80/fryqS8lMRZCdXeTgR5P/QP/etPj6\nd1ZAQpQVEVPuakfUJirjdqi3DW4cApJ3al6NGnkl9DThLiIi95eRpuugfx94bz7NfmrhXijjFysi\nJiBGDfsdl3zUAerugFv6Qc0DREaOZ/jwWLejGReNGNGDSyPHQ8u3od8N8O6LROZ+bJ+LEGYn1k1A\nnDx5/tSzVchoms7++y+mZ+RfiOt1rcvJjJtadGpE3XtXUWvffH6V8TsaXbKO4cPj7GKLEGYn1k1Q\nfJH1BcOWDuNozlGe6fUMv7nwN25HMkH004mfmLp2KvM/nc+468YxouMIzqp6ltuxTBG+nFi3ImKC\nRlV5ddOrPLTyIXpE9mBat2k0PKeh27FMAKkqb2x+gwdSHiC6eTQzus+gce3GbscyxQjq1VkiUk9E\nUkXkGxF0SV3OAAAPj0lEQVRJEZG6xbSLE5EMEdkqImNK6y8isSKyXkS+cP6NKdQnSkQ2Ocua42t2\n4w4RoX+b/my5dwv1z67PlfOuZO66ueTm55be2YScr77/im4LuzH1g6m8+vtXWXTzIisgYcifE+tj\ngVRVvQxY5YyfRkSqAs8AcUBrIF5EWpXSfz/wO1VtAwwCFhVa5DxgiKq2AFqISJwf+Y1L6kTUYWaP\nmawZvIYlXy+h/fPtWfvdWrdjmXJyOPswD6x4gOikaH7f6vdsGLqBzhd3djuWCRB/isiNQJIznATc\n5KFNB2Cbqu5Q1RzgNaBvSf1VdaOq7nOmbwbOFpGzRKQxUFtVP3HmLSzmPU2IaH1+a1IHpPJwl4e5\n46076P9Wf/Yc2eN2LOMjVWXR54to+UxLDh0/xFd//YphHYZRrYpdvxPO/CkiDVU1yxnOAjwd3G4K\n7Cw0vsuZ5m3/W4ANTgFq6vQ/aXehZZkQJSLc2vpWtty7hebnNqfNvDY8+eGTnMg74XY0UwYb922k\n8z86M2fdHN6+/W0W9F3ABbUucDuWCYIS/0QQkVSgkYdZEwqPqKqKiKcz2UWniYdpHvuLyBXANMCn\nC8gTEhJODUdHRxMdHe3LYkyQ1Kpei6ndpjK47WBGLh/JixtfJLFXIt0v7e52NFOCH479wKS0Sbyx\n+Q0ei3mMIe2GULWKPZUgVKSnp5Oenu7XMny+OktEMoBoVd3nHGpKU9WWRdp0AhJUNc4ZHwfkq+r0\nkvqLSDMKzpMMVtWPnGmNgdWq2soZjwe6qOpfPGSzq7NCmKry3jfvcd/y+2jfuD2ze87monMvcjuW\nKSRf8/nHZ/9gwuoJ3NzyZqZ0nUL9mvXdjmX8FOxnZy2h4MQ3zr/veGiznoIT4M1FpDpwu9Ov2P7O\nVVrJwJiTBQRAVfcCh0Wko4gIMKCY9zQhTkS48fIb+eqvX3HVBVfR7vl2TF07lezcbLejGWD9nvX8\nZsFv+Ptnf2dp/6XM+908KyCVmD97IvWA14GLgB3AH1T1kIg0Aearah+nXS/gaaAqsEBVnyil/0QK\nrtTaWujtYlX1gIhEAS8BZwNLVXVEMdlsTySMbP9hO/evuJ+v9n/FnLg59G7R2+1IldKBnw8wftV4\n3vvmPZ7o9gQDrx5IFbEnJ4UTu9nQYUUkPC3buoyRy0fSskFLno57mkvPu9TtSJVCXn4eL2x4gcnp\nk+l3VT8SohOoW8PjbWEmxFkRcVgRCV/ZudnM/mg2sz6axb2/vpex143l7LPOdjtW2Ppo50fcu/Re\nakfUJrFXIm0atnE7kgkgKyIOKyLhb+ePOxmdOppPdn/CUz2fou/lfSk4VWbKQ9ZPWYxZOYbUb1N5\nMvZJ4q+Mt/VbCVgRcVgRqTxWfbuK4cuGc3Hdi5kTN4fL6l/mdqSQlpufy7OfPMuUD6ZwZ9s7mXT9\nJGpH1HY7lgkSKyIOKyKVS05eDnPXzeWJfz3B3e3vZsL1Ezin+jluxwo5a3asYdiyYTSs1ZDEXom0\nOr9V6Z1MWLEi4rAiUjntPbKXh1Y+RPqOdGb1mMVtrW+zQzBe2H14Nw+mPsi//vsvZveczS2tbrH1\nVklZEXFYEancPvjuA4YtG0b9s+uT2CuRKy64wu1IFdKJvBPM+XgO0z+czl+u+QvjrhtHreq13I5l\nXGRFxGFFxOTm5/K39X/jkTWPMLDNQCZHT6ZORB23Y1UYqZmpDF82nEvPu5Q5cXNoUd++49xYETnF\niog56fuj3zNu5TiWbVvGTS1vIqpxFFFNorji/Csq1Tfr7ftpH5/u/ZQNezaw9r9ryTyYyZy4Ofzu\nst/ZoStzihURhxURU9QXWV+wevtqNuzdwIY9G/jux++44vwraN+4/anCcuUFV1K9anW3o/ptz5E9\nbNizoaBo7N3Ahr0bOJZzjKgmUbRv1J6oJlHccNkNdn+NOYMVEYcVEVOan078xMZ9G3/Z0O7ZwLc/\nfEvr81ufVliuuuAqIqpFuB3XI1Vl95HdZxSME3knCvI7P0NU4yia121uexymVFZEHFZEjC+OnjjK\n51mfn1ZYth3cxuUNLj9to9ymYRtqVKsR1Gyqys7DO88oGPmaf0bBuOjci6xgGJ9YEXFYETHl5VjO\nsV8Ky56CDfc3//uGFvVbnLbxvrrh1eV2eEhV+e7H706938miUUWqnFEwmtVpZgXDlBsrIg4rIiaQ\njuce54usL07bK8g4kEFkvcgzCktpl8yqKtsPbT+jYFSvWv2MgtGkdhMrGCagrIg4rIiYYMvOzWbT\n95tOKwab92/mkvMuOVUM2jduzwW1LmDjvo2n2ny691POPuvsMwpG49qN3f6RTCVkRcRhRcRUBCfy\nTvDl91+etsfy/dHvaduo7amC0b5xexqd4+kbqI0JPisiDisixhhTdsH+elxjjDGVnBURY4wxPqvm\ndgBjAi05eS1z56aQnV2NiIhcRozoQZ8+17sdyxW2Lkx5syJiwlpy8lpGjlxBZubUU9MyMycAVLqN\np60LEwh2OMuEtblzU07baAJkZk4lMTHVpUTusXVhAsGKiAlr2dmed7aPH68a5CTus3VhAsGKiAlr\nERG5HqfXqJEX5CTus3VhAsHnIiIi9UQkVUS+EZEUEalbTLs4EckQka0iMqa0/iISKyLrReQL59+Y\nQn3SnWV95rwa+JrfVA4jRvQgMnLCadMiI8czfHisS4ncY+vCBILPNxuKyAzggKrOcIrDeao6tkib\nqsDXQHdgN/AfIF5VtxTXX0TaAvtUdZ+IXAGsUNVmzvLSgAdU9dNSstnNhuaU5OS1JCamcvx4VWrU\nyGP48NhKeyLZ1oUpSVDvWBeRDKCLqmaJSCMgXVVbFmnzG2CyqsY542MBVHWal/0FOAA0UtUcp4iM\nVtUNpWSzImKMMWUU7DvWG6pqljOcBTT00KYpsLPQ+C5nmrf9bwE2qGpOoWlJzqGsib5HN8YYUx5K\nvE9ERFIBT0+HO+3AqqqqiHj607/oNPEwzWN/51DWNKDwAdv+qrpHRM4BFovIAFVd5Cl7QkLCqeHo\n6Giio6M9NTPGmEorPT2d9PR0v5bh7+GsaOfcRWMgzcPhqE5AQqHDWeOAfFWdXlJ/EWkGrAIGq+pH\nxbz/IOAaVR3uYZ4dzjLGmDIK9uGsJcAgZ3gQ8I6HNuuBFiLSXESqA7c7/Yrt71yllQyMKVxARKTq\nyauxROQs4AZgkx/5jTHG+MmfPZF6wOvARcAO4A+qekhEmgDzVbWP064X8DRQFVigqk+U0n8iMBbY\nWujtYoFjwBrgLGdZqcAoT7sctidijDFlZ98n4rAiYioae/ChCQW+FBF7AKMxAWYPPjThzB57YkyA\n2YMPTTizImJMgNmDD004syJiTIDZgw9NOLMiYkyA2YMPTTizq7OMCQJ78KEJBXaJr8OKiDHGlF2w\n71g3xhhTyVkRMcYY4zMrIsYYY3xmRcQYY4zPrIgYY4zxmRURY4wxPrMiYowxxmdWRIwxxvjMiogx\nxhifWRExxhjjMysixhhjfGZFxBhjjM+siBhjjPGZFRFjjDE+syJijDHGZz4XERGpJyKpIvKNiKSI\nSN1i2sWJSIaIbBWRMaX1F5EOIvKZ8/pCRG4v1CdKRDY5y5rja3ZjjDHlw589kbFAqqpeBqxyxk8j\nIlWBZ4A4oDUQLyKtSum/CYhS1XZAD+BZZzkA84AhqtoCaCEicX7krxTS09PdjlBh2Lr4ha2LX9i6\n8I8/ReRGIMkZTgJu8tCmA7BNVXeoag7wGtC3pP6qekxV853pZwM/qmqeiDQGaqvqJ868hcW8pynE\nfkF+YeviF7YufmHrwj/+FJGGqprlDGcBDT20aQrsLDS+y5lWYn/nkNZXwFfAqELL2lVoWbsLLcsY\nY4wLqpU0U0RSgUYeZk0oPKKqKiKevtS86DTxMO2M/s7exhUi0hJYLiLpJeU0xhjjElX16QVkAI2c\n4cZAhoc2nYDlhcbHAWO87e/MWwVEUVDMthSaHg/8rZg+ai972cte9ir7q6y1oMQ9kVIsAQYB051/\n3/HQZj0FJ8CbA3uA2ynY+Bfb32m7S1VzReRioAWwVVUPi8hhEekIfAIMAOZ6Cqaq4sfPZYwxxkvi\n/OVe9o4i9YDXgYuAHcAfVPWQiDQB5qtqH6ddL+BpoCqwQFWfKKX/HRRcqZXjvB5W1eVOnyjgJQpO\nuC9V1RE+hTfGGFMufC4ixhhjTEjfsV7cjYxF2sx15n8uIu2CnTFYSlsXItLfWQdfiMiHItLGjZyB\n5s1nwmn3axHJFZHfBzNfMHn5+xHt3Nj7ZThfwOLF70cDEVkuIhuddTHYhZhBISIvikiWiGwqoY33\n201fT6y7/aLg8Ng2oDlwFrARaFWkTW8KDnsBdAQ+dju3i+viN8C5znBcOK4Lb9ZDoXargfeBW9zO\n7eJnoi4Fl9E3c8YbuJ3bxXWRADxxcj0A/wOquZ09QOujM9AO2FTM/DJtN0N5T6SkGxlPOnVDo6qu\nA+qKiKf7WUJdqetCVT9S1R+d0XVAsyBnDAZvPhMAw4E3gf3BDBdk3qyLfsBiVd0FoKoHgpwxWLxZ\nF3uBOs5wHeB/qpobxIxBo6ofAD+U0KRM281QLiIl3chYUptw3Hh6sy4KGwIsDWgid5S6HkSkKQUb\nkHnOpHA9KejNZ6IFUE9E0kRkvYgMCFq64PJmXcyn4N60PcDnwMggZauIyrTd9OcSX7d5+8tf9HLf\ncNxoeP0ziUgMcBdwbeDiuMab9fA0MFZVVUSEMz8f4cKbdXEW0B7oBtQEPhKRj1V1a0CTBZ8362I8\nsFFVo0UkEkgVkatV9UiAs1VUXm83Q7mI7AYuLDR+Iac/FsVTm2bOtHDjzbrAOZk+H4hT1ZJ2Z0OV\nN+shCnitoH7QAOglIjmquiQ4EYPGm3WxEzigqseAYyKyFrgaCLci4s26+C0wFUBVM0VkO3A5Bfe6\nVTZl2m6G8uGsUzcyikh1Cm5kLLohWAIMBBCRTsAh/eV5XeGk1HUhIhcBbwF3qOo2FzIGQ6nrQVUv\nVdVLVPUSCs6L3BOGBQS8+/14F7hORKqKSE0KTqJuDnLOYPBmXWQA3QGc4/+XA98GNWXFUabtZsju\niWjBHe3DgBX8ciPjFhH5szP/eVVdKiK9RWQbcBS408XIAePNugAeBs4D5jl/heeoage3MgeCl+uh\nUvDy9yNDRJYDXwD5FNwkHHZFxMvPxePAP0Tkcwr+uH5IVQ+6FjqAROSfQBeggYjsBCZTcGjTp+2m\n3WxojDHGZ6F8OMsYY4zLrIgYY4zxmRURY4wxPrMiYowxxmdWRIwxxvjMiogxxhifWRExxhjjMysi\nxhhjfPb/MPjEgLOKoGcAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.5 page number 517" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#because of symmetry the problem can be solved by considering first half\n", + "#Given\n", + "import numpy\n", + "l_ab = 1.0 #L in - The length of the beam\n", + "F_D = 1.0 #W lb/in - The force distribution \n", + "F = F_D*l_ab #WL - The force applied\n", + "#Beause of symmetry the moment caliculations can be neglected\n", + "#EI - The flxure rigidity is constant and 1/EI =1 # k\n", + "\n", + "#part - A\n", + "#section 1--1\n", + "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n", + "v = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " v[i] = R_A - F_D*l_1[i] \n", + " M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2\n", + "# (EI)y'' = M_1[i] we will integrate M_1[i] twice where variable is l_1[i]\n", + "#(EI)y'\n", + "M_1_intg1 = R_A*(l_1[i]**2)/2 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**3)*l_1[i]/48 #integration of x**n = x**n+1/n+1\n", + "#(EI)y\n", + "M_1_intg2[i] = R_A*(l_1[i]**3)/6 - F_D*(l_1[i]**4)/24.0 - F_D*(l_ab**3)*l_1[i]/48.0 \n", + "#Equations \n", + "#R_A = #wl Unknown- The reactive force at A\n", + "#R_B = #wl - The reactive force at B\n", + "\n", + "# M_1_intg2[10] = 0, the displacement at the end of rod is 0 since its rigid \n", + "R_A = (F_D*(l_1[10]**4)/24.0 + F_D*(l_ab**3)*l_1[10]/48.0)/((l_1[10]**3)/6.0)\n", + "R_C = R_A #WL - symmetry\n", + "R_B = 1-R_A+R_B # WL - F_Y = 0, the equilibrium in Y direction\n", + "print \"The reaction at A is\",R_A ,\"WL\"\n", + "print \"The reaction at B is\",R_B ,\"WL\"\n", + "print \"The reaction at C is\",R_C ,\"WL\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The reaction at A is 0.375 WL\n", + "The reaction at B is 2.375 Wl\n", + "The reaction at C is 0.375 Wl\n" + ] + } + ], + "prompt_number": 82 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.7 page number 521 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "l_ac = 5 #m - The length of the beam \n", + "l_ab = 4 #m - The length of ac on beam \n", + "l_bc = 1 #m - The length of bc on beam \n", + "F = 20 #N - force applied on beam at 'b'\n", + "I_ab = 4 #I The moment of inertia of part AB \n", + "I_bc = 1 #I - The momemt of inertia of part BC\n", + "R_A = F*(l_bc/l_ac) #N- The reaction at joint A\n", + "R_B = F*(l_ab/l_ac) #N- The reaction at joint B\n", + "E = 1 #E youngs modulus\n", + "\n", + "#0" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "b) The shape from x belongs to 0" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "b) The shape from x belongs to 4" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4tJREFUeJzt3Xl0VdX99/H3lzDEEUTEAVAEFRkcaAXUthgFJIoKYhVR\nRARHauRp7a8qTllOLW39PTXRUhQUFBUHHMAgCSIh1gdRJrEICFEskxZQhgqEDN/njwQIIYHk3uSe\nO3xea2V5z7373vP1rNxPNmefs7e5OyIikjjqBV2AiIhEloJfRCTBKPhFRBKMgl9EJMEo+EVEEoyC\nX0QkwYQd/GaWambLzGyFmd1TyevNzGy6mS0ys3+Z2ZBw9ykiIqGzcK7jN7MkYDnQE1gLfAYMdPel\n5dqkA43c/T4za1bW/lh3LwqncBERCU24Pf6uwEp3X+XuhcAkoG+FNuuBI8seHwlsUuiLiASnfpjv\nbwGsLre9BuhWoc1zwIdmtg44ArgmzH2KiEgYwu3xV+c80UhgkbufAJwNPGNmR4S5XxERCVG4Pf61\nQKty260o7fWXdz7wOIC755vZN0A7YF75RmamSYNERELg7laT9uH2+OcBp5pZazNrCAwAplRos4zS\nwV/M7FhKQ//ryj7M3fXjzsMPPxx4DdHyo2OhY6FjceCfUITV43f3IjO7E8gGkoBx7r7UzG4re30M\n8ATwgpl9Tukfmj+4+w/h7FdEREIX7qke3P194P0Kz40p93gjcHm4+xERkdqhO3ejUEpKStAlRA0d\ni710LPbSsQhPWDdw1SYz82ipRUQkVpgZHuHBXRERiTEKfhGRBKPgFxFJMAp+EZEEo+AXEUkwCn4R\nkQSj4BcRSTAKfhGRBKPgFxFJMAp+EZEEo+AXEUkwCn4RkQSj4BcRSTAKfhGRBKPgFxFJMAp+EZEY\nlJWVR+/eD4T0Xi3EIiISY7Ky8hgxIpv8/McBLcQiIhL3MjJySkP/8PUhvV/BLyISYwoK6kOLuXDH\nWSG9X8EvIhJjdh21FgZeAe+8ENL7FfwiIjFk+cblLO/yNscuOB9W9AnpM+rXck0iIlJHvt38Lb1e\n6sVfLvkzx551CpkNHiQ7u+afo6t6RERiwPpt6+k+vjtpXdO4q9tde54301U9IiJxZ9P2TfR6qRdD\nzhqyT+iHSj1+EZEotrVgKz1e7MFFrS/iTz3/hNm+nftQevwKfhGRKLW9cDupE1Pp1LwTz1z6zH6h\nDwGd6jGzVDNbZmYrzOyeKtqkmNlCM/uXmeWGu08RkXhXUFRA/9f607pJa56+9OlKQz9UYfX4zSwJ\nWA70BNYCnwED3X1puTZNgI+B3u6+xsyaufvGSj5LPX4REaCopIgBbw7A3Xn96tepX6/qCzCD6PF3\nBVa6+yp3LwQmAX0rtLkOmOzuawAqC30RESlV4iUMfXcoP+36iVevevWAoR+qcIO/BbC63PaasufK\nOxVoamazzGyemd0Q5j5FROKSu5M2LY1Vm1fx1oC3aFS/UZ3sJ9w/JdU5N9MA+BnQAzgUmGNmn7j7\nijD3LSISN9yd+2bex9y1c5k5eCaHNji0zvYVbvCvBVqV225Faa+/vNXARnffAewwszzgLGC/4E9P\nT9/zOCUlhZSUlDDLExGJDX/85x9576v3mD1kNo2TG1fZLjc3l9zc3LD2Fe7gbn1KB3d7AOuAT9l/\ncPd04GmgN9AImAsMcPcvK3yWBndFJCFlzM0gY24GH930EccfcXyN3hvK4G5YPX53LzKzO4FsIAkY\n5+5Lzey2stfHuPsyM5sOLAZKgOcqhr6ISKJ6YeELPDnnSfKG5NU49EOlG7hERALyxpI3GDF9BLlD\ncjnt6NNC+oyI9/hFRCQ001ZM48737yRnUE7IoR8qBb+ISITlrsplyDtDmDpwKmcdF9oqWuHQ7Jwi\nIhE0d81crnnjGl779Wt0a9ktkBoU/CIiEbL4+8VcMekKXuj7AheefGFgdSj4RUQi4KtNX5E6MZXM\nSzLpc1poSybWFgW/iEgd271k4mMXPcY1Ha8JuhwFv4hIXVq/bT09X+rJ3efdzdDOQ4MuB1Dwi4jU\nmdpeMrG26AYuEZE6cLAlE2uLll4UEYkC1VkysbYo+EVEAlZQVEDfSX1pflhzxvcbTz2r2zPqCn4R\nkQDVZMnE2qK5ekREAlLiJQybMoyfdv3Eu9e+G5HQD1X0ViYiEiN2L5n4zY/fMH3Q9DpbMrG2KPhF\nRMI0cubIiCyZWFsU/CIiYXjioyeY+tXUgy6ZGE0U/CIiNZCVlUdGRg4FBfX5/qQ5bGm/hPm/+Yyj\nDz066NKqTXfuiohUU1ZWHiNGZJOT8xizt5zEsqOX0uDVvizIWxF0aTWi4BcRqaaMjBzy8x+HM16B\nHvfDizP49+JnyMycEXRpNaLgFxGppoKC+vDzZ6HXH+ClHNjUDoCdO5MCrqxmdI5fRKSa1p/8T2ic\nD+Nz4YdT9jyfnFwcXFEhUI9fROQg3J2HZj3E9tNXcNKHl+0T+m3bjiQtrVeA1dWcpmwQETmAEi/h\nd9m/Y/a3s8kelM1nucvIzJzBzp1JJCcXk5bWiz59ugdWn+bqERGpRcUlxdw69VaWblzKtOun0SS5\nSdAl7Udz9YiI1JJdxbsY9NYgftz5Izk35HB4w8ODLqnWKPhFRCrYUbiDq16/ioZJDZk6cCrJ9ZOD\nLqlWaXBXRKScrQVbueTlS2h6SFPeuPqNuAt9UPCLiOyxafsmerzYg/bN2vPilS/SIKlB0CXVCQW/\niAiwftt6Lhh/ARe1voi/9/l7na+cFaSw/8/MLNXMlpnZCjO75wDtuphZkZn1D3efIiK1adXmVfzq\nhV9x3RnX1enC6NEirOA3syTgaSAV6AAMNLP2VbQbBUwH4vuIikhMWb5xOd1f6M6IbiMY+auRcR/6\nEH6Pvyuw0t1XuXshMAnoW0m7NOBNYEOY+xMRqTWLvltEyoQUHrnwEdK6pQVdTsSEG/wtgNXltteU\nPbeHmbWg9I/B6LKndJeWiARuzuo59J7Ym8xLMhly9pCgy4mocK/jr06I/w24193dSv8NVeW/o9LT\n0/c8TklJISUlJczyRET2N/PrmVw7+Vpe7Pcil5x6SdDl1Ehubi65ublhfUZYUzaY2blAurunlm3f\nB5S4+6hybb5mb9g3A7YDt7j7lAqfpSkbRKTOTVk+hZun3Myb17xJ95OCm2OntkR8rh4zqw8sB3oA\n64BPgYHuvrSK9i8AU939rUpeU/CLSJ165YtX+F3273jvuvc454Rzgi6nVkR8rh53LzKzO4FsIAkY\n5+5Lzey2stfHhPP5IiK15dn5z/LI7Ef4YPAHdGreKehyAqXZOUUk7v3l478wet5oZtwwg7ZN2wZd\nTq3S7JwiIuXsXkDlzaVvkndTHi2PbBl0SVFBwS8icanES/jt9N+S9+88Zg+ZTfPDmgddUtRQ8ItI\n3CkuKeaWqbewfNNyZt04KyoXUAmSgl9E4so+C6gMyuGwhocFXVLUUfCLSNzYXridX7/+67hdQKW2\nxO+8oyKSUBJhAZXaouAXkZi3ewGVDs06xPUCKrVFwS8iMS2RFlCpLTpCIhKzEm0BldqiwV0RiRlZ\nWXlkZORQUFCfoibf8VW3t3nwogcSai792qDgF5GYkJWVx4gR2eTnPw7HLYTrL+WYWV1pc+ZZQZcW\nc3SqR0RiQkZGTmnot5wDN/SG9zPZMGMqmZkzgi4t5qjHLyIxoaCgPnR4A/oMh7dfhJWlC6js3JkU\ncGWxR8EvIlHP3VnTdhb87Hl4KQe+67znteTk4gAri0061SMiUW1H4Q4GTh5I/fYbOWnGlfuEftu2\nI0lL6xVgdbFJPX4RiVrrtq2j76S+nHb0aSwcMY8P239GZuaD7NyZRHJyMWlpqfTpE/vLJ0aaFmIR\nkag0f918+r3WjzvOuYP7fnmfrtGvghZiEZG48MaSNxg+bThjLhtD//b9gy4n7ij4RSRquDuP5j3K\n2AVjyRmUQ+fjOx/8TVJjCn4RiQo7Cndw07s3sWrzKubePJfjjzg+6JLilq7qEZHArdu2ju7ju5NU\nL4lZN85S6NcxBb+IBGr+uvl0G9uNK0+/kolXTuSQBocEXVLc06keEQmMBnGDoeAXkYjTIG6wFPwi\nElEaxA2ezvGLSMTsHsStZ/U0iBsgBb+IRMTuQdx+7frxcv+XNYgbIJ3qEZE6p0Hc6BJ2j9/MUs1s\nmZmtMLN7Knn9ejP73MwWm9nHZnZmuPsUkdjg7jwy+xHuzrmbnEE5Cv0oEVaP38ySgKeBnsBa4DMz\nm+LuS8s1+xro7u5bzCwVeBY4N5z9ikj00yBu9Aq3x98VWOnuq9y9EJgE9C3fwN3nuPuWss25QMsw\n9ykiUU6DuNEt3OBvAawut72m7LmqDAOmhblPEYliGsSNfuEO7lZ7An0zuxAYCvyiqjbp6el7Hqek\npJCSkhJGaSISabsHcf/R5x9c1eGqoMuJS7m5ueTm5ob1GWEtxGJm5wLp7p5atn0fUOLuoyq0OxN4\nC0h195VVfJYWYhGJUeXvxH332nd1J24EBbEQyzzgVDNrDawDBgADKxR1IqWhP6iq0BeR2KVB3NgT\n1jl+dy8C7gSygS+B19x9qZndZma3lTV7CDgKGG1mC83s07AqFpGooUHc2KQ1d0UkJLvXxL3957cz\n8lcjtSZuQLTmrojUiaysPDIycigoqE+jRkX8bFADxn73tAZxY5SCX0QOKCsrjxEjssnPfxxwuOBR\nPvziSZ7s8qRCP0ZpkjYROaCMjJzS0G+wHa66Dk6dRtHoZUwb923QpUmIFPwickAFBfWh+RdwSxco\nqQ/jZ8F/j2fnzqSgS5MQ6VSPiFTJ3fn+pDnQ9RnI+St8PhgoHUdMTi4OtjgJmXr8IlKpDT9t4IpJ\nV1DU6Vtazfg1fH4ju0O/bduRpKX1CrZACZl6/CKynw++/oAh7wzhujOuY/I1k5nR4RMyMx9k584k\nkpOLSUtLpU+f7kGXKSHSdfwisseu4l08+OGDTPxiIuP7jqdXW/Xqo52u4xeRkK38YSUDJw/k2MOO\nZdFtizjmsGOCLknqiM7xiyQ4d+fFz1/kvHHnMfjMwUwdOFWhH+fU4xdJYFsLtnJH1h0sXL+QmYNn\ncuaxWhk1EajHL5KgPlnzCZ3HdOaIhkcw79Z5Cv0Eoh6/SIIpLilm1MejeGruU4zuM1oLoCcgBb9I\nAlmzdQ03vH0D7s78W+fT8kgtgZ2IdKpHJEG8s+wdfv7sz+l5ck9mDp6p0E9g6vGLxLnthdu5O/tu\nsvOzeWfAO5zX6rygS5KAqccvEse++P4LujzXhS0FW1h420KFvgAKfpG45O48/enTXPTiRdzzi3t4\nuf/LNE5uHHRZEiV0qkckzmzcvpGh7w5l/X/XM2fYHE5pekrQJUmUUY9fJI7M/HomZ//jbNo3a8/H\nQz9W6Eul1OMXiQO7infx0KyHeGnxS0zoN4GebXoGXZJEMQW/SIzbPbnacYcfp8nVpFp0qkckhr30\n+UucN+48bjzrRqZcO0WhL9WiHr9IDNpasJXhWcNZ+J0mV5OaU/CLRLmsrDwyMnIoKKhPo0ZFXDy0\nBX///q9c3OZiPrvlMw5tcGjQJUqM0QpcIlEsKyuPESOyyc9/HKwYfjmKpPMf555O9/H4oAeCLk+i\nQCgrcOkcv0gUy8jIKQ39I9bC4J7QNofi0cuZP7Eg6NIkhin4RaLYzoJ6cM5ouL0zfN0TJsyErS3Z\nuTMp6NIkhoUd/GaWambLzGyFmd1TRZuMstc/N7PO4e5TJBHMWzePRV3GwhmvwoQP4aP7wUsDPzm5\nOODqJJaFFfxmlgQ8DaQCHYCBZta+QptLgVPc/VTgVmB0OPsUiXebd27mN1m/4fJXL2dYpyG0yfsl\n/KfTntfbth1JWlqvACuUWBfuVT1dgZXuvgrAzCYBfYGl5dpcAUwAcPe5ZtbEzI519+/D3LdIXHF3\nXv7iZf4w4w/0bdeXJcOX0PSQpvRolkdm5oPs3JlEcnIxaWmp9OnTPehyJYaFG/wtgNXlttcA3arR\npiWg4Bcps3TDUoZPG86WnVt4e8DbdGu592vUp093Bb3UqnCDv7rXX1a81KjS96Wnp+95nJKSQkpK\nSkhFicSK7YXbeXT2o4xdOJaHuj/E8C7DSaqngVupWm5uLrm5uWF9RljX8ZvZuUC6u6eWbd8HlLj7\nqHJt/gHkuvuksu1lwAUVT/XoOn5JNFOWT+Gu9+/i/Fbn8+TFT3L8EccHXZLEoFCu4w+3xz8PONXM\nWgPrgAHAwAptpgB3ApPK/lBs1vl9SWSrNq9ixPQRLNu4jHFXjKNHmx5BlyQJJqyrety9iNJQzwa+\nBF5z96VmdpuZ3VbWZhrwtZmtBMYAw8OsWSQm7SrexZ/++SfOefYcup7QlcW3L1boSyA0ZYNIBMz6\nZhbDpw2nzVFtyLwkkzZHtQm6JIkTQZzqEZED+P6/3/P7Gb8n79s8nkp9ir7t+mJWo++oSK3TlA0i\ndaC4pJi/f/Z3Oo3uxAmHn8CS4Uvod3o/hb5EBfX4RWrZvHXzuCPrDg6pfwizbpxFp+adDv4mkQhS\n8IvUks07N3P/zPt5a9lbjOo5ihvOvEE9fIlKOtUjEiZ3Z+LiibR/pj3FXsyS4UsYfNZghb5ELfX4\nRcJQfqqFdwa8s89UCyLRSj1+kRBsL9zOfR/cR/fx3el/en8+veVThb7EDPX4RWqo/FQLi29frKkW\nJOYo+EWqUHGR8wG3ncG7u17RVAsS8xT8IpXYZ5HzpF1w3v/ywWc3cX2b61l8++s0qt8o6BJFQqZz\n/CKVKF3k/DE4bSrcfhac+BElY/7FfyYfp9CXmKcev0gF7s7aw/Ph1nOgXhF8MAqWXw6YFjmXuKDg\nFynj7rz31Xukz07n27Zr4L3RsKwf+N5/GGuRc4kHCn5JeOUDv6ikiIcveJgGJzTlt2/NIN/772lX\nush5aoCVitQOBb8krMoCv9/p/ahn9aA91LN6WuRc4pLm45eEc8DAF4kxmo9f5AAU+CKlFPwS9xT4\nIvtS8EvcUuCLVE7BL3HH3clakUV6bjqFJYUKfJEKFPwSNxT4ItWj4JeYp8AXqRkFv8QsBb5IaBT8\nEnMU+CLhUfBLzFDgi9QOBb9EpfKLoDRsVMh5g48g66c3FfgitUBTNkjU2bsIymNwWhakpNMweTW/\n75LGo9ePVOCLlKMpGyQuPPnMFPKbtoFenQGH2Q+za1k/5l/8MPUGKfRFwhVW8JtZU+A14CRgFXCN\nu2+u0KYV8CLQHHDgWXfPCGe/En/cndnfzmbcwnHk/ewNWN4XZvwZvu65Zz58LYIiUjvC7fHfC8xw\n9z+b2T1l2/dWaFMI/NbdF5nZ4cB8M5vh7kvD3LfEgfXb1jN+0XieX/Q8yfWTGdZ5GGsWHkPutP/d\nr60WQRGpHeEG/xXABWWPJwC5VAh+d/8O+K7s8X/NbClwAqDgT1BFJUVMWzGttHf/bR5Xd7iaiVdO\npGuLrpgZpw7PY/Xy+0sXOi+jRVBEak9Yg7tm9qO7H1X22IAfdm9X0b41MBvo6O7/rfCaBnfj3IpN\nK3h+4fNM+HwCJx91Mjd3vpmrO17N4Q0P369tVlYemZkzyi2C0kuLoIhUIpTB3YMGv5nNAI6r5KX7\ngQnlg97MfnD3plV8zuGU/ovgMXd/p5LXFfxxaEfhDiYvnczYBWNZunEpN5x5A8M6D6P9Me2DLk0k\nLtTJVT3u3usAO/zezI5z9+/M7HjgP1W0awBMBiZWFvq7paen73mckpJCSkrKwcqTKLVg/QLGLRjH\npCWT6NqiK2ld07i83eU0TGoYdGkiMS03N5fc3NywPiPcUz1/Bja5+ygzuxdo4u73VmhjlJ7/3+Tu\nvz3AZ6nHH+N+3PEjr3zxCuMWjuOHHT8wtPNQhpw9hBMbnxh0aSJxq05O9Rxkh02B14ETKXc5p5md\nADzn7n3M7JdAHrCY0ss5Ae5z9+kVPkvBH4N2X4Y5dsFY3vvqPVJPSWVY52H0aNNDN1qJREDEg782\nKfhjy7pt65iwaALjFo7jkAaHcHPnmxl05iCOPvTooEsTSSgKfqlTuy/DHLtgLB/9+yOu7nA1wzoP\n23MZpohEnoJfwlZ+crRGjYq4666LOe3c43l+4fOM/3w8bY5qc8DLMEUkshT8Epa9k6M9Dg22Q/vJ\nJJ//AMkttzGsy1BdhikShRT8EpYLLhtB3trO0DYb2ubA2q6w4GZ6nTSfnPefCLo8EamEZueUGiko\nKuCf//4n01dOJzs/m6Vnr4BDL4P83pDzV9jWAoBdzb8IuFIRqU0K/gTi7ny16Suy87PJzs/mo28/\nomPzjvRu25sxl43hoZun8kHO/j17TY4mEl8U/HFuy84tfPjNh3t69UUlRfRu25shZw3hpStfoukh\ne2fY+D93FfJNviZHE4l3OscfZ0q8hPnr5u/p1S/6bhHntzqf3m1707ttbzoc0+GAl15qcjSR2KLB\n3QS1ftt6cvJzmJ4/nQ++/oDmhzXfE/TdT+rOIQ0OCbpEEakjCv4EsXtQdnevfvWW1fRo02NP2Ldq\n3CroEkUkQhT8Ma6ym6f69OmOu7PihxV7ztOXH5Tt3bY3XVp0oX49DdeIJCIFfwzb5+YpgEZbOPa8\nYXS+upBlhYspLC4sDfpTetOzTc99BmVFJHEp+GPUruJdXHhVGv9vZQ9o/i9oPQuOWwSrz6dd/RIm\nj/rbQQdlRSQx6QauKLereBcrNq1gyYYlfLnhS5ZsWMKS/yzhm83fYO0Og+QNsKED5D0A33aHokM4\n7oJ0OjbvGHTpIhJHFPx14EABf2LjE+l4TEc6HtOR/qf358HuD9Lu6HZc0edRcnIe2++zdPOUiNQ2\nneoJQ3UDvsMxHejYvCPtjm5Ho/qNKv2s/c7xU3rz1FNPpeo6ehGpks7xh6iqq2l2q82AP1gdunlK\nRGoi5oP/4ovv3y9069o+Pe2kXdB0Bcee8QAXDWhC4VH/3RPwJzU+qTTYj+lIx+alIR9qwIuI1JaY\nD35w2ra9n6ee6l3j8C8oKmBLwRa2Fmzd52fLzn2fq9hmwZJlbNt1GDTaCo22webWsKEDbY7YwOMj\nfqOAF5GoFvtX9Ry/gPziXjw48Rl+aPntAQO74nPuTuPkxhzZ6EgaNyr97+6f8tstj2xZ+lxZ27vf\nfJUFc/4HdjaGgsZQ3BCAVhekc22nawM+ICIitS+6gv+Km6HgSP59+Hqy8xscMLArhnqoPfJmhR/A\nD6fs97yuphGReBVdwT9mAQDn9H6QiZmPRmSXd911MfmailhEEkh0BT+RD93dYwmZmQ+Wu5pGl1CK\nSPyKqsHd3r0f0CWMIiI1EPNX9URLLSIisSKU4K9XV8WIiEh0UvCLiCQYBb+ISIIJOfjNrKmZzTCz\nr8wsx8yaHKBtkpktNLOpoe5PRERqRzg9/nuBGe5+GjCzbLsqI4AvAY3eVkNubm7QJUQNHYu9dCz2\n0rEITzjBfwUwoezxBKBfZY3MrCVwKTAW0BJS1aBf6r10LPbSsdhLxyI84QT/se7+fdnj74Fjq2j3\nf4H/AUrC2JeIiNSSA965a2YzgOMqeen+8hvu7qWza+73/suA/7j7QjNLCadQERGpHSHfwGVmy4AU\nd//OzI4HZrn76RXaPAHcABQBycCRwGR3H1zJ5+n8v4hICCJ2566Z/RnY5O6jzOxeoIm7VznAa2YX\nAL9398tD2qGIiNSKcM7x/wnoZWZfAReVbWNmJ5hZVhXvUa9eRCRgUTNXj4iIREbE79w1s1QzW2Zm\nK8zsniraZJS9/rmZdY50jZFysGNhZteXHYPFZvaxmZ0ZRJ11rTq/E2XtuphZkZn1j2R9kVTN70dK\n2Q2R/zKz3AiXGDHV+H40M7PpZrao7FgMCaDMiDCz583sezP74gBtqp+b7h6xHyAJWAm0BhoAi4D2\nFdpcCkwre9wN+CSSNUbZsTgPaFz2ODUej0V1jkO5dh8C7wFXBV13gL8TTYAlQMuy7WZB1x3gsUgH\n/rj7OACbgPpB115Hx+NXQGfgiyper1FuRrrH3xVY6e6r3L0QmAT0rdBmz41h7j4XaGJmVd0jEMsO\neizcfY67bynbnAu0jHCNkVCd3wmANOBNYEMki4uw6hyL6yi9Mm4NgLtvjHCNkVKdY7Ge0isFKfvv\nJncvimCNEePuHwE/HqBJjXIz0sHfAlhdbntN2XMHaxOPgVedY1HeMGBanVYUjIMeBzNrQemXfnTZ\nU/E6MFWd34lTgaZmNsvM5pnZDRGrLrKqcyyeAzqa2Trgc0qnhklUNcrNSC+9WN0vbMVrUuPxi17t\n/yczuxAYCvyi7soJTHWOw9+Ae93dzcyI36k/qnMsGgA/A3oAhwJzzOwTd19Rp5VFXnWOxUhgkbun\nmFlbYIaZneXu2+q4tmhV7dyMdPCvBVqV225F6V+mA7VpWfZcvKnOsaBsQPc5INXdD/RPvVhVnePw\nc2BSaebTDLjEzArdfUpkSoyY6hyL1cBGd98B7DCzPOAsIN6CvzrH4nzgcQB3zzezb4B2wLyIVBhd\napSbkT7VMw841cxam1lDYABQ8cs7BRgMYGbnApt975xA8eSgx8LMTgTeAga5+8oAaoyEgx4Hd2/j\n7ie7+8mUnue/Iw5DH6r3/XgX+GXZVOeHUjqQ92WE64yE6hyLZUBPgLLz2e2AryNaZfSoUW5GtMfv\n7kVmdieQTemo/Th3X2pmt5W9Psbdp5nZpWa2EvgJuCmSNUZKdY4F8BBwFDC6rLdb6O5dg6q5LlTz\nOCSEan4/lpnZdGAxpRMfPufucRf81fy9eAJ4wcw+p7QT+wd3/yGwouuQmb0KXAA0M7PVwMOUnvYL\nKTd1A5eISILR0osiIglGwS8ikmAU/CIiCUbBLyKSYBT8IiIJRsEvIpJgFPwiIglGwS8ikmD+P2jq\nbKRBM81FAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 134 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter11.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter11.ipynb new file mode 100644 index 00000000..aa2f8723 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter11.ipynb @@ -0,0 +1,375 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1a88ac8a4ae99a352f7f49d975099441ec02a55d62cfaa2e8c07de364172180d" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11:Stability of Equilibrium: columns " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2 page number 589" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "h = 60 #mm - the length of the crossection \n", + "b = 100 #mm - the width of hte crossection \n", + "E = 200 #Gpa - The youngs modulus\n", + "stress_cr = 250 #Mpa - The proportionality limit\n", + "#Caliculations \n", + "\n", + "I = b*(h**3)/12 #mm3 The momentof inertia of the crossection\n", + "A = h*b #mm2 - The area of teh crossection \n", + "#From Eulier formula\n", + "r_min = pow((I/A),0.5) #mm - The radius of the gyration \n", + "#(l/r)**2= (pi**2)*E/stress_cr #From Eulier formula\n", + "l = (((math.pi**2)*E*(10**3)/stress_cr)**0.5)*r_min #mm - the length after which the beam starts buckling\n", + "print \"The length after which the beam starts buckling is \",round(l,0),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The length after which the beam starts buckling is 1539.0 mm\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.6 page number 613" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "L = 15 #ft - The length of the each rod\n", + "A = 46.7 #in2 - The length of the crossection \n", + "r_min = 4 #in - The radius of gyration\n", + "stress_yp = 36 #Ksi - the yielding point stress\n", + "E = 29*(10**3) #ksi - The youngs modulus\n", + "C_c = ((2*(math.pi**2)*E/stress_yp)**0.5) #Slenderness ratio L/R\n", + "C_s = L*12/r_min # Slenderness ratio L/R of the present situation \n", + "#According to AISC formulas \n", + "if C_s 1:\n", + " print \"The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",round(k,3),\">1\"\n", + "else:\n", + " print \"The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",k,\"<1\"\n", + " \n", + "#trail - 2\n", + "#Lets take W10 x 60\n", + "A_s = 17.6 #in2 - The area of the section \n", + "r_min = 2.57 #in The minimum radius \n", + "r_x = 4.39 #in \n", + "f_a = P/A_s #Ksi- The computed axial stress\n", + "f_b = M_2*B_x/A_s #Computed bending stess\n", + "C_c = ((2*(math.pi**2)*E/F_y)**0.5) #Slenderness ratio L/R\n", + "C_s = L*12/r_min # Slenderness ratio L/R of the present situation\n", + "if C_s 1:\n", + " print \"The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",round(k,3),\">1\"\n", + "else:\n", + " print \"The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b\",round(k,2),\"<1\"\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum area is 13.71 in2\n", + "The following approch is solvable\n", + "The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b 1.09 >1\n", + "The following approch is solvable\n", + "The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b 0.9 <1\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter12.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter12.ipynb new file mode 100644 index 00000000..13fb52c7 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter12.ipynb @@ -0,0 +1,405 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:aaf5a5f62a391d916c40aa2d720de6a3e7681d1c9c64ec2fdbeff148819b3c75" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Chapter 12:Energy and Virtual-work Methods" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.1 page number 645 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#Virtual loading\n", + "p_ab = -0.833 #lb The recorded virtual loading\n", + "p_bc = + 0.833 #lb The recorded virtual loading\n", + "F_ab = 2500 #lb\n", + "F_bc = -2500 #lb\n", + "l_ab = 60 #in - The length of the rod\n", + "l_bc = 60 #in - The length of the rod\n", + "A_ab = 0.15 #in2 the areaof ab\n", + "A_bc = 0.25 #in2 the areaof bc\n", + "E = 30*(10**6) #psi The youngs modulus of the material\n", + "#Part_a\n", + "e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) #in the deflection\n", + "if e_a<0:\n", + " print \"a) The deflection is downwards\",round(-e_a,3),\"in\"\n", + "else:\n", + " print \"a) The deflection is upwards\",round(e_a,3),\"in\"\n", + "#part-b\n", + "x = 0.125 #Shortening of member Ab\n", + "e_b = p_ab*(-x) + p_bc*0 #in - in\n", + "if e_b<0:\n", + " print \"b) The deflection is downwards\",round(-e_b,3),\"in\"\n", + "else:\n", + " print \"b) The deflection is upwards\",round(e_b,3),\"in\"\n", + "#Part-c\n", + "S = 6.5*(10**-6) #Thermal specific heat\n", + "T = 120 #F - The cahnge in temperature\n", + "e_t = -S*T*l_ab #in - The change in length of member\n", + "e_c = p_bc*e_t #in the deflection\n", + "if e_c<0:\n", + " print \"c) The deflection is downwards\",round(-e_c,3),\"in\"\n", + "else:\n", + " print \"c) The deflection is upwards\",round(e_c,3),\"in\"\n", + "\n", + "\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) The deflection is downwards 0.044 in\n", + "b) The deflection is upwards 0.104 in\n", + "c) The deflection is downwards 0.039 in\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.3 page number 648" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#Virtual loading\n", + "#Two parts \n", + "#Part -1 \n", + "p_ab = 5 #KN The recorded virtual loading\n", + "p_bc = -4 #KN The recorded virtual loading\n", + "F_ab = 10 #KN\n", + "F_bc = -8 #KN\n", + "l_ab = 2.5 #mt - The length of the rod\n", + "l_bc = 2 #mt - The length of the rod\n", + "A_ab = 5*(10**-4) #mt2 the areaof ab\n", + "A_bc = 5*(10**-3) #mt2 the areaof bc\n", + "E = 70 #Gpa The youngs modulus of the material\n", + "e_a =(p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E))*(10**-6) #KN-m\n", + "#Part -2 due to flexure\n", + "I = 60*10**6 #mm4 - the moment of inertia \n", + "#After solving the integration \n", + "e_b = 0.01525 #KN-m\n", + "#Total\n", + "e = (e_a+e_b)*1 #m\n", + "print \"The point C deflects\",round(e,3),\"mt down\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The point C deflects 0.019 mt\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.5 page number 651" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#Virtual loading Without f_d\n", + "p_ab = -0.833 #lb The recorded virtual loading\n", + "p_bc = + 0.833 #lb The recorded virtual loading\n", + "F_ab = 2500 #lb\n", + "F_bc = -2500 #lb\n", + "l_ab = 60 #in - The length of the rod\n", + "l_bc = 60 #in - The length of the rod\n", + "A_ab = 0.15 #in2 the areaof ab\n", + "A_bc = 0.25 #in2 the areaof bc\n", + "E = 30*(10**6) #psi The youngs modulus of the material\n", + "#Part_a\n", + "e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) #lb-in the deflection\n", + "#With f_d\n", + "p_bd = 1 #lb The recorded virtual loading \n", + "F_bd = 1 #lb\n", + "l_bd = 40 #in - The length of the rod\n", + "A_bd = 0.1 #in2 the areaof ab\n", + "e_a_1 =p_ab*p_ab*l_ab/(A_ab*E) + p_bc*p_bc*l_bc/(A_bc*E) +p_bd*p_bd*l_bd/(A_bd*E) #lb-in the deflection\n", + "#Since the produced defelection should compensate the other one\n", + "x_d = e_a/e_a_1\n", + "print \"The reaction force at D is\",round(-x_d,2),\"lb\"\n", + "\n", + "#Part - B\n", + "e_b = -x_d*l_bd/(A_bd*E ) #in - The deflection of nodal point B\n", + "print\"The deflection of nodal point B\",round(e_b,4),\"in\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reaction force at D is 1578.98 lb\n", + "The deflection of nodal point B 0.0211 in\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.6 page number 655" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#Virtual loading\n", + "p_ab = -0.833 #lb The recorded virtual loading\n", + "p_bc = + 0.833 #lb The recorded virtual loading \n", + "l_ab = 60 #in - The length of the rod\n", + "l_bc = 60 #in - The length of the rod\n", + "A_ab = 0.15 #in2 the areaof ab\n", + "A_bc = 0.25 #in2 the areaof bc\n", + "E = 30*(10**6) #psi The youngs modulus of the material\n", + "K_1 = A_ab*E/l_ab #k/in - Stiffness\n", + "K_2 = A_bc*E/l_bc #k/in - Stiffness\n", + "#soving for e_1 and e_2 gives a liner euations to solve\n", + "# 128*e_1 + 24*e_2 = 0\n", + "#24*e_1 + 72*e_2 = -3\n", + "#Solving for e_1,e_2\n", + "a = np.array([[128,24], [24,72]])\n", + "b = np.array([0,-3])\n", + "x = np.linalg.solve(a, b)\n", + "e_1 = x[0] #in\n", + "e_2 = x[1] #in\n", + "u_1 = 0.8*e_1 - 0.6*e_2 #Taking each components\n", + "F_1 = K_1*u_1*(10**-3) #k The reaction at A Force = stiffness x dislacement \n", + "u_2 = 0.8*e_1 + 0.6*e_2 #Taking each components\n", + "F_2 = K_2*u_2*(10**-3) #k The reaction at B Force\n", + "print \"The reaction at A \",F_1,\"k\"\n", + "print \"The reaction at B \",F_2,\"k\"\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reaction at A 2.5 k\n", + "The reaction at B -2.5 k\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.7 page number 655" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Virtual loading\n", + "p_ab = -0.833 #lb The recorded virtual loading\n", + "p_bc = + 0.833 #lb The recorded virtual loading \n", + "l_ab = 60 #in - The length of the rod\n", + "l_bc = 60 #in - The length of the rod\n", + "A_ab = 0.15 #in2 the areaof ab\n", + "A_bc = 0.25 #in2 the areaof bc\n", + "E = 30*(10**6) #psi The youngs modulus of the material\n", + "K_1 = A_ab*E/l_ab #k/in - Stiffness\n", + "K_2 = A_bc*E/l_bc #k/in - Stiffness\n", + "p_bd = 1 #lb The recorded virtual loading \n", + "F_bd = 1 #lb\n", + "l_bd = 40 #in - The length of the rod\n", + "A_bd = 0.1 #in2 the areaof ab\n", + "K_3 = A_ab*E/l_ab #k/in - Stiffness\n", + "#soving for e_1 and e_2 gives a liner euations to solve\n", + "# 128*e_1 + 24*e_2 = 0\n", + "#24*e_1 + 72*e_2 = -3\n", + "#Solving for e_1,e_2\n", + "a = np.array([[128,24], [24,147]])\n", + "b = np.array([0,-3])\n", + "x = np.linalg.solve(a, b)\n", + "e_1 = x[0] #in\n", + "e_2 = x[1] #in\n", + "u_1 = 0.8*e_1 - 0.6*e_2 #Taking each components\n", + "F_1 = K_1*u_1*(10**-3) #k The reaction at A Force = stiffness x dislacement \n", + "u_2 = 0.8*e_1 + 0.6*e_2 #Taking each components\n", + "F_2 = K_2*u_2*(10**-3) #k The reaction at B Force\n", + "u_3 = e_2 #Taking each components\n", + "F_3 = K_3*u_3*(10**-3) #k The reaction at D Force\n", + "print \"The reaction at A \",round(F_1,2),\"k\"\n", + "print \"The reaction at B \",round(F_2,2),\"k\"\n", + "print \"The reaction at D \",round(F_3,2),\"k\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reaction at A 1.18 k\n", + "The reaction at B -1.18 k\n", + "The reaction at D -1.58 k\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.8 page number 659" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#First we will solve part B\n", + "u_1 =5 #L/AE, elastic elongation\n", + "u_2 =25 #L/AE,elastic elongation\n", + "f_1 = u_1#, Units got neutralized , Constitutive relation for elastic bars\n", + "f_2 = u_2# Units got neutralized\n", + "#u_1 = 0.8*e_1 - 0.6*e_2\n", + "#u_2 = 0.8*e_1 + 0.6*e_2\n", + "#u = A*e Matric multiplication \n", + "A = np.array([[0.8,-0.6],[0.8,0.6]]) #The matrix form of A\n", + "F = np.array([[f_1],[f_2]])\n", + "P = np.dot((A.T),F) #Nodal forces matrix\n", + "print \"b) The vertical component of the nodal force is\",P[1],\"\"\n", + "print \"b) The vertical component of the nodal force is\",P[0],\"\"\n", + "#Part A\n", + "#F_1 = (5/8.0)*P_1 - (5/6.0)*p_2 , From statics\n", + "#F_1 = (5/8.0)*P_1 + (5/6.0)*p_2\n", + "#F = BP ,Matric multiplication \n", + "B = np.array([[(5/8.0),-(5/6.0)],[(5/8.0),(5/6.0)]]) #The matrix form of A\n", + "U = np.array([[u_1],[u_2]])\n", + "e = P = np.dot((B.T),U) #L/AE, Nodal forces matrix\n", + "print \"a) The components of displacement of point B are\",round(e[0],2),\"L/AE and\",round(e[1],2),\"L/AE\" \n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "b) The vertical component of the nodal force is [ 12.] \n", + "b) The vertical component of the nodal force is [ 24.] \n", + "a) The components of displacement of point B are 18.75 L/AE and 16.67 L/AE\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.10 page number 667" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "A_1 = 0.125 #in2 , The area of the crossection of AB\n", + "A_2 = 0.219 #in2 , The area of the crossection of BC\n", + "l_1 = 3*(5**0.5) #in , The length of AB\n", + "l_2 = 6*(2**0.5) #in , The length of BC\n", + "p = 3 #k , Force acting on the system \n", + "E = 10.6*(10**3) #Ksi - youngs modulus of the material\n", + "p_1 = (5**0.5)*p/3 #P, The component of p on AB\n", + "p_2 = -2*(2**0.5)*p/3 #P, The component of p on AB\n", + "\n", + "e = p_1*l_1*p_1/(p*E*A_1) + p_2*l_2*p_2/(p*E*A_2) #in, By virtual deflection method \n", + "print \"The deflection is\",round(e,3),\"in\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The deflection is 0.018 in\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter2.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter2.ipynb new file mode 100644 index 00000000..5c92d3ed --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter2.ipynb @@ -0,0 +1,327 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:f3ccf4fb6d13add26a342446f0908b75d3a6a82c442b340e601708c15ec3ca4f" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2:Axial strains and Deformations in bars " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1 page number 77" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "l_ob = 2000 #mm - length of rod ob\n", + "l_bc = 1000 #mm - length of rod bc\n", + "l_cd = 1500 #mm - length of rod cd\n", + "p_ob = 100 #kN - Force in rods \n", + "p_bc = -150 #KN\n", + "p_cd = 50 #KN \n", + "A_ob = 1000 #mm2 - Area of rod ob\n", + "A_bc = 2000 #mm2 - Area of rod bc \n", + "A_cd = 1000 #mm2 - Area of rod cd\n", + "E = 200.0 #GPA \n", + "# the total deflection is algebraic sums of `deflection in each module \n", + "e_1 = p_ob*l_ob/(A_ob*E)\n", + "e_2 = p_bc*l_bc/(A_bc*E)\n", + "e_3 = p_cd*l_cd/(A_cd*E)\n", + "#All units are satisfied \n", + "e_total = e_1+ e_2 + e_3\n", + "print \"The total deflection is :\",round(e_total,3) ,\"mm\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total deflection is : 1.0 mm\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4 page number 80" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "p_app = 3 #Kips - applied force \n", + "P_A = 2.23 #Kips \n", + "p_B = -2.83 #kips - compressive force\n", + "l_ab = 6.71 #inch\n", + "l_bc = 8.29 #inch\n", + "s_ab = 17.8 #ksi - tensile stress\n", + "s_bc = -12.9 #ksi - compressive stress\n", + "E = 10.6 * pow(10,3) #ksi -youngs modulus \n", + "e_ab = s_ab*l_ab/E\n", + "\n", + "e_bc = s_bc*l_bc/E\n", + "x = e_ab/e_bc #the Ratio of cosines of the deflected angles \n", + "# t_1 and t_2 be deflected angles \n", + "#t_2 = 180-45-26.6-t_1 the sum of angles is 360\n", + "#t_1 = 52.2 degress\n", + "import math\n", + "e = e_ab/math.acos(math.radians(52.2)) #inch\n", + "k = p_app/e # kips/in vertical stiffness of the combination\n", + "print \"The vertical stiffness of the combination is\",round(k,3),\"kips/inch\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.0112677358491\n", + "The vertical stiffness of the combination is 113.14 kips/inch\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.6 page number 83" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "dia = 50 #mm - diameter of aluminium \n", + "p = 100 # KN - instant force applid\n", + "dia_c = 0.1215 #mm- change in diameter \n", + "l_c = 0.219 #mm - change in length\n", + "l = 300 #mm - length \n", + "strain_dia = dia_c/dia # lateral strain \n", + "strain_l = l_c/l #longitudinal strain \n", + "po = strain_dia/strain_l # poission ratio \n", + "area = 3.14*dia*dia/4 #mm2 area\n", + "E = p*l/(area*l_c) #N/mm2 youngs modulus \n", + "print \"The lateral strain is:\",strain_dia,\"no units\"\n", + "print \"The longitudinal strain is:\",strain_l,\"no units\"\n", + "print \"The poissions ratio is:\",po,\"no units\"\n", + "print \"Youngs modulus:\",round(E,2),\"N/mm2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The lateral strain is: 0.00243 no units\n", + "The longitudinal strain is: 0.00073 no units\n", + "The poissions ratio is: 3.32876712329 no units\n", + "Youngs modulus: 69.8 N/mm2\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7 page number 86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "T = 12.9*pow(10,-6) #/F\n", + "t = 100.00 # F \n", + "e_ab = T*t*l_ab #in-elongation \n", + "e_bc = T*t*l_bc #in-elongation\n", + "k = e_ab/e_bc # ratio of cosines of deflected angles \n", + "# t_1 and t_2 be deflected angles \n", + "#t_2 = 180-45-26.6-t_1 the sum of angles is 360\n", + "t_1 = 26.6\n", + "import math\n", + "e = e_ab/math.acos(math.radians(26.6))\n", + "print \"The displacement in point B is :\",e ,\"in\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The displacement in point B is : 0.00795578950395 in\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.11 page number " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "mass = 4 #kg \n", + "dist = 1 #mt freely falling distance\n", + "l = 1500 #mm length of rod\n", + "d = 15 #mm diameter\n", + "E = 200 #GPA youngs modulus \n", + "k = 4.5 # N/mm stiffness costant\n", + "F = mass*9.81# The force applying\n", + "Area = 3.14*(d**2)/4 \n", + "# Two cases \n", + "#youngs modulus \n", + "e_y = F*l/(Area*E*pow(10,3))\n", + "# stiffness\n", + "e_f = F/k \n", + "#total\n", + "e = e_y +e_f\n", + "k = 1+(2/(e*pow(10,-3)))\n", + "stress_max_1 = F*(1+pow(k,0.5))/Area\n", + "print \"The maximum stress is:\",stress_max_1,\"Mpa\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress is: 3.59377281766 Mpa\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.12 page number 103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "flex_a = 1#f\n", + "flex_b = 2#f\n", + "#removing lower support and solving FBD\n", + "e = -2 -(2+1)#fp\n", + "#e_1 = (2+1+1)*R\n", + "#e_1 = -e Making the elongations zero since the both ends are fixed\n", + "R = e/(2+1+1.0) #p\n", + "print \"The reactions at bottom is\",R,\"p\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reactions at bottom is -1.25 p\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.19 page number 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "l = 30 #in - The length of the rod\n", + "p_1 = 80 #kips - The Force on the end\n", + "p_2 = 125 #kips - The force on the other end\n", + "A_s = 0.5 #in2 - The crossection of the steel rod\n", + "A_a = 0.5 #in2 - The crossection of the aluminium \n", + "E_a = 10*(10**6) #psi - The youngs modulus of the aluminium \n", + "E_s = 30*(10**6) #psi - The youngs modulus of the steel\n", + "#Internally stastically indeterminant \n", + "p_a = p_1/4 #From solving we get p_s = 3*P_a\n", + "#From material properties point of view \n", + "#stress_steel = stress_aluminium\n", + "e = p_a*l*(10**3)/(A_a*E_a) #The end deflection \n", + "print \"The end deflection is\",e,\"in\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The end deflection is 0.12 in\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter4.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter4.ipynb new file mode 100644 index 00000000..cf156252 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter4.ipynb @@ -0,0 +1,447 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:9aca5229d39ed9fee3ce40f1f1dab6ba8b884ebc52bfe9bb1467df97ee1f15bb" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4:Torsion" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.2 page number 183" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "dia = 10 #diameter of shaft(A-C)\n", + "c = dia/2 #mm - Radius\n", + "T = 30 #N/mm -Torque in the shaft \n", + "#Caliculations\n", + "\n", + "J = 3.14*(dia**4)/32 #mm4\n", + "shear_T = T*c*pow(10,3)/J # The torsion shear in the shaft AC\n", + "import numpy as np \n", + "print \"The maximum shear due to torsion is \",round(shear_T,2),\"Mpa\"\n", + "arr_T = np.zeros((3,3))\n", + "arr_T[0][1]=round(shear_T,1) #arranging the elements in array\n", + "arr_T[1][0]=round(shear_T,1)\n", + "print \"stress tensor matrix\",ceil(arr_T),\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum shear due to torsion is 152.87 Mpa\n", + "stress tensor matrix [[ 0. 153. 0.]\n", + " [ 153. 0. 0.]\n", + " [ 0. 0. 0.]]\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.3 page number 184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "dia_out = 20 #mm- outer diameter of shaft\n", + "dia_in = 16 #mm- inner diameter of shaft \n", + "c_out = dia_out/2 #mm - outer Radius of shaft \n", + "c_in = dia_in/2 #mm - inner radius of shaft \n", + "T = 40 #N/mm -Torque in the shaft \n", + "#caliculations\n", + "\n", + "J = 3.14*((dia_out**4)- (dia_in**4))/32 #mm4\n", + "shear_T_max = T*c_out*pow(10,3)/J # The maximum torsion shear in the shaft\n", + "shear_T_min = T*c_in*pow(10,3)/J # The maximum torsion shear in the shaft\n", + "print \"The maximum shear due to torsion is \",round(shear_T_max,2),\"Mpa\"\n", + "print \"The minimum shear due to torsion is \",round(shear_T_min,2),\"Mpa\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum shear due to torsion is 43.15 Mpa\n", + "The minimum shear due to torsion is 34.52 Mpa\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.4 page number 187" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "hp = 10 # horse power of motor \n", + "f = 30 # given \n", + "shear_T = 55 #Mpa - The maximum shearing in the shaft \n", + "#caliculations\n", + "\n", + "T = 119*hp/f # N.m The torsion in the shaft \n", + "#j/c=T/shear_T=K\n", + "k = T*pow(10,3)/shear_T #mm3\n", + "#c3=2K/3.14\n", + "c = pow((2*k/3),0.33) #mm - The radius of the shaft \n", + "diamter = 2*c #mm - The diameter of the shaft\n", + "print \"The Diameter of the shaft used is\",round(diamter,2),\"mm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Diameter of the shaft used is 15.26 mm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.5 page number 188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "hp = 200 #Horse power\n", + "stress_sh = 10000 #psi- shear stress\n", + "rpm_1 = 20.0 # The rpm at which this shaft1 operates \n", + "rpm_2 = 20000.0 # The rpm at which this shaft2 operates\n", + "T_1= hp*63000.0/rpm_1 #in-lb Torsion due to rpm1\n", + "T_2= hp*63000/rpm_2 #in-lb Torsion due to rpm1\n", + "#caliculations \n", + "\n", + "#j/c=T/shear_T=K\n", + "k_1= T_1/stress_sh #mm3\n", + "#c3=2K/3.14\n", + "c_1= pow((2*k_1/3),0.33) #mm - The radius of the shaft \n", + "diamter_1 = 2*c_1 #mm - The diameter of the shaft\n", + "print \"The Diameter of the shaft1 is\",round(diamter_1,2),\"mm\"\n", + "\n", + "#j/c=T/shear_T=K\n", + "k_2= T_2/stress_sh #mm3\n", + "#c3=2K/3.14\n", + "c_2= pow((2*k_2/3),0.33) #mm - The radius of the shaft \n", + "diamter_2 = 2*c_2 #mm - The diameter of the shaft\n", + "print \"The Diameter of the shaft2 is\",diamter_2,\"mm\"\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Diameter of the shaft1 is 6.87 mm\n", + "The Diameter of the shaft2 is 0.702590481015 mm\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.7 page number 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "T_ab = 0 #N.m - torsion in AB \n", + "T_bc = 150 #N.m - torsion in BC\n", + "T_cd = 150 #N.m - torsion in CD\n", + "T_de = 1150 #N.m - torsion in DE\n", + "l_ab = 250 #mm - length of AB\n", + "l_bc = 200 #mm - length of BC\n", + "l_cd = 300 #mm - length of cd \n", + "l_de = 500.0 #mm - length of de\n", + "d_1 = 25 #mm - outer diameter \n", + "d_2 = 50 #mm - inner diameter\n", + "G = 80 #Gpa -shear modulus\n", + "#Caliculations \n", + "\n", + "J_ab = 3.14*(d_1**4)/32 #mm4\n", + "J_bc = 3.14*(d_1**4)/32 #mm4\n", + "J_cd = 3.14*(d_2**4 - d_1**4)/32 #mm4\n", + "J_de = 3.14*(d_2**4 - d_1**4)/32 #mm4\n", + "rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G) # adding the maximum radians roteted in each module\n", + "print \"The maximum angle rotated is \",rad,\"radians \" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum angle rotated is 0.0232628450106 radians \n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.9 Pagenumber 196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given \n", + "#its a statistally indeterminant \n", + "#we will take of one of the support \n", + "#Given \n", + "T_ab = 0 #N.m - torsion in AB \n", + "T_bc = 150 #N.m - torsion in BC\n", + "T_cd = 150 #N.m - torsion in CD\n", + "T_de = 1150 #N.m - torsion in DE\n", + "l_ab = 250 #mm - length of AB\n", + "l_bc = 200 #mm - length of BC\n", + "l_cd = 300 #mm - length of cd \n", + "l_de = 500.0#mm - length of de\n", + "d_1 = 25 #mm - outer diameter \n", + "d_2 = 50 #mm - inner diameter\n", + "#Caliculations \n", + "\n", + "J_ab = 3.14*(d_1**4)/32 #mm4\n", + "J_bc = 3.14*(d_1**4)/32 #mm4\n", + "J_cd = 3.14*(d_2**4 - d_1**4)/32 #mm4\n", + "J_de = 3.14*(d_2**4 - d_1**4)/32 #mm4\n", + "G = 80 #Gpa -shear modulus\n", + "rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G) \n", + "#now lets consider T_A then the torsion is only T_A\n", + "# T_A*(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) +rad = 0\n", + "# since there will be no displacement \n", + "T_A =-rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) #Torsion at A\n", + "T_B = 1150 - T_A #n-m F_X = 0 torsion at B\n", + "print \"The Torsion at rigid end A is\",round(T_A,2),\"N-m\"\n", + "print \"The Torsion at rigid end B is\",round(T_B,2),\"N-m\"\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Torsion at rigid end A is -141.72 N-m\n", + "The Torsion at rigid end B is 1291.72 N-m\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.12 Pagenumber 202" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "dai_bc = 240 #mm- daimeter of '8'bolt circle \n", + "dia = dai_bc/8 #Diameter of each bolt\n", + "A = 0.25*(dia**2)*3.14 # Area of a bolt\n", + "S_allow = 40 #Mpa - The maximum allowable allowable shear stress \n", + "P_max = (S_allow)*A #N - The maximum allowable force \n", + "D = 120.0 #mm - the distance from central axis \n", + "T_allow =P_max*D*8 #N-m The allowable torsion on the 8 bolt combination \n", + "print \"The allowable torsion on the 8 bolt combination\",T_allow ,\"N-m\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The allowable torsion on the 8 bolt combination 27129600.0 N-m\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.15 page number 211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#AISC MANUALS\n", + "#approximated by three narrow tubes \n", + "#J = Bbt^3\n", + "B = 0.33 # constant mentiones in AISC\n", + "#three rods \n", + "\n", + "#rod_1\n", + "t_1 = 0.605 #inch - Thickness \n", + "b = 12.0 #inches - width \n", + "J_1 = B*b*(t_1**3) #in4 - Torsion constant \n", + "\n", + "#rod_2\n", + "t_2 = 0.605 #inch - Thickness \n", + "b = 12 #inches - width \n", + "J_2 = B*b*(t_2**3) #in4 - Torsion constant \n", + "\n", + "#rod_3\n", + "t_3 = 0.390 #inch - Thickness \n", + "b = 10.91 #inches - width \n", + "J_3 = B*b*(t_3**3) #in4 - Torsion constant \n", + "\n", + "#Equivalent\n", + "J_eq = J_1+J_2+J_3 #in4 - Torsion constant \n", + "print \"the Equivalent Torsion constant is \",round(J_eq,2), \"in4\"\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the Equivalent Torsion constant is 1.97 in4\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.16 page number 214" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "dia_out = 10 #mm- outer diameter of shaft\n", + "dia_in = 8 #mm- inner diameter of shaft \n", + "c_out = dia_out/2 #mm - outer Radius of shaft \n", + "c_in = dia_in/2 #mm - inner radius of shaft \n", + "T = 40 #N/mm -Torque in the shaft \n", + "#caliculations\n", + "\n", + "J = 3.14*((dia_out**4)- (dia_in**4))/32 #mm4\n", + "shear_T_max = T*c_out*pow(10,3)/J # The maximum torsion shear in the shaft\n", + "shear_T_min = T*c_in*pow(10,3)/J # The maximum torsion shear in the shaft\n", + "print \"The maximum shear due to torsion is \",round(shear_T_max,2),\"Mpa\"\n", + "print \"The minimum shear due to torsion is \",round(shear_T_min,2),\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum shear due to torsion is 345.23 Mpa\n", + "The minimum shear due to torsion is 276.18 Mpa\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5.ipynb new file mode 100644 index 00000000..089d0b85 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5.ipynb @@ -0,0 +1,870 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:71148b069e338fd0ffabcfe7f6bd37d7ab47477a297f58633926ede4f66ab53c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Chapter 5:Axial force, Shear and Bending moment " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example5.2 pagenumber 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "L_ab = 0.4 #mt The total length of the rod\n", + "M = 200 #N_m - the moment acting on rod\n", + "l_1 = 0.1 #mt -moment acting point the distance from 'a'\n", + "R_1 = 100 #N - The Force acting \n", + "l_2 = 0.2 #mt -R_1 acting point the distance from 'a'\n", + "R_2 = 160 #N The Force acting \n", + "l_3 = 0.3 #mt -R_2 acting point the distance from 'a'\n", + "#caliculations\n", + "\n", + "#F_X = 0 forces in x directions \n", + "R_A_X = 0 # since there are no forces in X-direction \n", + "R_B_X = 0\n", + "#M_A = 0 momentum at point a is zero\n", + "\n", + "# M + R_1*l_2 + R_2*l_3 = R_B*L_ab *the moment for a force is FxL\n", + "R_B_Y = (M + R_1*l_2 + R_2*l_3)/L_ab\n", + "\n", + "#M_B= 0 momentum at point b is zero\n", + "# R_A_Y*L_ab + M - R_1*l_2 - R_2*0.1 = 0\n", + "\n", + "R_A_Y = -(M - R_1*l_2 - R_2*0.1)/L_ab\n", + " \n", + "print \"The X,Y components of reaction force at A is \",R_A_X,\",\",R_A_Y,\"N\"\n", + "print \"The X,Y components of reaction force at B is \",R_B_X,\",\",R_B_Y,\"N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The X,Y components of reaction force at A is 0 , -410.0 N\n", + "The X,Y components of reaction force at B is 0 , 670.0 N\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2 page number 233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "P_Max = 10 #N - the maximum distribution in a triangular distribution\n", + "L = 3 #mt the total length of force distribution \n", + "L_X = 5 #mt - the horizantal length of the rod\n", + "#caliculations \n", + "\n", + "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n", + "L_com = 2*L /3 #mt - the resultant force acting as a result of distribution acting position \n", + "#F_X = 0 forces in x directions\n", + "R_A_X = 0 # since there are no forces in X-direction\n", + "R_B_X = 0\n", + "#M_A = 0 momentum at point a is zero\n", + "#F_y*L_com - R_B_Y*L_X = 0\n", + "R_B_Y = F_y*L_com/L_X\n", + "\n", + "#M_B= 0 momentum at point b is zero\n", + "#- R_A_Y*L_X = F_y*(L_X-L )\n", + "\n", + "R_A_Y = - F_y*L/L_X \n", + "print \"The X,Y components of reaction force at A is \",R_A_X,\",\",R_A_Y,\"N\"\n", + "print \"The X,Y components of reaction force at B is \",R_B_X,\",\",R_B_Y,\"N\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The X,Y components of reaction force at A is 0 , -9.0 N\n", + "The X,Y components of reaction force at B is 0 , 6.0 N\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "\n", + "Example 5.3 page number 233\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "F = 5 #K - force acting on the system\n", + "tan = (4/3) # the Tan of the angle of force with x axis\n", + "l_ab = 12 #inch - the total length of ab \n", + "l = 3 # inch - Distance from 'a'\n", + "#caliculation\n", + "F_X = 4 #K\n", + "F_Y = 3 #k\n", + "\n", + "#M_A = 0 momentum at point a is zero\n", + "# F_X*l- R_B_Y*l_ab = 0 \n", + "R_B_Y = F_X*l/l_ab\n", + "\n", + "#M_B= 0 momentum at point b is zero\n", + "# R_A_Y*l_ab - F_X*(l_ab - l)\n", + "R_A_Y = F_X*(l_ab - l)/l_ab\n", + " \n", + "#F_X = 0 forces in x directions\n", + "R_A_X = F_Y + R_B_Y \n", + "R_B_X = R_B_Y # since the angle is 45 degrees\n", + "\n", + "#resultants \n", + "R_A = pow(R_A_X**2 + R_A_Y**2,0.5)\n", + "R_B = pow(R_B_X**2 + R_B_Y**2,0.5)\n", + "\n", + "print \"The X,Y components and resultant of reaction force at A is \",R_A_X,\",\",R_A_Y,\",\",R_A,\"N\"\n", + "print \"The X,Y components and resultant of reaction force at B is \",R_B_X,\",\",R_B_Y,\",\",round(R_B,2),\"N\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The X,Y components and resultant of reaction force at A is 4 , 3 , 5.0 N\n", + "The X,Y components and resultant of reaction force at B is 1 , 1 , 1.41 N\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.4 page number 239" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "P_Max = 10 #N - the maximum distribution in a triangular distribution\n", + "L = 3 #mt the total length of force distribution \n", + "L_X = 5 #mt - the horizantal length of the rod\n", + "#caliculations \n", + "\n", + "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n", + "L_com = 2*L /3 #mt - the resultant force acting as a result of distribution acting position \n", + "#F_X = 0 forces in x directions\n", + "R_A_X = 0 # since there are no forces in X-direction\n", + "R_B_X = 0\n", + "#M_A = 0 momentum at point a is zero\n", + "#F_y*L_com - R_B_Y*L_X = 0\n", + "R_B_Y = F_y*L_com/L_X\n", + "\n", + "#M_B= 0 momentum at point b is zero\n", + "#- R_A_Y*L_X = F_y*(L_X-L )\n", + "\n", + "R_A_Y = - F_y*L/L_X\n", + "\n", + "#For a---a section \n", + "l_a = 2 #mt - a---a section from a \n", + "l_com_a = 2*l_a/3\n", + "v_a = R_A_Y + 0.5*l_a*(10.0*2/3) #*(10*2/3) because the maximum moves\n", + "\n", + "M_a = (10.0*0.66)*l_a*(0.33) + R_A_Y*l_a \n", + "\n", + "#For b---b section \n", + "\n", + "v_b = F_y + R_A_Y #equilabrium conditions\n", + "M_b = (F_Y + R_A_Y)*(-1)\n", + "\n", + "print \"The force and moment in section a--a are\",round(v_a,2),\"KN ,\",M_a,\"KN-m\"\n", + "print \"The force and moment in section b--b are\",v_b,\"KN ,\",M_b,\"KN-m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The force and moment in section a--a are -2.33 KN , -13.644 KN-m\n", + "The force and moment in section b--b are 6.0 KN , 6.0 KN-m\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.5 page number 241" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#Lets divide the section into two sections \n", + "l_ac = 10 # ft -The total length of the rod\n", + "R = 5 #k - The applies force at c\n", + "tan = 4/3 # The tan of the angle of the force \n", + "l_ab = 5 #ft - The distance of applied force from A\n", + "R_y = 4 #k,downwards X- component of the force\n", + "R_X = 3 #k Y- component of the force , lets consider only Y direction since we are concentrating on the Shears \n", + "\n", + "#F_Y = 0 forces in Y directions\n", + "#R_A +R_B = R_y\n", + "#M_c = 0 making the moment zero at point c \n", + "#Caliculations \n", + "# R_A= R_B*(l_ac - l_ab)/(l_ab) so R_A = R_B\n", + "\n", + "R_A = R_y/2 #F_Y = 0\n", + "R_B = R_y/2\n", + "#considering section x--x\n", + "l_x = 2 #ft - length of section from A\n", + "v_x = R_A #k ,F_X = 0 \n", + "M_x = R_A*l_x #k-ft M_c = 0\n", + "\n", + "#considering section at midpoint t--t\n", + "l_t = 2 #ft - length of section from A\n", + "v_t = 0 #k ,F_X = 0 \n", + "M_t = (R_A)*l_t #k-ft M_c = 0\n", + "\n", + "##considering section y---y\n", + "l_y = 2 #ft - length of section from B\n", + "v_y = - R_B #k ,F_X = 0 \n", + "M_y = R_B*l_y #k-ft M_c = 0\n", + "\n", + "#Graph\n", + "%matplotlib inline\n", + "import math \n", + "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n", + "#Drawing of shear and bending moment diagram\n", + "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n", + "X = [0,2,4.9999999999999,5,5.00000000000000001,7,10] # For graph precision \n", + "\n", + "V = [R_A,v_x,v_x,v_t,v_y,v_y,-R_B];\t\t\t#Shear matrix\n", + "M = [0,M_x,M_t,M_t,M_t,M_y,0];\t\t\t#Bending moment matrix\n", + "plot(X,V);\t\t\t#Shear diagram\n", + "plot(X,M,'r');\t\t\t#Bending moment diagram\n", + "suptitle( 'Shear and bending moment diagram')\n", + "xlabel('X axis')\n", + "ylabel( 'Y axis') ;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEhCAYAAABycqfJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xv8lGWd//HXW/AEhpL9VEwKzaVVlxQwQ1P7VlqWhZpu\nZLaLKZrlphi4asoG7uoWCppbuoaQh9ZoZdN0TcnUr9imJiKimKfQldI8rCgpHhA+vz+uGxnxe2Zm\nrpnv/X4+HvPgnpn78JkZvvOZ67ru+/ooIjAzs/LaIHcAZmaWlxOBmVnJORGYmZWcE4GZWck5EZiZ\nlZwTgZlZyTkRNClJp0t6QNJ9ku6V9OHi8SckvTt3fJ1pL05JL9foeJdKOrRYniFpp1ocpxFI2lXS\nZ7q4bqukEcXy9ZIG1DY6a0R9cwdg3SdpT+BAYHhErCy+UDcung5AVT5e34h4s5r7JMXZncercbwA\niIhjanSMRjEcGAnc0IV133q/I+LAahxcUp+IWFWNfVl9uEXQnLYBno+IlQAR8UJEPF3x/Dcl3SNp\nkaQPAkjqL2mWpLskLZA0unh8iKR5xfr3FEkGSS2Sbpf0C2DxugFIulDS3UWrZHLF409ImtzG8beU\n9Kti/Rl0kKwkTS/W+7Wk9xSPfUDSDZLmF/Gu2e+lkr4v6X8k/aHiV78k/UDSQ5JuAraq2H/lr+CX\nJf2LpIWS7pC0VcXx7ixew79I+ksbcQ4p9v9jSQ9L+g9JnypieaSilfZuSdcUrbc7JA0rHp8s6bLi\n9Twh6QuSzi2OeYOkvsV6I4uY50u6UdI2Fa/ju8Vn+rCkvSVtCJwJjClain+7TsybSpot6UFJPwc2\nXeeze3exfHVxvAckHVOxztHFse4qWlb/VvE5/LukO4HvSfqwpN8W/9f+R9LQYr0ji/fiV5Iel/QP\nkiYW690haWB7/y+shiLCtya7Af2Be4GHgR8C+1Y89zhwfLH8dWBGsXw2cESxvEWxbT/SF8HGxeN/\nBdxdLLcALwPvbyeGgcW/fYBbgb/p5PgXAGcUy58FVgPvbmO/q4HDi+VJwL8VyzcDOxbLHwFuLpYv\nBX5WLO8EPFosfwH4FSnhDAKWAV8onrsVGFFxvAOL5e8BpxfL/w2MKZa/BvyljViHACuBXYrjzAdm\nFs+NBq4ulv8NmFQsfxy4t1ieDMwr3sMPASuATxfP/Rw4CNgQ+C2wZfH4mIpj3AqcUyx/BripWB4L\nXNDO5/Yt4JJieVgR/5r34vE1n0nF57spcD8wENi2WGcLUm/CvDXHKT6HawEV998F9CmW9wPmFMtH\nAo+S/g+/B3gJOLZ4bjpwYu6/rzLe3DXUhCLiFUkjgX1IXyw/k3RqRFxWrPLz4t8FpC9EgE8Bn5c0\nsbi/MTAY+DPwA0m7AqtIyWCN30XE/7YTxpjil2Jf0hftzsADHRx/H+CQIv5fSlrWzn5XAz8rln8C\n/FxSf2Av4CrprYbERmveDuCaYr+/l7R18fi+wJWRvmGelnRLO8d7IyKuL5bvAfYvlkeRvswBfgqc\n2872j0fEYgBJi4FfF48/QEoUAB+leB8i4taidfSuIvYbImKVpAeADSJibrHN/cX2Q0mJ5tfFa+8D\nPFVx/Mr3es3xRPstrn2A7xex3C9pUTvrnSjp4GJ5uyKOQcBtEfFi8XqvKh6neC1XFe83pGRxuaQd\ni+cqv2tujYhXgFckvQhcV/GaP9ROPFZDTgRNKiJWA7cBt0m6n/QrcE0ieL34dxVv/4y/EBGPVu5H\nqVvn6Yj4O0l9gNcqnn6lrWNL2h6YAOweES9J+jGwScUq7R2/u2MXIn2JbAAsi4jh7az3RhvH6OpY\nycqK5dV0/2/i9Yrl1RWxrLuv9mJ5A9LnKamtWAQsjoi9Ojn+uu91Rzp8XyS1AJ8ERkXEa5JuJX2+\n647frLufFRXL/0xqtR0i6f1AaxsxQ3qdr1cs+zspA48RNCFJQyVV/nIfDjzRyWZzgRMq9rHmS3UA\nqVUA8PekX5ydGUBKEsuLX+BdOUNlHvDl4tifIXU1tGUDYE2/9peB2yPiL8Djkg4rtpekzn45ziO1\nWjaQNIjUcuqOO4HDiuUvdXPbdd0OHAFvfck+V7ymriSqh4H/J2lUsf2GknbuZJvlpK6ZtlR+Dn9D\n27/AB5AS72uS/prUOgrgbuBjkrYoxi8Opf3B/QGsbbl8tZN416jqSQ7WdU4EzWkz4FJJiyXdB/w1\nqb8Z3v6HGRX3/xnYsBiIfACYUjx+ITBW0kLgg6Rxgcrt3yEi7iONUTwE/Afwm3birDz+FGDf4tiH\nAO11Ob0C7FG0clpIA5+QvkiPLuJ8gLXdNm29ZiLialJf9IOkltJvO4ixrXjHA98qjvcBUl92Z9u3\nGQvpsxlZfFZnk1pv6x6vzX1FOiHgMNIA7ELS+75nJ7HcCuzc1mAxcBGwmaQHSZ/J/Db2cyPQt1jn\nX4E7imCeKuL/Hekzf5y3vy+V8U8F/lXSAtKPi6hYp73XvO5zVida26VnZmtI2jQiXi2Wv0QaOD4k\nc1jZSepfjFH1JY1PzIyIX+SOy9aP++PM2jZS0g9I3RXLgKMyx9MoJkvajzRmMNdJoHdwi8DMrOQ8\nRmBmVnJOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnLZE4GkPsWl8Nd1vraZmVVb9kQA\nnEiaD8ZXtpmZZZA1EUjajlSk5BI886CZWRa5WwTnASeT5iE3M7MMsiUCSZ8Dno2Ie3FrwMwsm2yT\nzkk6G/g74E3STIYDgP+KiL+vWMfjBmZmPRARXf6Bna1FEBHfjojBEbE9qQLULZVJoGK9ct8mTiTG\nj+c73/lO/lga5Ob3osHei//9X+I97yEWLfJ70SC37so9RlDJv/7XtXw5zJoFJ56YOxKz9r3vffDd\n78LYsbByZefrW8NpiEQQEbdFxOjO1yyZmTNh//1hyJDckZh17KijYJtt4KyzckdiPeAKZY3qzTfh\n/PNhzhwAWlpa8sbTQPxerNUw74UEM2bA8OEwejSMGFH3EBrmvWhCDV2hTFI0cnw1NXs2XHghzJuX\nOxKzrrviCpg6FebPh403zh1NaUkimmGw2DoQAdOmwYQJuSMx656vfAU+8AGYMiV3JNYNTgSN6Pbb\n4aWX4POfzx2JWfdIcPHFaXzrrrtyR2Nd5ETQiKZNg299Czbwx2NNaOut4YIL0llEr76aOxrrAo8R\nNJqHH4Z99oEnnoB+/XJHY9ZzX/wiDB6cfthYXXV3jMCJoNEcdxxstRWceWbuSMzWz/PPw7BhcNVV\nsPfeuaMpFSeCZvbcczB0KDz0UGpemzW7a66Bk0+GhQuhf//c0ZSGzxpqZhddBIce6iRgvcfBB8Oo\nUXDqqbkjsQ64RdAoXnstXUF8yy2w8865ozGrnmXLUhfR5ZfDJz6RO5pScIugWf3kJzBypJOA9T4D\nB8KPfpSmoVi+PHc01ga3CBrB6tWwyy7wwx/6F5P1XkcfDX37pusMrKbcImhGN9wAm2wCH/947kjM\namf6dLjxRpg7N3cktg4ngkawZjoJuVCb9WKbb56uOB43Dl58MXc0VsFdQ7nde2+arXHJEthww9zR\nmNXe17+erji+9NLckfRa7hpqNtOmwQknOAlYeZxzTppV99prc0diBbcIclq6FHbdNbUGttgidzRm\n9XPbbfDlL8OiRbDllrmj6XV8ZXEzOfnkVIDmvPNyR2JWf+PHw7PPwpVX5o6k13EiaBbLl8P228M9\n97gUpZXTihWpotnZZ6cr6q1qPEbQLFyP2MquX780YHz88allYNm4RZDDm2+mKk5z5sCHP5w7GrO8\n/vEf4Q9/SH8PPoW6KtwiaAZz5sD73+8kYAZpyvWHHkp1ui0LtwjqLQL22APOOAMOOih3NGaNYf58\nOPDANF31oEG5o2l6bhE0OtcjNnun3XeHY49Nt972468JOBHUm+sRm7Vt0iR48km47LLckZSOu4bq\nyfWIzTq2cGE6m27BglTv2HrEXUON7LzzUk1iJwGztu22W5pyZdw4dxHVkVsE9eJ6xGZds3Il7Lnn\n2jED67amubJY0ibAbcDGwEbALyLitHXW6T2J4Mwz09xCM2bkjsSs8S1eDC0tcPfdvuiyB5omEQBI\n6hcRKyT1BX4DTIyI31Q83zsSwZp6xLfeCjvtlDsas+YwdWoq2nTzzT65opuaaowgIlYUixsBfYAX\nMoZTO2vqETsJmHXdhAnpR9QPf5g7kl4vd4tgA2AB8AHgooj4x3Web/4WgesRm/Xcww/DRz8Kd94J\nO+6YO5qm0WwtgtURsRuwHbCvpJac8dSE6xGb9dwHP5iuwj/ySFi1Knc0vVbf3AEARMRLkq4Hdgda\nK5+bPHnyW8stLS20tLTUM7T1N20aTJzoybTMeuqEE+Dqq+H881N3kb1Da2srra2tPd4+51lD7wHe\njIgXJW0KzAWmRMTNFes0d9eQ6xGbVceSJWmOrttv91hbFzRT19Ag4BZJC4G7gOsqk0Cv4HrEZtWx\nww7pFOyxY9M07lZVvqCsVlyP2Ky6Vq+GT30KPvlJOO20ztcvsaa6jqAzTZ0IXI/YrPqefDKdin3L\nLTBsWO5oGpYTQSNwPWKz2pk5M52Ofddd7nZtRzONEfRerkdsVjtHHQXbbANnnZU7kl7DLYJqcz1i\ns9r7059g+HC48UYYMSJ3NA3HLYLcXI/YrPbe+950Vt7YsfD667mjaXpOBNUUkf5z+qIXs9r7yldS\n63vKlNyRND0ngmpyPWKz+pHg4oth1qw0cGw95kRQTa5HbFZfW28NF1yQuohefTV3NE3Lg8XV4nrE\nZvmMGQPbbZd+jJmvI8jmuONgq63SZfBmVl/PP58uMLvqKth779zRZOdEkIPrEZvld8016Yr+hQuh\nf//c0WTl00dzuOgiOOwwJwGznA4+GEaNglNPzR1J03GLYH25HrFZ41i2LHURXX55qSsCukVQb1dc\n4XrEZo1i4ED40Y/SNBTLl+eOpmm4RbA+XI/YrDEdfTT07ZuuMyghtwjqyfWIzRrT9OlpHqK5c3NH\n0hScCNaH6xGbNabNN0+zAI8bBy++mDuahueuoZ5asAAOOsj1iM0a2Te+AStWwKWX5o6krtw1VC+u\nR2zW+KZOhXnz4Nprc0fS0Nwi6AnXIzZrHrfdBl/+MixaBFtumTuauvCVxfXgesRmzWX8eHj2Wbjy\nytyR1IUTQa25HrFZ81mxIlU0O/tsOPTQ3NHUnMcIas31iM2aT79+acD4+ONTy8Dexi2C7nA9YrPm\ndsop8Nhj6W+4F5/27RZBLbkesVlzmzIlzRI8e3buSBqKWwRdFQF77AGTJsHo0bmjMbOemj8fDjww\nTVc9aFDuaGrCLYJauf32NFD8uc/ljsTM1sfuu8Oxx6Zbo/zQzMyJoKumTYOTTnI9YrPeYNKkdD3Q\nZZfljqQhuGuoK1yP2Kz3ue8+2G+/NF3M4MG5o6mqpukakjRY0q2SFkt6QNIJuWLp1HnnpZrETgJm\nvceuu6ZpYsaNK30XUbYWgaRtgG0iYqGkzYB7gIMj4vcV6+RvEbgesVnvtXIl7Lnn2jGDXqJpWgQR\n8eeIWFgsvwz8Htg2Vzztcj1is95rww3TOMHpp6eu35JqiDECSUOA24BdiqSw5vG8LQLXIzYrh6lT\nU6Gpm2/uFSeEdLdF0LeWwXRF0S00BzixMgmsfX5yxb2W4lYf47iCgxnJ53Z2ErC3GzgQXnghdxRW\nNRMmwDXXpLKz3/xm7mi6rbW1ldbW1h5vn7VFIGlD4L+BGyLi/Daez9cicD1i64BU+vHF3ueRR2Cv\nveDOO2HHHXNHs16aZoxAkoCZwINtJYHsbrgBNt3U9YjNymLoUDjjDDjySFi1Knc0dZWzM+yjwFeA\nj0u6t7gdkDGet5s2LTUXe/HEVGa2jhNOgD594PzG+21aSw0xWNyebF1DrkdsnXDXUC+2ZAl85COp\nxGWTniTSNF1DDc31iM3Ka4cd4MwzYezYNPV8CbhFsC7XI7YucIugl4uAT30qnShy2mm5o+k2l6pc\nXyefnAaKpk+v73GtqTgRlMCTT8LIkXDLLTBsWO5ousWJYH2sqUe8YEEqQGPWDieCkpg5M51Cftdd\nTdVV7DGC9bGmHrGTgJkBHHVUKl5z1lm5I6kptwjWcD1i6wa3CErkqadgt93gxhthxIjc0XSJWwQ9\n5XrEZtaWbbdNY4Zjx8Lrr+eOpiacCCD9tJs2DSZOzB2JmTWiI45IPQZTpuSOpCacCMD1iM2sYxJc\nfDHMmpUGjnsZJwJwPWIz69zWW8MFF6QuoldfzR1NVXmw2PWIrQc8WFxiY8bAdtulH5ANytcRdNdx\nx8FWW6VLys26yImgxJ5/Pl1gdtVVsPfeuaNpkxNBd7gesfWQE0HJXXNNmoVg4ULo3z93NO/g00e7\nw/WIzawnDj4YRo2CU0/NHUlVlLdF8OqrqR5xa2vTTjVr+bhFYCxblrqILr+84aoYukXQVT/5Cey+\nu5OAmfXMwIEwY0aahmL58tzRrJdytghcj9jWk1sE9pZx41JVs4svzh3JW9wi6ArXIzazapk2Lc1D\nNHdu7kh6rJyJwPWIzaxaNt88zVw8bhy8+GLuaHqk00Qg6YuSBhTLkyRdLak5puBry4IF8Oij8MUv\n5o7EzHqL/faDz38exo/PHUmPdKVFMCkilkvaG/gkMBO4qLZh1ZDrEZtZLUydmuYtu/ba3JF0W1cS\nwari388BMyLiv4GNahdSDS1dmsYHjjkmdyRm1ttsthn8+Mfw9a/D//1f7mi6pSuJ4E+SfgSMAa6X\ntEkXt2s8F1wARx7povRmVhv77pu6nb/5zdyRdEunp49K6g8cACyKiEclDQKGRcSvah5cNU8fdT1i\nqyKfPmrtWrEChg+Hs8+GQw/NEkLV5hqSNKAYG3h3W89HxAs9jLHLqpoIpk+H3/0OZs+uzv6s1JwI\nrEN33AGHHAKLFqVJLeusmong+og4UNITwDtWiojtexxlF1UtEbgesVWZE4F16pRT4LHH0vdOnU9V\n9+yjbZk9Gy68EObNW/99meFEYF3w2mswciSccQYcfnhdD131K4slHb3O/b6SvtOT4LJwPWIzy2GT\nTeCyy9K1BU8/nTuaDnXl7J/9JP1S0raS/ga4AxhQjYNLmiXpGUn3V2N/bXI9YjPLZffd4dhj062B\nm5Bd6hqS9CXgB8ArwBER8ZuqHFzaB3gZuDwihrXx/Pp3DY0eDZ/9bKpEZlYl7hqyLnvjDdhjj9Qy\nOPLIuhyy6mMEkoYClwIPADsBi4EJEfHKesRZuf8hwHU1SQSuR2w14kRg3XLffWkaigULYPDgmh+u\nFrOPXgv8U0QcC3wMeBS4u4fx1dd556Wr/JwEzCynXXeFE09ME9M14C+Ivl1Y5yMR8RJARKwGpkm6\nrrZhrTV58uS3lltaWmhpaenahs89Bz/7WWoVmJnlduqpqdbxjBlpzKCKWltbaW1t7fH2XR0jGAbs\nDGxCcU1BRFze46O+fd9DqEXX0JlnprmFZsxYr/jM2uKuIeuRxYuhpQXuvjuVyq2RWowRTCZ1Ce0C\nXA98BvhNRBy2HnFW7n8I1U4ErkdsNeZEYD02dWqa/PLmm2GD2kzbVosxgsOA/YCnI+KrwK5AVWZt\nk/RT4LfAUElLJX21Gvt1PWIza1gTJsDrr6dSuQ2iKy2CuyPiw5LuAT4BLAceiogP1jy4nrQI1tQj\nvvBCl6K0mnGLwNbLI4/AXnvBnXfCjjtWffe1aBHcLWkgMAOYD9xL+hXfmNbUI+7qoLKZWb0NHQqT\nJqXrClat6nT1WuvWXEOStgcGRMR9tQvpbcfrfovgE5+Ao4+GI46oTVBmuEVgVbB6deq1GD06dRdV\nUbknnVuwAA46CJYscSlKqyknAquKJUvgIx9JE2JWcUyzFl1DzcP1iM2smeywQzrVfezYNF1+Ju0m\nAkk3FF1BzWHpUrjxxqpfqGFmVlPHHQebbw7nnJMthI5aBLOAuZJOl9T4P7EvuCBl1c03zx2JmVnX\nSTBzZqqieH/tJmLuMISO+uAlbQb8E/Bp4ArWViqLiJhe8+C6OkbgesRWZx4jsKqbOTNdW3DXXevd\nvV3tMYKVpGmiNwHeBWxW3N7V4whr4ZJLYP/9nQTMrHkddRQMGgRnnVX3Q3dUs/gAYDpwHTAlIlbU\nM7Aihs5bBK5HbBm4RWA18dRTsNtuabxzxIge76aaLYLTgb+NiFNyJIEumzMnzSvkJGBmzW7bbdNY\nwdixaRqKOumoRVClyvE912kIEanyz6RJ6aIMszpxi8BqJgK+8IV0XcHZZ/doF1VrEeROAl3iesRm\n1ttI8O//DrNmpYHjOmjuC8rOPRdOOqlmU7mamWWx9dZrT4l/9dWaH655p5hwPWLLyF1DVhdjxsB2\n26VZE7qhPHMNHXdcyppTptQ3KDOcCKxOnn8ePvQh+M//hL337vJm5UgEzz2XpnF9+GHYaqv6B2al\n50RgdfOLX8DEibBwIfTv36VNyjHp3EUXwWGHOQmYWe930EGw555w6qk1O0TztQhcj9gagFsEVlfL\nlsGwYXD55anmSid6f4vA9YjNrGwGDoQZM9I0FMuXV333zdUicD1iaxBuEVgW48ZBnz5w8cUdrta7\nWwSuR2xmZTZ9Osydm25V1FyJ4NxzU21PdTnRmZn1HgMGpNmWx42DF1+s2m6bp2vI9YitgbhryLL6\nxjdgxQq49NI2n+69XUOuR2xmlkydmuZau/baquyuOVoES5emObqXLHEpSmsIbhFYdvPmweGHw6JF\nsOWWb3uqd15ZfPLJsGpVGigxawBOBNYQTjoJnnkGrrzybQ/3vkTw0kuuR2wNx4nAGsKKFTB8eKpb\ncOihbz3c+8YIXI/YzKxt/fqlAePjj4dnn+3xbrK2CIq6yOcDfYBLIuJ76zwf8b73uR6xNRy3CKyh\nnHIKPPZY+q6UmqdFIKkP8APgAGBn4HBJ75w3wvWIzcw6NmUKPPQQzJ7do81zdg3tATwWEU9ExEpg\nNnDQO9aaMKHecZmZNZdNNkkT0o0fD08/3e3NcyaC9wJLK+7/sXjs7VyP2MyscyNHwte+Bsce2+1N\n+9YgnK7qUg/r5DPPfGu5paWFFs8zZGb2Nq2trbS2tqaBqwULur19tsFiSaOAyRFxQHH/NGB15YBx\nh6UqzTLyYLE1rFWrUN++zTFYDMwH/krSEEkbAWOA6lwvbWZWVn36dHuTbF1DEfGmpH8A5pJOH50Z\nEb/PFY+ZWVk1/pXFDRyflZe7hqyRNc11BGZm1hicCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErO\nicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonA\nzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys\n5JwIzMxKLksikPS3khZLWiVpRI4YzMwsydUiuB84BJiX6fhmZlbom+OgEfEQgKQchzczswoeIzAz\nK7matQgk3QRs08ZT346I62p1XDMz656aJYKI2L8a+5k8efJbyy0tLbS0tFRjt2ZmvUZrayutra09\n3l4RUb1ountw6VZgYkTc087zkTM+s/ZI4P+a1qgkERFdHoTNdfroIZKWAqOA6yXdkCMOMzPL3CLo\njFsE1qjcIrBG1hQtAjMzaxxOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedE\nYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBm\nVnJOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedEYGZWck4EZmYllyURSDpH\n0u8l3Sfp55I2zxGHmZnlaxH8CtglInYFHgFOyxRH02htbc0dQsPwe7GW34u1/F70XJZEEBE3RcTq\n4u5dwHY54mgm/k++lt+LtfxerOX3oucaYYzgKOCXuYMwMyurvrXasaSbgG3aeOrbEXFdsc7pwBsR\ncWWt4jAzs44pIvIcWDoSOAb4ZES81s46eYIzM2tyEaGurluzFkFHJB0AnAx8rL0kAN17IWZm1jNZ\nWgSSHgU2Al4oHrojIr5R90DMzCxf15CZmTWGRjhr6B0kHSDpIUmPSjoldzw5SRos6VZJiyU9IOmE\n3DHlJKmPpHslXZc7lpwkbSFpTnFh5oOSRuWOKRdJpxV/H/dLulLSxrljqhdJsyQ9I+n+isfeLekm\nSY9I+pWkLTrbT8MlAkl9gB8ABwA7A4dL2ilvVFmtBE6KiF2AUcDxJX8/TgQeBMrelP0+8MuI2An4\nEPD7zPFkIWkI6aSTERExDOgDfClnTHX2Y9J3ZaVTgZsiYihwc3G/Qw2XCIA9gMci4omIWAnMBg7K\nHFM2EfHniFhYLL9M+oPfNm9UeUjaDvgscAlQ2hMJiilZ9omIWQAR8WZEvJQ5rFyWk34s9ZPUF+gH\n/ClvSPUTEbcDy9Z5eDRwWbF8GXBwZ/tpxETwXmBpxf0/Fo+VXvHrZzjpauwyOo90ttnqzlbs5bYH\nnpP0Y0kLJM2Q1C93UDlExAvANOBJ4CngxYj4dd6osts6Ip4plp8Btu5sg0ZMBGVv8rdJ0mbAHODE\nomVQKpI+BzwbEfdS4tZAoS8wArgwIkYAr9CF5n9vJOkDwHhgCKmlvJmkI7IG1UAinQ3U6XdqIyaC\nPwGDK+4PJrUKSkvShsB/AT+JiGtyx5PJXsBoSY8DPwU+IenyzDHl8kfgjxFxd3F/DikxlNHuwG8j\n4v8i4k3g56T/K2X2jKRtACQNAp7tbINGTATzgb+SNETSRsAY4NrMMWUjScBM4MGIOD93PLlExLcj\nYnBEbE8aDLwlIv4+d1w5RMSfgaWShhYP7QcszhhSTg8BoyRtWvyt7Ec6maDMrgXGFstjgU5/PGa5\nsrgjEfGmpH8A5pLOAJgZEaU8I6LwUeArwCJJ9xaPnRYRN2aMqRGUvQvxm8B/FD+W/gB8NXM8WUTE\nfUXLcD51AFV7AAACD0lEQVRp7GgB8KO8UdWPpJ8CHwPeI2kp8E/Ad4H/lHQ08ATwxU734wvKzMzK\nrRG7hszMrI6cCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicBKq5jie4mkgcX9gcX991Vh3/+z\n/hGa1YevI7BSk3QysGNEfE3SxcCSiPhe7rjM6sktAiu780hTFIwnzVFzblsrSbpa0vyiONAxxWPv\nL4p/bClpA0m3S9qveO7l4t9BkuYVxXTul7R3nV6XWZe5RWClJ+nTwA3A/hFxczvrDIyIZZI2BX4H\n7FvcPxr4NHA3sENEfL1Y/y8R8S5JE4CNI+LsYi6c/mWcPdYam1sEZvAZ0lz2wzpY50RJC4E7gO2A\noQARMRPYHPgaMLGN7X4HfFXSd4APOQlYI3IisFKTtBtpxso9gZPWTN+7zjotwCeBURGxG7AQ2Lh4\nrh8pMQTwrnW3LSpI7UOaXv1SSX9Xm1di1nNOBFZaRVfNRaRiP0uBc2h7jGAAsCwiXpP016Ta0Wt8\nD7gC+A4wo41jvA94LiIuIZXYHF7dV2G2/pwIrMyOAZ6oGBe4ENhJ0j7rrHcj0FfSg8C/krqHkPQx\nYCTwvYi4EnhD0pp54NcMvn0cWChpAWk64O/X7NWY9ZAHi83MSs4tAjOzknMiMDMrOScCM7OScyIw\nMys5JwIzs5JzIjAzKzknAjOzknMiMDMruf8PP5JcgJ4iq3UAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.6 pagenumber 243 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "l = 1 #L - Length of the cantilever \n", + "F_app = ((2**0.5))*2 #p - force applies \n", + "tan = 1 # The angle of force applied\n", + "F_app_x = F_app/((2**0.5)) #p The horizantal component of the force , neglected \n", + "F_app_y = F_app/((2**0.5)) #p The Vertical component of the force \n", + "#F_Y = 0 \n", + "R_A = 1 #p\n", + "\n", + "#Considering section 1-----1\n", + "l_1 = 0.5 # The length of the section from one end\n", + "v_1 = R_A #F_Y = 0\n", + "M_1 = -R_A*l_1 #MAking moment at section 1 = 0\n", + "\n", + "#considering end of cantilever\n", + "l_2 = 1 # The length of the section from one end\n", + "v_2 = R_A #F_Y = 0\n", + "M_2 = -R_A*l_2#MAking moment at section 1 = 0\n", + "\n", + "#Graph\n", + "%matplotlib inline\n", + "import math \n", + "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n", + "#Drawing of shear and bending moment diagram\n", + "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n", + "X = [0,0.5,1] # For graph precision \n", + "\n", + "V = [R_A,v_1,v_2 ];\t\t\t#Shear matrix\n", + "M = [0,M_1,M_2];\t\t\t#Bending moment matrix\n", + "plot(X,V);\t\t\t #Shear diagram\n", + "plot(X,M,'r');\t\t\t #Bending moment diagram\n", + "suptitle( 'Shear and bending moment diagram')\n", + "xlabel('X axis')\n", + "ylabel( 'Y axis') ;\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGVdJREFUeJzt3XuYJXV95/H3hxlUQAggRlBUvICIF4Io4gVp14ly2cVl\nvCCaRI2PsrImZqMrGmMYN4ksxrheWA0iUZM1okZUlIuiTgsqIsj9phBhF4XwoCAKeOHy3T+qBs40\np6ere/pc+vT79Tz9zO+c+p2q7/md6fp0VZ2qSlUhSVIXm4y6AEnS0mFoSJI6MzQkSZ0ZGpKkzgwN\nSVJnhoYkqTNDY8IleXuSS5JcmOT8JE9rn78mybajrm8us9WZ5NYBLe/jSV7Uto9L8vhBLGccJNk9\nyf4d+04neUrbPjnJVoOtTuNq5agL0OAkeQZwILBHVd3Rrnzv304uIIu8vJVVdedizpOmzvk8vxjL\nK4Cqeu2AljEu9gD2BE7t0Pee8a6qAxdj4UlWVNVdizEvDY9bGpNte+CnVXUHQFXdVFXX90z/kyTf\nT3JRkscBJNkiyT8mOTvJeUkOap/fKckZbf/vt4FEkqkkZyb5InDpzAKSfCjJOe3Wzpqe569JsqbP\n8h+U5Ktt/+PYQLAleW/b72tJtmufe0ySU5Oc29a7br4fT/L+JN9O8m89WxNJckySK5KcDvxuz/x7\n/7q+NcnfJLkgyVlJfrdned9t38PfJPllnzp3auf/sSQ/SPLJJM9va/lhz9bftkm+0G4VnpXkSe3z\na5J8on0/1yRZneQ97TJPTbKy7bdnW/O5SU5Lsn3P+/if7Wf6gyTPTrIp8D+AQ9ot0JfMqHmzJCck\nuSzJicBmMz67bdv259vlXZLktT19XtMu6+x2i+2DPZ/DPyT5LnB0kqcl+U77f+3bSXZp+72qHYuv\nJrk6yRuSvLntd1aSbWb7f6EBqyp/JvQH2AI4H/gB8L+B5/RMuxr4r2379cBxbftdwCva9tbtazen\nWWncv31+Z+Cctj0F3Ao8cpYatmn/XQGsBZ44x/I/APxl2z4AuBvYts987wYObdvvAD7Ytr8OPLZt\nPx34etv+OPDptv144Mq2vRr4Kk047QDcDKxup60FntKzvAPb9tHA29v2l4FD2vZhwC/71LoTcAfw\nhHY55wLHt9MOAj7ftj8IvKNtPxc4v22vAc5ox/DJwO3AC9ppJwIvBDYFvgM8qH3+kJ5lrAX+rm3v\nD5zetl8JfGCWz+3PgY+27Se19a8bi6vXfSY9n+9mwMXANsBD2z5b0+zNOGPdctrP4SQg7eMtgRVt\nexXwr237VcCVNP+HtwNuAV7XTnsv8MZR/34t1x93T02wqrotyZ7APjQroU8neWtVfaLtcmL773k0\nK0+A5wP/Kcmb28f3Bx4O/DtwTJLdgbtogmOd71XV/52ljEPav0BX0qyUdwMu2cDy9wEObus/JcnN\ns8z3buDTbfv/ACcm2QJ4JvDZ5J4NlPutGw7gC+18L0/ykPb55wD/Us3a6Pok35hleb+tqpPb9veB\n32/be9Os+AE+BbxnltdfXVWXAiS5FPha+/wlNKEC8Czacaiqte1W15Zt7adW1V1JLgE2qaqvtK+5\nuH39LjSh9LX2va8ArutZfu9Yr1temH1Lbh/g/W0tFye5aJZ+b0zyn9v2jm0dOwDfrKqft+/3s+3z\ntO/ls+14QxMs/5Tkse203nXS2qq6Dbgtyc+BL/W85yfPUo8GzNCYcFV1N/BN4JtJLqb563JdaPym\n/fcu1v+/sLqqruydT5pdS9dX1R8mWQH8umfybf2WneRRwJuAp1bVLUk+Bjygp8tsy5/vsZbQrHA2\nAW6uqj1m6ffbPsvoemznjp723cz/d+c3Pe27e2qZOa/ZavktNJ9nkn61BLi0qp45x/JnjvWGbHBc\nkkwBzwP2rqpfJ1lL8/nOPN40cz6397T/mmZr8OAkjwSm+9QMzfv8TU/bddeIeExjgiXZJUnvFsEe\nwDVzvOwrwJ/2zGPdCngrmq0NgD+i+Ut2LlvRBMov2r/su3xT5wzg5e2y96fZ3dHPJsC6/fAvB86s\nql8CVyd5cfv6JJnrL9IzaLaGNkmyA80W2Xx8F3hx237ZPF8705nAK+CeFfKN7XvqEmo/AB6cZO/2\n9Zsm2W2O1/yCZvdQP72fwxPp/5f9VjQh/esku9JsdRVwDrBvkq3b4y0vYvYvLmzFvVtEr56j3nUW\n9Qscmh9DY7I9EPh4kkuTXAjsSrN/HNb/Ja6ex38NbNoeZL0EeGf7/IeAVya5AHgczXGM3tffR1Vd\nSHNM5Qrgk8C3Zqmzd/nvBJ7TLvtgYLbdXrcBe7VbT1M0B3WhWem+pq3zEu7dddTvPVNVn6fZd34Z\nzRbYdzZQY796/wz483Z5j6HZ9z7X6/vWQvPZ7Nl+Vu+i2Sqcuby+86rmyw4vpjm4fAHNuD9jjlrW\nArv1OxAOfBh4YJLLaD6Tc/vM5zRgZdvnKOCstpjr2vq/R/OZX83649Jb/7uBo5KcR/OHSPX0me09\nz5ymIcq9uxYlzVeSzarqV237ZTQHxQ8ecVkjl2SL9pjaSprjKcdX1RdHXZc2nvsFpY2zZ5JjaHaZ\n3Az88YjrGRdrkqyiOcbxFQNjcrilIUnqzGMakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhI\nkjobaWikuW/DDe2lIGbr84EkV6a5x8BsF6KTJA3BqLc0PgbsN9vEJAfQ3BthZ+B1NNfDkSSNyEhD\no6rOpLn0wmwOor2Md1WdDWzdcx8ESdKQjXpLYy4PA67tefxjmhu9SJJGYNxDA+577XwvliVJIzLu\nV7n9Cc2tRtfZsX1uPUkMEklagKqa102txn1L4ySau8TR3pHs51V1Q7+Oo77Z+rj8HHnkkSOvYVx+\nHAvHwrHY8M9CjHRLI8mngH2B7ZJcCxwJbApQVcdW1SlJDkhyFc2d2rreDlKSNAAjDY2qOrRDnzcM\noxZJ0tzGffeU5mlqamrUJYwNx+JejsW9HIuNMxF37ktSk/A+JGmYklATdiBckjRGDA1JUmeGhiSp\nM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhI\nkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeG\nhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1\nZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6mykoZFkvyRXJLkyyRF9pk8luSXJ+e3P\nX46iTklSY+WoFpxkBXAMsAr4CXBOkpOq6vIZXb9ZVQcNvUBJ0n2McktjL+Cqqrqmqu4ATgBe2Kdf\nhluWJGk2owyNhwHX9jz+cftcrwKemeTCJKck2W1o1UmS7mNku6doAmEu5wEPr6rbk+wPfAHYpV/H\nNWvW3NOemppiampqEUqUpMkxPT3N9PT0Rs0jVV3W3Ysvyd7Amqrar338NuDuqjp6A6+5Gtizqm6a\n8XyN6n1I0lKVhKqa1yGAUe6eOhfYOclOSe4HHAKc1NshyUOSpG3vRRNyN913VpKkYRjZ7qmqujPJ\nG4CvACuA46vq8iSHtdOPBV4MvD7JncDtwMtGVa8kaYS7pxaTu6ckaf6W2u4pSdISY2hIkjozNCRJ\nnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0ND\nktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjoz\nNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSp\nszlDI8lLk2zVtt+R5PNJnjL40iRJ46bLlsY7quoXSZ4NPA84HvjwYMuSJI2jLqFxV/vvfwSOq6ov\nA/cbXEmSpHHVJTR+kuQjwCHAyUke0PF1kqQJk6racIdkC2A/4KKqujLJDsCTquqrwyiwiyQ11/uQ\nJK0vCVWVeb1mtpVtkq3aYxnb9pteVTctoMaBMDQkaf4WOzROrqoDk1wD3KdTVT1qQVUOgKEhSfO3\nqKGxlBgakjR/CwmNLudpvGbG45VJjpxvcZKkpa/Lt6BWJTklyUOTPBE4C9hqMRaeZL8kVyS5MskR\ns/T5QDv9wiR7LMZyJUkLs3KuDlV1aJKXARcBtwGvqKpvbeyCk6wAjgFWAT8BzklyUlVd3tPnAOCx\nVbVzkqfTnFS498YuW5K0MF12T+0C/ClwIvD/gD9ov4a7sfYCrqqqa6rqDuAE4IUz+hwEfAKgqs4G\ntk7ykEVYtiRpAbrsnjoJ+Kuqeh2wL3AlcM4iLPthwLU9j3/cPjdXnx0XYdmSpAWYc/cU8PSqugWg\nqu4G/j7JlxZh2V2/7jTzyH7f16159KPhCU+AXXdl6sADmZqa2qjiJGnSTE9PMz09vVHz6PSV2yRP\nAnYDHkC70q6qf9qoBSd7A2uqar/28duAu6vq6J4+/wBMV9UJ7eMrgH2r6oYZ86r63Ofgs5+FU0+F\npz4VXvpSOPhgePCDN6ZMSZpYAzlPI8kamt1STwBOBvYHvlVVL15gnevmuxL4Ac2Vc68Dvgcc2udA\n+Buq6oA2ZN5XVfc5EL7eeRq/+lUTHAaIJG3QoELjEmB34Lyq2r09EP3Jqlq18FLvmff+wPuAFcDx\nVXVUksMAqurYts8xNNe+ug14dVWd12c+/U/uM0AkaVaDCo1zquppSb4P/AfgF8AVVfW4hZe6uDqd\nEW6ASNJ6BnJGOM35E9sAxwHnAucD31lAfaO12WawejV86lNw/fVw+OGwdi3svDOsWgUf+QjceOOo\nq5SksTava08leRSwVVVdOLiS5m+jrj3lFoikZcoLFm4sA0TSMmJoLCYDRNKEW+z7aZwKHF5VVy9G\ncYM08EujGyCSJtBih8ZLgL+lufbTu9vrQ42lod5PwwCRNCEWffdUkgcCfwW8APhn7r2ER1XVexda\n6GIb2U2YDBBJS9ggvnJ7B3ArzeVDtgQe2P5suaAKJ41f45W0zGxo99R+wHuBLwHvrKrbh1nYfIzd\n7V7dApG0BCz2MY0zgf9SVZcuRnGDNHah0csAkTSmFjs0xnhNvL4lU6oBImmMeJ7GUmKASBoxQ2Op\nMkAkjYChMQkMEElDYmhMGgNE0gAZGpPMAJG0yAyN5cIAkbQIDI3lyACRtECGxnJngEiaB0ND9zJA\nJM3B0FB/BoikPgwNzc0AkdQyNDQ/Boi0rBkaWjgDRFp2DA0tDgNEWhYMDS0+A0SaWIaGBssAkSaK\noaHhMUCkJc/Q0GgYINKSZGho9AwQackwNDReDBBprBkaGl8GiDR2DA0tDQaINBYMDS09Bog0MoaG\nljYDRBoqQ0OTwwCRBs7Q0GQyQKSBMDQ0+QwQadEYGlpeDBBpoxgaWr4MEGneDA0JDBCpI0NDmskA\nkWZlaEgbYoBI6zE0pK4MEMnQkBbEANEyZWhIG8sA0TJiaEiLyQDRhFsyoZFkW+DTwCOBa4CXVtXP\n+/S7BvgFcBdwR1XtNcv8DA0NlgGiCbSUQuPdwE+r6t1JjgC2qaq39ul3NbBnVd00x/wMDQ2PAaIJ\nsZRC4wpg36q6Icn2wHRV7dqn39XAU6vqZ3PMz9DQaBggWsKWUmjcXFXbtO0AN617PKPfj4BbaHZP\nHVtVx80yP0NDo2eAaIlZSGisHGAxpwPb95n09t4HVVVJZlvjP6uqrk/yYOD0JFdU1Zn9Oq5Zs+ae\n9tTUFFNTUwuqW1qwzTaD1aubn94AectbDBCNhenpaaanpzdqHqPcPTVVVf+eZAdgbb/dUzNecyRw\na1X9fZ9pbmlofN1+O5x2GnzmM82/BojGxEK2NDYZVDFzOAl4Zdt+JfCFmR2SbJ5ky7a9BfB84OKh\nVSgtls03b7Y+TjgBrrsODj8cvvEN2HlnWLUKPvIRuPHGUVcpdTLKr9x+BngEPV+5TfJQ4LiqOjDJ\no4ET25esBD5ZVUfNMj+3NLT0uAWiEVsyB8IXm6GhJc8A0QgYGtIkMEA0JIaGNGkMEA2QoSFNMgNE\ni8zQkJYLA0SLwNCQliMDRAtkaEjLnQGieTA0JN3LANEcDA1J/Rkg6sPQkDQ3A0QtQ0PS/Bggy5qh\nIWnhDJBlx9CQtDgMkGXB0JC0+AyQiWVoSBosA2SiGBqShscAWfIMDUmjYYAsSYaGpNEzQJYMQ0PS\neDFAxpqhIWl8GSBjx9CQtDQYIGPB0JC09BggI2NoSFraDJChMjQkTY5+AfKSl8Dq1QbIIjE0JE0m\nA2QgDA1Jk88AWTSGhqTlxQDZKIaGpOXLAJk3Q0OSwADpyNCQpJkMkFkZGpK0IQbIegwNSerKADE0\nJGlBlmmAGBqStLGWUYAYGpK0mCY8QAwNSRqUCQwQQ0OShmFCAsTQkKRhW8IBYmhI0igtsQAxNCRp\nXCyBADE0JGkcjWmAGBqSNO7GKEAMDUlaSkYcIIaGJC1VIwgQQ0OSJsGQAsTQkKRJM8AAMTQkaZIt\ncoAsJDQ2mfdSFkGSlyS5NMldSZ6ygX77JbkiyZVJjhhmjZI0djbfvAmIE06A666Dww+HtWth551h\n1So49li48caBljCS0AAuBg4GzpitQ5IVwDHAfsBuwKFJHj+c8pau6enpUZcwNhyLezkW95qYsRhR\ngIwkNKrqiqr64Rzd9gKuqqprquoO4ATghYOvbmmbmF+IReBY3MuxuNdEjsUQA2RUWxpdPAy4tufx\nj9vnJEmzGXCArFzEUteT5HRg+z6T/qKqvtRhFh7ZlqSNsS5AVq9e/yD6EUc0B9EXYKTfnkqyFnhT\nVZ3XZ9rewJqq2q99/Dbg7qo6uk9fA0aSFmC+354a2JbGPMxW8LnAzkl2Aq4DDgEO7ddxvm9akrQw\no/rK7cFJrgX2Bk5Ocmr7/EOTnAxQVXcCbwC+AlwGfLqqLh9FvZKkxkSc3CdJGo5x/vbUerqc6Jfk\nA+30C5PsMewah2WusUjyinYMLkry7SRPHkWdw9D1BNAkT0tyZ5LVw6xvmDr+jkwlOT/JJUmmh1zi\n0HT4HdkuyWlJLmjH4lUjKHPgkvxjkhuSXLyBPvNbb1bV2P8AK4CrgJ2ATYELgMfP6HMAcErbfjrw\n3VHXPcKxeAbwO217v+U8Fj39vgF8GXjRqOse4f+LrYFLgR3bx9uNuu4RjsUa4Kh14wD8DFg56toH\nMBb7AHsAF88yfd7rzaWypdHlRL+DgE8AVNXZwNZJHjLcModizrGoqrOq6pb24dnAjkOucVi6ngD6\nJ8C/AoO9vsJodRmLlwOfq6ofA1TVT4dc47B0GYvrga3a9lbAz6o5jjpRqupM4OYNdJn3enOphEaX\nE/369ZnEleV8T3p8DXDKQCsanTnHIsnDaFYYH26fmtSDeF3+X+wMbJtkbZJzk/zh0Kobri5jcRzw\nhCTXARcCbxxSbeNm3uvNcfjKbRddf9FnfvV2ElcQnd9TkucCfww8a3DljFSXsXgf8NaqqiRh9q94\nL3VdxmJT4CnA84DNgbOSfLeqrhxoZcPXZSz+ArigqqaSPAY4PcnuVfXLAdc2jua13lwqofET4OE9\njx9Ok4gb6rNj+9yk6TIWtAe/jwP2q6oNbZ4uZV3GYk/ghCYv2A7YP8kdVXXScEocmi5jcS3w06r6\nFfCrJGcAuwOTFhpdxuKZwN8CVNW/JbkaeBzN+WHLybzXm0tl99Q9J/oluR/NiX4zf+lPAv4I7jmb\n/OdVdcNwyxyKOcciySOAE4E/qKqrRlDjsMw5FlX16Kp6VFU9iua4xusnMDCg2+/IF4FnJ1mRZHOa\nA5+XDbnOYegyFlcAqwDaffiPA3401CrHw7zXm0tiS6Oq7kyy7kS/FcDxVXV5ksPa6cdW1SlJDkhy\nFXAb8OoRljwwXcYC+CtgG+DD7V/Yd1TVXqOqeVA6jsWy0PF35IokpwEXAXcDx1XVxIVGx/8X7wI+\nluRCmj+e31JVN42s6AFJ8ilgX2C79oTqI2l2Uy54venJfZKkzpbK7ilJ0hgwNCRJnRkakqTODA1J\nUmeGhiSpM0NDktSZoSHNIcnDk/woyTbt423ax49YhHl/e+MrlIbH8zSkDpL8d+CxVXVYkmOBH1Wf\n+9VLk84tDamb/wXsneTPaK5b9J5+nZJ8vr2C7CVJXts+98gkP0zyoCSbJDkzybpLWNza/rtDkjPa\nGyRdnOTZQ3pf0ry4pSF1lOQFwKnA71fV12fps01V3ZxkM+B7wHPax68BXgCcAzy6ql7f9v9lVW2Z\n5E3A/avqXe3VeLeoqluH8sakeXBLQ+puf+A64Ekb6PPGJBcAZ9FcMXQXgKo6Hvgd4DDgzX1e9z3g\n1UmOBJ5sYGhcGRpSB0l+j+aqqM8A/luS7fv0maK5V8XeVfV7NLcZvX87bXOaEClgy5mvbe+wtg/N\nZak/PsE3SNISZ2hIc2h3F30YeGNVXQv8Hf2PaWwF3FxVv06yK7B3z7SjgX+mucrocX2W8Qjgxqr6\nKPBRmvs6S2PH0JDm9lrgmp7jGB8CHp9knxn9TgNWJrkMOIpmFxVJ9qW5GdTRVfUvwG+TvLJ9zbqD\nis8FLkhyHvBS4P0DezfSRvBAuCSpM7c0JEmdGRqSpM4MDUlSZ4aGJKkzQ0OS1JmhIUnqzNCQJHVm\naEiSOvv/E00dakiohy4AAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 128 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.7 page number 243" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "l_ab = 3 #L - The total length lets say '3L'\n", + "R_1 = 1 #p - The force applied at b\n", + "R_2 = 1 #p - The force applied at c\n", + "l_ab = 1 #L\n", + "l_bc = 1 #L \n", + "\n", + "#Logical step \n", + "#Since the system is in symmetry we can avoid moment M = 0 caliculations\n", + "\n", + "#F_Y = 0 \n", + "R_A = (R_1 + R_2)/2\n", + "R_B = (R_1 + R_2)/2\n", + "\n", + "#Lets take '3' sections \n", + "#Considering section 1-----1 at 0.5L\n", + "l_1 = 0.5 #L - distance of the section from the A\n", + "v_1 = R_A #F_Y = 0 \n", + "M_1 = R_A*l_1 #MAking moment at section 1 = 0\n", + "\n", + "#Considering section 2-----2 at 1L\n", + "l_2 = 1 #L - distance of the section from the A\n", + "v_2 = R_A #F_Y = 0 \n", + "M_2 = R_A*l_2 #MAking moment at section 2 = 0\n", + "\n", + "#Considering section 3-----3 at 1.5L\n", + "l_3 = 1.5 #L - distance of the section from the A\n", + "v_3 = 0 #F_Y = 0 \n", + "M_3 = R_A*l_2 #MAking moment at section 2 = 0 and symmetry \n", + "\n", + "#GRAPH\n", + "#Since the symmetry exists the graphs are also symmetry\n", + "%matplotlib inline\n", + "import math \n", + "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n", + "#Drawing of shear and bending moment diagram\n", + "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n", + "X = [0,0.5,1,1.000000001,1.5,1.999999999999,2,2.5,3] # For graph precision \n", + "\n", + "V = [R_A,v_1,v_2,v_3,v_3,v_3,-v_2,-v_1,-R_B];\t\t\t#Shear matrix\n", + "M = [0,M_1,M_2,1,1,1,M_2,M_1,0];\t\t\t#Bending moment matrix\n", + "plot(X,V);\t\t\t#Shear diagram\n", + "plot(X,M);\t\t\t#Bending moment diagram\n", + "suptitle( 'Shear and bending moment diagram')\n", + "xlabel('X axis')\n", + "ylabel( 'Y axis') ;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmRJREFUeJzt3Xu4JHV95/H3BwZUEAJIRLxiIqisNyQiXtATB+W2i8EQ\n0ZhoXB+DPstqEvUxii6TTdAlGndFVsMiKhijrlkgYwARkCNEEUEuclXYwC7eeMIjoMCqwHz3j66B\n5tA9p86lT3f1eb+eZ56p7q7u+tWpmX6fqupLqgpJktrYbNwDkCR1h9GQJLVmNCRJrRkNSVJrRkOS\n1JrRkCS1ZjSmXJIjk1yV5IoklyV5XnP9TUl2GPf45jNsnEnuHNHyPpPkd5vpE5I8fRTLmQRJnp3k\ngJbzziZ5bjN9epJtRzs6Tao14x6ARifJC4CDgD2q6p7myfdhzc0FZJmXt6aq7l3Ox6Q3zoVcvxzL\nK4CqevOIljEp9gD2BM5sMe/9P++qOmg5Fp5k86q6bzkeSyvHPY3p9hjg1qq6B6CqflpVP+67/T8m\n+U6S7yZ5KkCSrZN8KslFSS5NcnBz/S5Jzm/m/04TJJLMJLkgyT8CV88dQJKPJ7m42dtZ13f9TUnW\nDVj+o5J8tZn/BDYRtiQfaeY7J8mOzXW/meTMJJc04934uJ9J8tEk30jyv/v2JpLkuCTXJTkbeHTf\n4/f/dn1nkr9KcnmSC5M8um9532rW4a+S/HzAOHdpHv/TSb6X5HNJXtGM5ft9e387JDmt2Su8MMkz\nm+vXJTmpWZ+bkrwqyYebZZ6ZZE0z357NmC9J8pUkj+lbj//SbNPvJXlxki2A/wwc1uyB/t6cMT8i\nyReSXJPkFOARc7bdDs30qc3yrkry5r553tQs66Jmj+1jfdvhb5N8CzgmyfOSfLP5t/aNJLs18/1R\n87P4apIbkxyR5J3NfBcm2X7YvwuNWFX5Z0r/AFsDlwHfA/478JK+224E/kMz/VbghGb6A8Drmunt\nmvtuRe9J42HN9bsCFzfTM8CdwJOGjGH75u/NgfOAZ8yz/GOB9zXTBwIbgB0GPO4G4LXN9PuBjzXT\n5wJPaaafD5zbTH8G+GIz/XTg+mb6VcBX6cVpZ+A24FXNbecBz+1b3kHN9DHAkc30PwGHNdOHAz8f\nMNZdgHuAf9Ms5xLgxOa2g4FTm+mPAe9vpn8buKyZXgec3/wMnwXcDezX3HYK8EpgC+CbwKOa6w/r\nW8Z5wIea6QOAs5vpNwDHDtlufwZ8spl+ZjP+jT+LGzduk77t+wjgSmB74LHNPNvRO5px/sblNNth\nPZDm8jbA5s30vsA/NNN/BFxP79/wjsAdwB83t30EePu4/3+t1j8enppiVXVXkj2Bfeg9CX0xyZ9X\n1UnNLKc0f19K78kT4BXAv0vyzubyw4AnAD8BjkvybOA+euHY6NtV9X+GDOOw5jfQNfSelHcHrtrE\n8vcBDmnGf0aS24Y87gbgi8303wGnJNkaeCHwpeT+HZQtN/44gNOax702yU7N9S8B/r56z0Y/TvK1\nIcv7VVWd3kx/B3h5M703vSd+gM8DHx5y/xur6mqAJFcD5zTXX0UvKgAvovk5VNV5zV7XNs3Yz6yq\n+5JcBWxWVWc197myuf9u9KJ0TrPumwM/6lt+/8964/LC8D25fYCPNmO5Msl3h8z39iS/00w/vhnH\nzsDXq+r2Zn2/1FxPsy5fan7e0AvLyUme0tzW/5x0XlXdBdyV5Hbgy33r/Kwh49GIGY0pV1UbgK8D\nX09yJb3fLjdG45fN3/fx4H8Lr6qq6/sfJ71DSz+uqj9Msjnwi76b7xq07CRPBt4B/FZV3ZHk08DD\n+2YZtvyFnmsJvSeczYDbqmqPIfP9asAy2p7buadvegML/7/zy77pDX1jmftYw8byK+htzySDxhLg\n6qp64TzLn/uz3pRN/lySzABrgb2r6hdJzqO3feeeb5r7OHf3Tf8lvb3BQ5I8CZgdMGborecv+6Z9\n7hoTz2lMsSS7JenfI9gDuGmeu50FvK3vMTY+AW9Lb28D4PX0fpOdz7b0gvKz5jf7Nq/UOR/4/WbZ\nB9A73DHIZsDG4/C/D1xQVT8HbkxyaHP/JJnvN9Lz6e0NbZZkZ3p7ZAvxLeDQZvo1C7zvXBcAr4P7\nn5D/tVmnNlH7HvDrSfZu7r9Fkt3nuc/P6B0eGqR/OzyDwb/Zb0sv0r9I8jR6e10FXAy8NMl2zfmW\n32X4Cxe25YE9ojfOM96NlvUFHFoYozHdHgl8JsnVSa4Ankbv+Dg8+D9x9V3+S2CL5iTrVcBfNNd/\nHHhDksuBp9I7j9F//4eoqivonVO5Dvgc8M9Dxtm//L8AXtIs+xBg2GGvu4C9mr2nGXondaH3pPum\nZpxX8cCho0HrTFWdSu/Y+TX09sC+uYkxDhrvnwB/1izvN+kde5/v/gPHQm/b7Nlsqw/Q2yucu7yB\nj1W9FzscSu/k8uX0fu4vmGcs5wG7DzoRDnwCeGSSa+htk0sGPM5XgDXNPB8ELmwG86Nm/N+mt81v\n5ME/l/7x/zXwwSSX0vtFpPrmGbbOc2/TCsoDhxYlLVSSR1TV/2umX0PvpPghYx7W2CXZujmntobe\n+ZQTq+ofxz0uLZ3HBaWl2TPJcfQOmdwG/Psxj2dSrEuyL71zHGcZjOnhnoYkqTXPaUiSWjMakqTW\njIYkqTWjIUlqzWhIklozGpKk1oyGJKm1sUYjve9tuKX5KIhh8xyb5Pr0vmNg2AfRSZJWwLj3ND4N\n7D/sxiQH0vtuhF2BP6b3eTiSpDEZazSq6gJ6H70wzME0H+NdVRcB2/V9D4IkaYWNe09jPo8Dbu67\n/AN6X/QiSRqDSY8GPPSz8/2wLEkak0n/lNsf0vuq0Y0e31z3IEkMiSQtQlUt6EutJn1PYz29b4mj\n+Uay26vqlkEzjvvL1kf556ijjhr7GJbzzynXnMKjP/RovvOj7wDTtW7Tvu3m/nnXe9/Fsz7xLN5z\nznvYsGHD2Mfj9lvYn8UY655Gks8DLwV2THIzcBSwBUBVHV9VZyQ5MMkN9L6pre3XQWpCnXrtqbzl\n9Ldw5uvO5Lk7P5fe7wXqqq222IpzX38ua09eC8DRLzuaxG9jnWZjjUZVvbbFPEesxFg0eg8NhqbB\njlvtaDhWkUk/PCVgZmZm3ENYsuHBmBnXkFbENGy7Tdm4fhvDcfr1p3Pk145c9KGPSTPt228xpuKb\n+5LUNKzHtNrUHkYCbrrpcevdt7L25LUctOtB7nF0QBJqyk6Eq+M8JLW6TOsehx5gNDQyBmN1MhzT\nzWhoJAzG6mY4ppfR0LIzGALDMa2MhpaVwVA/wzF9jIaWjcHQIIZjuhgNLQuDoU0xHNPDaGjJDIba\nMBzTwWhoSQyGFsJwdJ/R0KIZDC2G4eg2o6FFMRhaCsPRXUZDC2YwtBwMRzcZDS2IwdByMhzdYzTU\nmsHQKBiObjEaasVgaJQMR3cYDc3LYGglGI5uMBraJIOhlWQ4Jp/R0FAGQ+NgOCab0dBABkPjZDgm\nl9HQQxgMTQLDMZmMhh7EYGiSGI7JYzR0P4OhSWQ4JovREGAwNNkMx+QwGjIY6gTDMRmMxipnMNQl\nhmP8jMYqZjDURYZjvIzGKmUw1GWGY3yMxipkMDQNDMd4GI1VxmBomhiOlWc0VhGDoWlkOFaW0Vgl\nDIammeFYOUZjFTAYWg0Mx8owGlPOYGg1MRyjZzSmmMHQamQ4RstoTCmDodXMcIyO0ZhCBkMyHKNi\nNKaMwZAeYDiWn9GYIgZDeijDsbyMxpQwGNJwhmP5GI0pYDCk+RmO5WE0Os5gSO0ZjqUzGh1mMKSF\nMxxLYzQ6ymBIi2c4Fs9odJDBkJbOcCyO0egYgyEtH8OxcGONRpL9k1yX5Pok7x5w+0ySO5Jc1vx5\n3zjGOSkMhrT8DMfCrBnXgpNsDhwH7Av8ELg4yfqqunbOrF+vqoNXfIATxmBIo7MxHGtPXgvA0S87\nmiRjHtVkGueexl7ADVV1U1XdA3wBeOWA+Vb9ljMY0ui5x9HOOKPxOODmvss/aK7rV8ALk1yR5Iwk\nu6/Y6CaEwZBWjuGY39gOT9ELwnwuBZ5QVXcnOQA4Ddht0Izr1q27f3pmZoaZmZllGOJ4GQxp5U3z\noarZ2VlmZ2eX9BgZV0mT7A2sq6r9m8vvATZU1TGbuM+NwJ5V9dM519e0/UawWoKRwJRtOk2JW+++\nlbUnr+WgXQ+aqnD0S0JVLWjFxnl46hJg1yS7JNkSOAxY3z9Dkp3SbKkke9GL3E8f+lDTZbUEQ5pk\nHqoabGyHp6rq3iRHAGcBmwMnVtW1SQ5vbj8eOBR4a5J7gbuB14xrvCvFYEiTY5oPVS3W2A5PLadp\nOTy1GoPh4Sl1wbQequra4Sn1WY3BkLrCQ1UPMBoTwGBIk89w9BiNMTMYUncYDqMxVgZD6p7VHg6j\nMSYGQ+qu1RwOozEGBkPqvtUaDqOxwgyGND1WYziMxgoyGNL0WW3hMBorxGBI02s1hcNorACDIU2/\n1RIOozFiBkNaPVZDOIzGCBkMafWZ9nAYjRExGNLqNc3hMBojYDAkTWs4jMYyMxiSNprGcBiNZWQw\nJM01beEwGsvEYEgaZprCYTSWgcGQNJ9pCYfRWCKDIamtaQiH0VgCgyFpoboeDqOxSAZD0mJ1ORxG\nYxEMhqSl6mo4jMYCGQxJy6WL4TAaC2AwJC23roXDaLRkMCSNSpfCYTRaMBiSRq0r4TAa8zAYklZK\nF8JhNDbBYEhaaZMeDqMxhMGQNC6THA6jMYDBkDRukxoOozGHwZA0KSYxHEajj8GQNGkmLRxGo2Ew\nJE2qSQqH0cBgSJp8kxKOVR8NgyGpKyYhHKs6GgZDUteMOxyrNhoGQ1JXjTMcqzIaBkNS140rHPNG\nI8mrk2zbTL8/yalJOvtMazAkTYtxhKPNnsb7q+pnSV4MrAVOBD4x2mGNhsGQNG1WOhxtonFf8/e/\nBU6oqn8CthzdkEbDYEiaVisZjjbR+GGS/wEcBpye5OEt7zcxDIakabdS4ch8D5xka2B/4LtVdX2S\nnYFnVtVXRzKiRUhSw9bDYEy2BCbg43SkqXHr3bey9uS1HLTrQRz9sqNJMnTeJFTV8BkG3WfYk22S\nbZtzGTsMur2qfrqQBY3SsGgYjMlnNKTl1zYcyx2N06vqoCQ3AQ+ZqaqevJAFjdKgaBiMbjAa0mi0\nCceyRqNL5kbDYHSH0ZBGZ75wLCYabd6n8aY5l9ckOWohC1lJBkOSekZxcrzNq6D2TXJGkscmeQZw\nIbDtkpcMJNk/yXVJrk/y7iHzHNvcfkWSPTb1eAZDkh5sucOxZr4Zquq1SV4DfBe4C3hdVf3zkpYK\nJNkcOA7YF/ghcHGS9VV1bd88BwJPqapdkzyf3psK9x70eAZDkgbbGI61J68FmPdVVZvS5vDUbsDb\ngFOA/wv8QfMy3KXaC7ihqm6qqnuALwCvnDPPwcBJAFV1EbBdkp0GPZjBkKThlmuPY949DWA9cERV\nnZNkM+BPgYuB3Re1xAc8Dri57/IPgOe3mOfxwC1zH8xgSNKmzd3jWIw20Xh+Vd0BUFUbgL9J8uVF\nL/EBbTM3dx9q4P3WH7+e9awHYGZmhpmZmcWPTCtm++17r6BSN22/Pfx0Yt6xpfnMzs4yOzvLfvfs\nx/qvrV/UY7R6yW2SZ9Lbs3g4zZN2VZ28qCU+8Jh7A+uqav/m8nuADVV1TN88fwvMVtUXmsvXAS+t\nqlvmPNbQd4RLGh1fMt1to3rJ7TrgWOBjwAzw1/TONSzVJcCuSXZJsiW9z7aam771wOubcewN3D43\nGJKkldPm8NShwLOBS6vqjc2J6M8tdcFVdW+SI4CzgM2BE6vq2iSHN7cfX1VnJDkwyQ30Xrn1xqUu\nV5K0eG0+sPDiqnpeku8ALwN+BlxXVU9diQG24eEpaTw8PNVtizk81WZP4+Ik2wMn0DukdBfwzUWM\nT5LUcQv67KkkTwa2raorRjekhXNPQxoP9zS6zQ8slLSijEa3jeTVU5IkbTQ0GknObA5HSZIEbHpP\n41PAWUmOTLLFSg1IkjS5NnlOI8kjgf8E7Ad8lgc+wqOq6iOjH147ntOQxsNzGt02ipfc3gPcSe/j\nQ7YBNixybJKkKTA0Gkn2Bz4CfBnYo6ruXrFRSZIm0tDDU0kuAN5SVVev7JAWzsNT0nh4eKrblvV9\nGunQM3GHhipNFaPRbcv6Pg2fhSVJc/nmPklSa0ZDktSa0ZAktWY0JEmtGQ1JUmtGQ5LUmtGQJLVm\nNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtGQ5LUmtGQJLVm\nNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtGQ5LUmtGQJLVm\nNCRJrRkNSVJrRkOS1JrRkCS1tmYcC02yA/BF4EnATcCrq+r2AfPdBPwMuA+4p6r2WsFhSpLmGNee\nxp8DZ1fVbsC5zeVBCpipqj0MhiSN37iicTBwUjN9EvA7m5g3ox+OJKmNcUVjp6q6pZm+BdhpyHwF\nnJPkkiRvXpmhSZKGGdk5jSRnA48ZcNOR/ReqqpLUkId5UVX9OMmvA2cnua6qLhg047p16+6fnpmZ\nYWZmZlHjlqRpNTs7y+zs7JIeI1XDnq9HJ8l19M5V/CTJzsB5VfW0ee5zFHBnVf3NgNtqHOshrXYJ\n+F+vu5JQVQs6BTCuw1PrgTc0028ATps7Q5KtkmzTTG8NvAK4csVGKEl6iHHtaewA/E/gifS95DbJ\nY4ETquqgJL8BnNLcZQ3wuar64JDHc09DGgP3NLptMXsaY4nGcjMa0ngYjW7r0uEpSVIHGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa2OJRpLfS3J1kvuSPHcT8+2f5Lok\n1yd590qOUZL0UOPa07gSOAQ4f9gMSTYHjgP2B3YHXpvk6SszvMkyOzs77iGMzDSvG0z/+sHsuAcw\nUtO//RZuLNGoquuq6vvzzLYXcENV3VRV9wBfAF45+tFNnmn+hzvN6wbTv35GY/WZ5HMajwNu7rv8\ng+Y6SdKYrBnVAyc5G3jMgJveW1VfbvEQtcxDkiQtUarG99yc5DzgHVV16YDb9gbWVdX+zeX3ABuq\n6pgB8xoYSVqEqspC5h/ZnsYCDBvwJcCuSXYBfgQcBrx20IwLXWlJ0uKM6yW3hyS5GdgbOD3Jmc31\nj01yOkBV3QscAZwFXAN8saquHcd4JUk9Yz08JUnqlkl+9dSDtHmjX5Jjm9uvSLLHSo9xKeZbvyQz\nSe5Iclnz533jGOdiJPlUkluSXLmJebq87Ta5fl3edgBJnpDkvOYNuVcleduQ+Tq5DdusX1e3YZKH\nJ7koyeVJrknywSHztd92VTXxf4DNgRuAXYAtgMuBp8+Z50DgjGb6+cC3xj3uZV6/GWD9uMe6yPXb\nB9gDuHLI7Z3ddi3Xr7Pbrhn/Y4DnNNOPBL43Zf//2qxfZ7chsFXz9xrgW8CLl7LturKn0eaNfgcD\nJwFU1UXAdkl2WtlhLlrbNzJ28oR/VV0A3LaJWbq87dqsH3R02wFU1U+q6vJm+k7gWuCxc2br7DZs\nuX7Q0W1YVXc3k1vS+wX1p3NmWdC260o02rzRb9A8jx/xuJZLm/Ur4IXN7uMZSXZfsdGNXpe3XRtT\ns+2aVzPuAVw056ap2IabWL/ObsMkmyW5HLgFOK+qrpkzy4K23SS85LaNtmfr5/4m0JWz/G3GeSnw\nhKq6O8kBwGnAbqMd1orq6rZrYyq2XZJHAv8AvL35jfwhs8y53KltOM/6dXYbVtUG4DlJfg04K8lM\nVc3Oma31tuvKnsYPgSf0XX4CvRpuap7HN9d1wbzrV1U/37ibWVVnAlsk2WHlhjhSXd5285qGbZdk\nC+B/AX9XVacNmKXT23C+9ZuGbVhVdwCnA78156YFbbuuROP+N/ol2ZLeG/3Wz5lnPfB6uP/d5LdX\n1S0rO8xFm3f9kuyUJM30XvReLj332GRXdXnbzavr264Z+4nANVX134bM1tlt2Gb9uroNk+yYZLtm\n+hHAy4HL5sy2oG3XicNTVXVvko1v9NscOLGqrk1yeHP78VV1RpIDk9wA3AW8cYxDXpA26wccCrw1\nyb3A3cBrxjbgBUryeeClwI7NmzqPovcqsc5vO5h//ejwtmu8CPgD4LtJNj7hvBd4IkzFNpx3/eju\nNtwZOCnJZvR2Ej5bVecu5bnTN/dJklrryuEpSdIEMBqSpNaMhiSpNaMhSWrNaEiSWjMakqTWjIY0\nj+ajs/8lyfbN5e2by09chsf+xtJHKK0c36chtZDkXcBTqurwJMcD/1IDvq9emnbuaUjt/Fdg7yR/\nArwQ+PCgmZKcmuSS5st83txc96Qk30/yqOYTRy9Ism9z253N3zsnOb/5gp8rk7x4hdZLWhD3NKSW\nkuwHnAm8vKrOHTLP9lV1W/M5P98GXtJcfhOwH3Ax8BtV9dZm/p9X1TZJ3gE8rKo+0HzG0dZDPklW\nGiv3NKT2DgB+BDxzE/O8vfnuggvpfVrobgBVdSLwa8DhwDsH3O/bwBuTHAU8y2BoUhkNqYUkzwH2\nBV4A/GmSxwyYZwZYC+xdVc+h97W9D2tu24peRArYZu59m2//24feR1J/JskfjmZNpKUxGtI8msNF\nn6D35Tw3Ax9i8DmNbYHbquoXSZ4G7N132zHAZ+l9Au4JA5bxROBfq+qTwCfpfXucNHGMhjS/NwM3\n9Z3H+Djw9CT7zJnvK8CaJNcAH6R3iIokLwX2BI6pqr8HfpXkDc19Np5U/G3g8iSXAq8GPjqytZGW\nwBPhkqTW3NOQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktTa/wc67F2tjQSN/wAA\nAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 127 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.8 page nmber 244" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "l_ab = 1.0 #L - The length of the beam\n", + "F_D = 1.0 #W - The force distribution \n", + "F = F_D*l_ab #WL - The force applied\n", + "#Beause of symmetry the moment caliculations can be neglected\n", + "#F_Y = 0\n", + "R_A = F/2 #wl - The reactive force at A\n", + "R_B = F/2 #wl - The reactive force at B\n", + "\n", + "#considering many sections \n", + "\n", + "#section 1--1\n", + "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n", + "v = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " v[i] = R_A - F_D*l_1[i] \n", + " M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2 #M = 0 in the section\n", + "print R_A\n", + "#Graphs\n", + "import numpy as np\n", + "values = [0.5,0,-0.5]\n", + "y = np.array(values)\n", + "t = np.linspace(0,1,3)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "\n", + "import numpy as np\n", + "values = M_1\n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.5\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFYJJREFUeJzt3X2QHPV95/H3FwmbhzsHI0pgBAQH40hxBceOEeLBeHxg\nJCMHXCEFEVZ8R3w5KhUJ5wrHEgbCUhWfgYiLiKIQB2OKVMUnOPAFLsKATJhC5pn4AbAkQFx0CHyW\nDAmuHCdSUvjeHzuS1ss+jLZ3u3um36+qLaZnftP941e73219P9O9kZlIkppjv6onIEkql4VfkhrG\nwi9JDWPhl6SGsfBLUsNY+CWpYQoX/ohYEBGbIuKFiFg2yphWRHwvIp6NiHbRY0qSJi6KfI4/IqYB\nzwFnAq8ATwKLMnPjkDGHAA8D8zPz5Yg4LDNfLTZtSdJEFT3jnwtszswtmbkTWAOcO2zMhcCdmfky\ngEVfkqpVtPDPArYO2X6589xQxwOHRsSDEfFURPxWwWNKkgqYXvD93fSJ9gc+DJwBHAQ8GhGPZeYL\nBY8tSZqAooX/FeDoIdtHM3jWP9RW4NXM3AHsiIiHgA8CP1P4I8KbBknSBGRm7Mv4oq2ep4DjI+LY\niHgHcAFw97AxdwGnRcS0iDgIOAnYMNLOMtOvTK666qrK51CXL9fCtXAtxv6aiEJn/Jm5KyKWAPcB\n04CbM3NjRFzcef2rmbkpIu4FngbeAm7KzBELvyRp6hVt9ZCZ3wK+Ney5rw7bXgGsKHosSVJxXrlb\nQ61Wq+op1IZrsZdrsZdrUUyhC7gmU0RkXeYiSb0iIsiSw11JUo+x8EtSw1j4JalhLPyS1DAWfklq\nGAu/JDWMhV+SGsbCL0kNY+GXpIapVeGfP/8K1q59qOppSFJfK3yTtsl0//1/xIsvXg7AwoWnVzwb\nSepPtTrjB3jxxS+zatW6qqchSX2rXoX/lBUw/U3efHNa1TORpL5Vr8J/zHr4vTn806ynJ/yXZSRJ\nY6tX4V9zF0c+eQpv/MoPmXfzPL7z0neqnpEk9Z1aFf7586/kL790Mc9/YSNL5y7lwjsv5Lzbz+OF\n114Y/82SpK7U+g+x7Ni5g5WPreT6R69n8QmLufL0K5lx0IyKZihJ9dN3f4jlwP0P5LKPXsaG39vA\nzn/dyezVs1nxyAre3PVm1VOTpJ5V6zP+4Ta9uoll317G09ue5itnfIULPnABEfv0i06S+spEzvh7\nqvDv1t7S5tL7L2X6ftO5/qzrOe2Y06Z4dpJUT40p/ABv5Vt845lv8KUHvsSJs07kmjOu4fgZx0/h\nDCWpfvquxz+W/WI/Fp+wmOeWPMdH3vMRTr75ZH7/3t/ntf/3WtVTk6Ra69nCv5sBsCTtm55t9YzG\nAFhSkzSqxz8eA2BJTWDhH8YAWFK/qyTcjYgFEbEpIl6IiGVjjDsxInZFxK8XPWa3DIAl6e0KFf6I\nmAb8GbAA+CVgUUTMGWXctcC9QOkNdwNgSdqr6Bn/XGBzZm7JzJ3AGuDcEcYtBe4AflLweIXMPHgm\nqxeuZv1F61n/0nrmrJ7DmmfXeAtoSY1StPDPArYO2X6589weETGLwV8GN3aeqrzKzj5sNnf95l3c\ncu4t/PEjf+wtoCU1StHC300RXwks7yS3QQWtntG0jm3x5O886S2gJTVK0T+2/gpw9JDtoxk86x/q\nV4E1nc/SHwZ8MiJ2Zubdw3c2MDCw53Gr1aLVahWc3vh2B8DnzTmPlY+t5OSbT/YW0JJqq91u0263\nC+2j0Mc5I2I68BxwBvAj4AlgUWZuHGX8LcD/zMxvjvDapH+ccyK2v7Gdq9tXc/uG21l26jKWzF3C\nAdMPqHpakjSi0j/OmZm7gCXAfcAG4LbM3BgRF0fExUX2XRUDYEn9rq8v4JoMXgEsqc68cneKeAWw\npLpq1G2Zy+QVwJL6iYV/H3gFsKR+YKunAG8BLalq9vgrYgAsqSoW/goZAEuqguFuhQyAJfUKC/8k\nMwCWVHe2eqaYAbCkqWSPv8YMgCVNBQt/zRkAS5pshrs1ZwAsqQ4s/BUwAJZUJVs9NWAALGmi7PH3\nOANgSfvKwt8HDIAl7QvD3T5gACxpqln4a8oAWNJUsdXTIwyAJY3EHn8DGABLGsrC3xAGwJJ2M9xt\nCANgSUVY+HuYAbCkibDV00cMgKXmsccvAB78hwf5wrovGABLDWDh1x4GwFIzGO5qDwNgSaOx8Pc5\nA2BJw9nqaRgDYKm/VNLjj4gFwEpgGvC1zLx22OufAb4IBPDPwO9m5tMj7MfCXyIDYKk/lF74I2Ia\n8BxwJvAK8CSwKDM3DhlzMrAhM3/a+SUxkJnzRtiXhb9kBsBS76si3J0LbM7MLZm5E1gDnDt0QGY+\nmpk/7Ww+DhxV8JiaJAbAUjMVLfyzgK1Dtl/uPDeazwH3FDymJpkBsNQs0wu+v+veTER8HPht4NTR\nxgwMDOx53Gq1aLVaBaamfTXz4JmsXriapSctZdm3l7H6ydUGwFLNtNtt2u12oX0U7fHPY7Bnv6Cz\nfRnw1ggB7wnAN4EFmbl5lH3Z468ZA2Cp/qoId6czGO6eAfwIeIK3h7vHAH8HLM7Mx8bYl4W/hgyA\npXorPdzNzF3AEuA+YANwW2ZujIiLI+LizrA/BN4N3BgR34uIJ4ocU+UyAJb6jxdwaZ9sf2M7V7ev\n5vYNt7Ps1GUsmbuEA6YfUPW0pMbyJm0qjVcAS/Vg4VfpDIClaln4VQkDYKk63pZZlTAAlnqLhV+T\nxiuApd5gq0dTxgBYmnr2+FVLBsDS1LHwq7YMgKWpYbir2jIAlurDwq9SGQBL1bPVo0ptenUTX1z3\nRZ7Z/owBsDQB9vjVswyApYmx8KunGQBL+85wVz3NAFgqh4VftWMALE0tWz2qPQNgaXT2+NXXDICl\nt7Pwq+8ZAEs/y3BXfc8AWCrOwq+eZAAsTZytHvUFA2A1lT1+NZ4BsJrGwi9hAKxmMdyVMACWxmPh\nV98yAJZGZqtHjWEArH5kj1/qggGw+omFX+qSAbD6RSXhbkQsiIhNEfFCRCwbZcyfdl7/QUR8qOgx\npaIMgNVkhQp/REwD/gxYAPwSsCgi5gwbczbwvsw8HvhPwI1FjilNprEC4LVrH2L+/CtotQaYP/8K\n1q59qOrpSpOiUKsnIk4GrsrMBZ3t5QCZec2QMX8BPJiZt3W2NwEfy8xtw/Zlq0eV2x0AP7HlSfKB\nk9j+wP8ABv8Vfdxxl3PDDfNZuPD0aicpDVFFq2cWsHXI9sud58Ybc1TB40pTYvZhs7l70d0c/d0z\n2H7cVviP8+CY7wDw4otfZtWqdRXPUCpuesH3d3uKPvy30YjvGxgY2PO41WrRarUmNCmpqIN/8j64\n86/gl/8azrsQXjkRvn0Nb745reqpqeHa7TbtdrvQPoq2euYBA0NaPZcBb2XmtUPG/AXQzsw1nW1b\nPaq9+fOv4P77/2hwY/oOmLcSTrmeY356HN/9r/cw46AZ1U5Q6qii1fMUcHxEHBsR7wAuAO4eNuZu\n4LOdCc4DXh9e9KW6ueSSszjuuMsHN3YdCN+5jJ9f+xl++YQjvQJYPa/w5/gj4pPASmAacHNmfiUi\nLgbIzK92xuz+5M8bwEWZ+d0R9uMZv2pl7dqHWLVqHW++OY0DDvhXli79BAsXnu4VwKoVL+CSSrT7\nCuD999ufFWet8ApgVcLCL5XMK4BVNW/LLJXMK4DViyz80iTwFtDqJbZ6pClgAKyy2OOXasYAWFPN\nwi/VkAGwppLhrlRDBsCqGwu/VBIDYNWFrR6pIgbAmgz2+KUeZACsIiz8Uo8yANZEGe5KPcoAWGWy\n8Es1YgCsMtjqkWrMAFjjsccv9SkDYI3Gwi/1MQNgjcRwV+pjBsCaLBZ+qceMFgD/y65/qXpq6hG2\neqQet+nVTSz79jKe2TYYAJ//gfMNgBvEHr/UYAbAzWThlxrOALh5DHelhjMAVjcs/FIfMgDWWGz1\nSA1gANy/7PFLGpMBcP+x8EsalwFwfzHclTQuA2BZ+KWGMgBurkKFPyIOjYh1EfF8RNwfEYeMMObo\niHgwIn4YEc9GxCVFjilpcs08eCarF65m/UXrWf/SeuasnsNtz96Grdf+VajHHxHXAa9m5nURsQx4\nd2YuHzbmCOCIzPx+RPwb4O+BT2fmxmHj7PFLNWAA3FtKD3cjYhPwsczc1inw7cycPc57/gZYlZkP\nDHvewi/VhAFw76gi3D08M7d1Hm8DDh9rcEQcC3wIeLzgcSVNIQPg/jZ9vAERsQ44YoSXLh+6kZkZ\nEaOesnfaPHcAn8/M/zvSmIGBgT2PW60WrVZrvOlJmkK7A+DPffhzXN2+mtmrZ7Ps1GUsnbuUd05/\nZ9XTa6R2u0273S60j8lo9bQy88cR8R7gwZFaPRGxP/C3wLcyc+Uo+7LVI9WcVwDXTxU9/uuA1zLz\n2ohYDhwyQrgbwK2dcf95jH1Z+KUe0d7S5tL7LzUAroEqCv+hwO3AMcAW4PzMfD0ijgRuysyFEXEa\n8BDwNLD7YJdl5r3D9mXhl3qIAXA9eMsGSaXbsXMHKx9byfWPXs/iExZz5elXMuOgGVVPqzG8ZYOk\n0nkFcO/xjF/SpDIALpetHkm1YQBcDgu/pFoxAJ569vgl1YpXANeThV/SlDMArhdbPZJKZwA8eezx\nS+opBsDFWfgl9RwD4GIMdyX1HAPg8ln4JdWCAXB5bPVIqiUD4O7Y45fUdwyAx2bhl9SXhgfA1555\nLe879H1VT6sWDHcl9aXhAfC8r80zAC7Awi+pZxgATw5bPZJ6lgGwPX5JDdXkANjCL6mxmhoAG+5K\naiwD4O5Z+CX1FQPg8dnqkdTX+j0AtscvSaPo1wDYwi9JY+jHANhwV5LGYAA8yMIvqXGaHgDb6pHU\neL0cANvjl6QCejEALrXwR8ShwG3AzwNbgPMz8/VRxk4DngJezsxfG2WMhV9S5XotAC473F0OrMvM\n9wMPdLZH83lgA2Bll1RrTQiAixT+c4BbO49vBT490qCIOAo4G/ga0BtNM0mN188BcJHCf3hmbus8\n3gYcPsq4PwH+AHirwLEkqRIzD57J6oWrWX/Reta/tJ45q+dw27O30cut6TELf0Ssi4hnRvg6Z+i4\nTnP+basQEZ8Ctmfm9/BsX1IPm33YbO76zbv4+rlf57pHruPkm0/m4ZcernpaEzJ9rBcz8xOjvRYR\n2yLiiMz8cUS8B9g+wrBTgHMi4mzgAOBdEfFXmfnZkfY5MDCw53Gr1aLVao3/fyBJJWod2+LJ33mS\nbzzzDRbduYi5s+ZyzZnXlBYAt9tt2u12oX0U+VTPdcBrmXltRCwHDsnMUQPeiPgY8AU/1SOpX+zY\nuYMbHr+BFY+sYPEJi7ny9CuZcdCMUudQ9qd6rgE+ERHPA/+us01EHBkRa0d5j5VdUt84cP8DWX7a\n8p4LgL2AS5ImSRVXAHvlriTVwNArgK8/63pOPebUKTuWhV+SamLoFcBTGQB7W2ZJqomfuQL4yHpd\nAWzhl6QpVMcA2FaPJJVosgNge/yS1CMmKwC28EtSD5mMANhwV5J6SFUBsIVfkipWdgBsq0eSamZf\nAmB7/JLUR7oJgO3xS1If2X0L6CVzl7DozkX8xu2/weZ/3AzA2rUPMX/+FRPar2f8ktQDht4C+tR/\n+3GeXnUUWzb+CWCrR5L62vY3tvORS89m67v+Nzy8DB75A1s9ktTPZh48k1/Y9Cm4ZT3MemJC+7Dw\nS1KPeec7d8Grs+G/3z6h91v4JanHXHLJWRx33OUTfv+Yf2xdklQ/CxeeDsCqVVdy3337/n7DXUnq\nYX6OX5I0Lgu/JDWMhV+SGsbCL0kNY+GXpIax8EtSw1j4JalhLPyS1DAWfklqmAkX/og4NCLWRcTz\nEXF/RBwyyrhDIuKOiNgYERsiYt7EpytJKqrIGf9yYF1mvh94oLM9khuAezJzDnACsLHAMRuh3W5X\nPYXacC32ci32ci2KKVL4zwFu7Ty+Ffj08AER8XPARzPz6wCZuSszf1rgmI3gN/VersVersVerkUx\nRQr/4Zm5rfN4G3D4CGPeC/wkIm6JiO9GxE0RcVCBY0qSChqz8Hd6+M+M8HXO0HGd22qOdGvN6cCH\ngT/PzA8DbzB6S0iSVIIJ35Y5IjYBrcz8cUS8B3gwM2cPG3ME8GhmvrezfRqwPDM/NcL+vCezJE3A\nvt6WucgfYrkb+PfAtZ3//s0Ik/lxRGyNiPdn5vPAmcAPR9rZvk5ckjQxRc74DwVuB44BtgDnZ+br\nEXEkcFNmLuyM+yDwNeAdwIvARQa8klSd2vwFLklSOUq/cjciFkTEpoh4ISKWjTLmTzuv/yAiPlT2\nHMsy3lpExGc6a/B0RDwcESdUMc+p1s33RGfciRGxKyJ+vcz5lanLn49WRHwvIp6NiHbJUyxNFz8f\nh0XEvRHx/c5a/IcKplmKiPh6RGyLiGfGGNN93czM0r6AacBm4Fhgf+D7wJxhY85m8IIvgJOAx8qc\nY83W4mTg5zqPF/TjWnSzDkPG/R3wt8B5Vc+7wu+JQxjMyY7qbB9W9bwrXIsB4Cu71wF4DZhe9dyn\naD0+CnwIeGaU1/epbpZ9xj8X2JyZWzJzJ7AGOHfYmD0XhmXm48AhETHSNQK9bty1yMxHc28e8jhw\nVMlzLEM33xMAS4E7gJ+UObmSdbMWFwJ3ZubLAJn5aslzLEs3a/F/gHd1Hr8LeC0zd5U4x9Jk5nrg\nn8YYsk91s+zCPwvYOmT75c5z443px4LXzVoM9TngnimdUTXGXYeImMXgD/2Nnaf6NZjq5nvieODQ\niHgwIp6KiN8qbXbl6mYtbgI+EBE/An4AfL6kudXRPtXNIh/nnIhuf2CHf7SzH3/Qu/5/ioiPA78N\nnDp106lMN+uwksHrPzIigrd/f/SLbtZifwYvijwDOAh4NCIey8wXpnRm5etmLb4EfD8zWxFxHLAu\nIj6Ymf88xXOrq67rZtmF/xXg6CHbRzP4m2msMUd1nus33awFnUD3JmBBZo71T71e1c06/CqwZrDm\ncxjwyYjYmZl3lzPF0nSzFluBVzNzB7AjIh4CPgj0W+HvZi1OAb4MkJkvRsQ/AL8IPFXKDOtln+pm\n2a2ep4DjI+LYiHgHcAGDF4INdTfwWYDOLZxfz733BOon465FRBwDfBNYnJmbK5hjGcZdh8z8hcx8\nbw5eAX4H8Lt9WPShu5+Pu4DTImJa575XJwEbSp5nGbpZi00MXhRKp5/9i8D/KnWW9bFPdbPUM/7M\n3BURS4D7GEztb87MjRFxcef1r2bmPRFxdkRsZvDePheVOceydLMWwB8C7wZu7Jzt7szMuVXNeSp0\nuQ6N0OXPx6aIuBd4GniLwYsl+67wd/l98V+AWyLiBwyexH4xM/+xsklPoYj4b8DHgMMiYitwFYNt\nvwnVTS/gkqSG8U8vSlLDWPglqWEs/JLUMBZ+SWoYC78kNYyFX5IaxsIvSQ1j4Zekhvn/QMLBpbNV\n54oAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FeX5xvHvQwIJKLIoiywVBRTFIiggKmqURXaxWq0L\nAWsrYllcWkUoBeuCWvtTgxsqKK64IwrIphFrEYMCVgkoILKJgoIskpiQ5/dHjjFGAklOkjnL/bmu\nXGbmvDPnZsyZ58y8M++YuyMiIlIl6AAiIhIZVBBERARQQRARkRAVBBERAVQQREQkRAVBRESAcigI\nZtbDzFaY2edmduM+Xm9lZgvNLMvMrt/H6wlmtsTMXg83i4iIlF1YBcHMEoD7gR7AccDFZnZskWbf\nAsOAu4tZzQhgOaAbIkREAhTuEUJHYJW7r3X3HGAqcG7hBu6+xd0XAzlFFzazJkAv4DHAwswiIiJh\nCLcgNAbWF5reEJpXUvcAfwPywswhIiJhCrcglPk0j5n1Ab5x9yXo6EBEJHCJYS6/EWhaaLop+UcJ\nJXEq0M/MegHJwCFm9qS7pxZuZGbqWxARKQN3L9WX7XCPEBYDLc2smZlVAy4CphfT9hfB3H2Uuzd1\n9yOBPwBvFS0Ghdrqx52xY8cGniFSfrQttC20Lfb/UxZhHSG4e66ZDQVmAwnAJHfPNLPBodcnmllD\nIAM4BMgzsxHAce6+q+jqwskiIiLhCfeUEe4+C5hVZN7EQr9v5penlfa1jneAd8LNIiIiZac7laNI\nSkpK0BEihrbFz7QtfqZtER4r67mmymJmHukZRUQijZnhldypLCIiMUIFQUREABUEEREJUUEQERFA\nBUFEREJUEEREBFBBEBGREBUEEREBVBBERCREBUFERAAVBBERCVFBEBERoByGvxaJNzNmLCAtbQ7Z\n2YkkJeUyfHh3evc+I+hYImFTQRAphRkzFjBixGxWr76tYN7q1aMBVBQk6mn4a5ESyMrNYtnmZQwa\n/Q9W7GgIjT+AGlvhqxNhUwfa1f+MGY/cx+E1Dw86qghQtuGvVRBEitibt5fMrZlkbMzgg40fkLEp\ng+VblnP0oUfzzZIEvlp8FWzqALvrweEfQeMM6hz/HNbkO6onVqdj4450aNSBDo070L5Re2on1w76\nnyRxSAVBpJTcnbXb1xbs+DM2ZfDRVx9x+MGH06FxBzo06kDHxh1p27AtNarW4Jxz/s6cObf+aj3n\nnDOGWbP+yRfbv8hf18b8dS3ZvIRGNRsVrKdDow60bdiW6lWrB/CvlXgSSEEwsx7AvUAC8Ji731nk\n9VbA40A7YLS7/zs0vynwJFAfcOARd0/bx/pVEKTcfL3r6/wd/8YMPtiUv+NOSkz6xQ67faP21Kle\nZ5/L76sPoXnzUdx3X4999iHk5uWSuSWTjE0/H21kbsmk1WGtCo4iOjbuyHH1jiOxirr0pPxUekEw\nswRgJdAV2AhkABe7e2ahNvWAI4D+wLZCBaEh0NDdl5rZwcCHQP/Cy4baqSBImezI3sGHmz78xc54\nR/aO/B1xaGfcoVEHGh/SuFTrnTFjARMmzCUrK4Hk5L0MG9atVB3KWblZLN28tOAo4oONH7Bhxwba\nNmz7i9NNzes0x6xUn2eRAkEUhFOAse7eIzQ9EsDd79hH27HArp8Kwj5enwZMcPf5RearIEiB4i75\nzM7NZtnXy34+9bMxg3Xfr+OEhif84tt/i7otInIn+33W9yzetLjgtNUHGz/gh5wfaN+o/S/yF+60\n1uWvsj9lKQjhHqM2BtYXmt4AnFzalZhZM/JPKS0KM4/EsILTNWv+CfUyoVEG7z9zLfWX72bjj+s4\n+tCj6di4I52bdubaTtfSul5rqiZUDTp2idRKrkWXo7rQ5aguBfM279pc0LH9YMaDZGzKKOi0rrnz\nMOY+sYuvPnwQsvI7rXX5q4Qr3IIQ9lf30Omil4AR7r4r3PVJ7LovbTarq7aHa46E3CTY2JEdXwyg\n1Y9LWfbcR9SoWiPoiOWq4cEN6XtMX/oe0xfI7wBfs20NGZsyGDnhXr46uiqc0RT+dynMG8/q1bcx\nYcIYFQQps3ALwkagaaHppuQfJZSImVUFXgaedvdpxbUbN25cwe8pKSmkpKSUNqdEuXXfr+Ojli/D\n0S/DK0/Bl2cWvFb9zHExVwz2xcxoXrc5zes25+GVK/jynXGQvB26jIK/tIbZ/8eeLI1GE6/S09NJ\nT08Pax3h9iEkkt+p3AXYBHxAkU7lQm3HATsLdSobMAX41t2v3c97qA8hjuXm5TJh0QRue/c2aq9s\nzeopc2Bv0i/anHPOGN5885aAEgbjV5e/NlkIfQdzaNJuPvjHXI6qc1Rw4SQilKUPIayvE+6eCwwF\nZgPLgefdPdPMBpvZ4FCohma2HrgW+LuZrQudJjoNuAw4y8yWhH56hJNHYsviTYvp+GhH3vj8Df57\nxX+573e30LzZP3/RpnnzUQwb1i2ghMEZPrw7zZuP/nnGhlM4am5P+rbuRsdHO3LHf+4gZ29OcAEl\nKunGNIk4O7J3MOatMTz/6fPc1e0uBrQZUHBlULiXfMaS4rbFF9u+4OqZV7NhxwYm9pnIqU1PDTqq\nBEB3KktUc3emrZjG8DeH0+2obtzV7S4Oq3FY0LGikrvz4vIXuebNa+h3TD/Gdxlf7M12EptUECRq\nrft+HcNmDWPl1pVM7DORM5udeeCF5IC2Z21n1PxRTFsxjf875/+4qPVFEXkfhpQ/FQSJOoU7jYef\nPJwbT7uRpMSkAy8opbJw/UIGvzGYRjUb8WDvB9XpHAdUECSqLN60mCtfv5I61evwUO+HOPrQo4OO\nFNNy9uZwz/v3cNd7d/HXU//K9adcHzU37knpqSBIVNhfp7FUPHU6x4dKv+xUpDTcnVczX6X1g63Z\n+eNOPrn6E1JPSFUxqGRH1jmSmZfMZMwZY7jghQu46o2r2LZnW9CxJALoCEEqxU+dxp99+xkP935Y\nncYRQp3OsUunjCTiFO40HnHyCG447QZ1GkcgdTrHHhUEiSjqNI4u6nSOLSoIEhHUaRzd1OkcG9Sp\nLIFSp3FsUKdz/NIRgpQLdRrHJnU6Ry+dMpJKp07j+KBO5+ijgiAVZl/P723QroY6jePIvjqd57y5\nUM91jlAqCFIhCp5lvPq2/BlJO6jVvwv22zXc1+cedRrHmZ86nTM3riT31dPZ+P6UgteaNx/Nffed\no6IQAVQQpEL84ulcrV6FnsNhTTfOyq3DW2/8O9hwEgh3p+2l5/Nxo/dhZT+YNx6y8ofXjscn2EUi\nXWUkFSI7O/To7ZRx0O0GeOVpeG0yebtqBppLgmNm1NnUBh5Ynj/jzx3h4K8AyMpKCDCZhEMFQQ4o\nKSkXTrsTWj8Pk98reMB9cvLegJNJkJKSciGrNrzxMCwdBKldocYW/V1EMRUEOaAjL9pJ4sl3wpPz\nYHd9IH6fZSw/+8Vznd8dDSv6U+1Pv+XyIZ2CDSZllhjuCsysB3AvkAA85u53Fnm9FfA40A4Y7e7/\nLumyErxJH01i1o5pTDztIV749OFCz+/toY7DOPfT//8JE8aQlZVAUlWjeqszuGfLLfTKPoOaSTql\nGG3C6lQ2swRgJdAV2AhkABe7e2ahNvWAI4D+wLafCkJJlg21U6dyQJ7937PcMPcG3h74Ni0PbRl0\nHIkC7s6QGUPI3JrJrEtnUaNqjaAjxa0gOpU7Aqvcfa275wBTgXMLN3D3Le6+GMgp7bISnFcyX+H6\nOdcz+7LZKgZSYmbGg70f5IhaR9B/an+ycrOCjiSlEG5BaAysLzS9ITSvopeVCjTz85kMmTGEmZfM\npHX91kHHkShTxaow+dzJ1EquxYUvXkjO3qLfBSVShduHEM65nBIvO27cuILfU1JSSElJCeNtZX/e\n+uItBk0bxPSLp9Pu8HZBx5EolVglkWd+9wznv3A+l716Gc/+7lkSquhy1IqUnp5Oenp6WOsItw+h\nEzDO3XuEpm8C8vbVOWxmY4FdhfoQSrSs+hAqz3vr3uO858/jxd+/qMHppFxk5WbR97m+NK7ZmMnn\nTqaK6cLGyhJEH8JioKWZNTOzasBFwPTi8oWxrFSwxZsWc97z5/H0755WMZByk5yYzLSLprFm2xr+\nMuMv6MtdZAt76Aoz68nPl45OcvfxZjYYwN0nmllD8q8gOgTIA3YCx7n7rn0tu4/16wihgn389cd0\nf6o7j/R9hH7H9As6jsSgHdk76PZUN05rehr/7v5vjX1VCTSWkZTaiq0rOHvK2dxzzj1cdPxFQceR\nGPbdnu84e8rZ9D26L7ecrbGOKprGMpJSWbNtDd2e6sb4LuNVDKTC1a1elzkD5vBy5suMf/dXJwMk\nAoR9p7JEp/Xfr6fLk10Y1XkUA9sODDqOxIn6B9VnXuo8znj8DGpUrcGITiOCjiSFqCDEoc27NtPl\nyS4M6ziMIR2GBB1H4kyjmo2YnzqfM584k+pVq3PlSVcGHUlCVBDizNYfttL1ya6knpDKdadcF3Qc\niVNH1D6CeanzSHkiheqJ1RlwwoCgIwkqCHFle9Z2uj/Vnb5H92X06aODjiNxrkXdFswZMIcuT3ah\netXqXHDcBUFHinsqCHFiZ/ZOej7Tk9N/czq3d7ldl/1JRDiu3nHMunQW5zx9DtUTq9P76N5BR4pr\nuuw0DvyQ8wO9n+1Ny7otmdhnooqBRJxFGxbR97m+PHv+s3Q9qmvQcWKC7kOQX8nOzebcqedS76B6\nPHHuExpPRiLWgi8XcP4L5/PKha9w+hGnBx0n6qkgyC/k7M3h9y/+nsQqiUy9YCqJVXSGUCLb3NVz\nufSVS3njkjfo2Lhj0HGimm5MkwJ78/aSOi2VnLwcnj3/WRUDiQrdmndjUr9J9H2uL8s2Lws6TtxR\nQYhBeZ7Hn17/E1t2b+HlC1+mWkK1oCOJlFjfY/pyf8/76fFMDzK3ZB54ASk3+toYY9ydYTOHseq7\nVbx56ZskJyYHHUmk1H7f+vfsyd1Dt6e6kT4onRZ1WwQdKS6oIMQQd+eGuTfwwaYPmJ86n4OqHRR0\nJJEySz0hlT05e+j6ZFcWXL6A39T6TdCRYp4KQgy5+Z2bmbNmDm8PfJtDkg4JOo5I2Aa3H8ye3D10\nebILCwYt4PCahwcdKaapIMSIO/9zJ89/+jzvDHqHutXrBh1HpNxc0+kafsj5ga5PdSV9YDr1DqoX\ndKSYpU7lGDBh0QQe/ehR5g2YR/2D6gcdR6TcjTp9FP2P6U/3p7uzbc+2oOPELBWEKDfpo0ncvfBu\n5qXOo/EhjYOOI1Jhbj37VlKOSKHnMz3Zmb0z6DgxSTemRbFn//csf5v7N9IHptPy0JZBxxGpcO7O\nkBlDyNyayaxLZ1Gjao2gI0Us3akcR17JfIW/zPwL8wbMo3X91kHHEak0eZ7HoGmD2LxrM9Mvnq5L\nq4sRyJ3KZtbDzFaY2edmdmMxbdJCry8zs3aF5t9kZp+a2f/M7FkzSwo3TzyY+flMhswYwsxLZqoY\nSNypYlWYfO5kaifX5sIXLyRnb07QkWJGWEcIZpYArAS6AhuBDOBid88s1KYXMNTde5nZycB97t7J\nzJoBbwHHunu2mT0PzHT3KUXeI+6PEGbMWEBa2hyysxPZVW8Vn7d9g9kD36RTk05BRxMJzI97f+T8\nF86nRtUaXJp8FQ9MmE92diJJSbkMH96d3r3PCDpioMpyhBDuZacdgVXuvjYUYCpwLlD4fvN+wBQA\nd19kZrXNrAGwA8gBapjZXqAG+UVFCpkxYwEjRsxm9erboOl70PFBGs3ow7dtf4QmQacTCU61hGq8\n+PsXOSWtM5ctHcHOuUvB8096rF6d/wCoeC8KpRXuKaPGwPpC0xtC8w7Yxt2/A/4NrAM2AdvdfV6Y\neWJOWtqc/GLQaDH84Tx45Sk2LXyaCRPmBh1NJHDJicnUnXs2OxNrQ6+/APlnE1avvk2fkTII9wih\npOdyfnXYYmbNgWuAZsD3wItmdqm7P1O07bhx4wp+T0lJISUlpQxRo1N2diJU/w7+0B9efwRWnwNA\nVpaeayACsHdPDXj2DRiUAu0fhsVDgPj7jKSnp5Oenh7WOsItCBuBpoWmm5J/BLC/Nk1C81KA/7r7\ntwBm9gpwKrDfghBvkpJyoddQyPwdrOhfMD85eW+AqUQiR1JSLmQfAi8/C3/sDGu6wXct4u4zUvTL\n8s0331zqdYR7ymgx0NLMmplZNeAiYHqRNtOBVAAz60T+qaGvye+M7mRm1S3/mY5dgeVh5ok57S5L\npOpvZsO8OwrmNW8+imHDugWYSiRyDB/enebNR8PWVvDOGOg/kKNajNRnpAzCOkJw91wzGwrMBhKA\nSe6eaWaDQ69PdPeZZtbLzFYBu4HLQ68tNbMnyS8qecBHwCPh5Ik1X+38ise/fog7Tr6NOcvHk5WV\nQHLyXoYN66HOMpGQnz4LEyaMYU9WFT6ptZEzbtyuz0gZ6Ma0COXu9HmuDyc2PJFbzr4l6DgiUePL\n7V/S/tH2zE+dT5sGbYKOExg9QjOGTFoyia92fsWYM8cEHUUkqhxR+wju6noXA14dQHZudtBxooqO\nECLQF9u+oMOjHUgflM7x9Y8POo5I1HF3+j/fn9b1WnN7l9uDjhMIHSHEgL15exk4bSA3nnajioFI\nGZkZj/R5hMlLJrNw/cKg40QNFYQIc+/79+I4151yXdBRRKJag4Mb8ECvB0idlsruH3cHHScq6JRR\nBPn0m09JmZLCoj8t4qg6RwUdRyQmpL6aSs1qNXmg9wNBR6lUOmUUxXL25pA6LZXbzr5NxUCkHKX1\nTOP1z15nzuo5QUeJeCoIEeLWBbfS4KAG/PnEPwcdRSSm1E6uzaR+k7hi+hV6/OYB6JRRBMjYmEGf\n5/qwZPASGtVsFHQckZg0dOZQvs/+nqfOeyroKJVCp4yi0J6cPQx4dQBpPdJUDEQq0J1d72TRhkW8\nvPzloKNELB0hBOyaN69h867NTL1gatBRRGLe+xvep//U/iy9aikND24YdJwKpSOEKPP2F2/z0vKX\neKBXfF39IBKUTk06cUW7K7jy9SuJ5S+aZaWCEJDvs77n8tcu55G+j3BojUODjiMSN8amjGXd9+t4\nYukTQUeJODplFJA/vvZHqlapysS+E4OOIhJ3Pv76Y7o82YWMP2fQrHazoONUCJ0yihKvrXiN9LXp\n3N397qCjiMSlNg3a8NdT/srlr11OnucFHSdiqCBUsi27t3DVjKuY0n8KNZNqBh1HJG799dS/8uPe\nH0lblBZ0lIihU0aVyN05/4XzaV6nOf/q/q+g44jEvVXfraLTY5149/J3ObbesUHHKVc6ZRThnv74\naT779jM98EYkQrSo24Jbz76V1Gmp5OzNCTpO4FQQKsn679dz/Zzreeq8p0hOTA46joiEDD5pMIdW\nP5Tb343P5yYUpoJQCfI8jz9O/yPDTx5Ou8PbBR1HRAoxMyb1m8QDGQ+weNPioOMEKuyCYGY9zGyF\nmX1uZjcW0yYt9PoyM2tXaH5tM3vJzDLNbLmZdQo3TyR6KOMhdmTvYGTnkUFHEZF9aHxIY+7rcR+p\nr6ayJ2dP0HECE1ZBMLME4H6gB3AccLGZHVukTS+ghbu3BK4EHir08n3ATHc/FmgDZIaTJxJ99u1n\njE0fy5P9nySxSmLQcUSkGH84/g8cX/94/v7W34OOEphwjxA6Aqvcfa275wBTgXOLtOkHTAFw90VA\nbTNrYGa1gNPdfXLotVx3/z7MPBElNy+XgdMGMvbMsRxz2DFBxxGR/TAzHuz9IFM/nco7a98JOk4g\nwi0IjYH1haY3hOYdqE0T4Ehgi5k9bmYfmdmjZlYjzDwR5a737qJG1Rr8peNfgo4iIiVwWI3DeKTP\nIwx6bRA7sncEHafShXsOo6Q3CBS9FtZD730iMNTdM8zsXmAk8I+iC48bN67g95SUFFJSUsqStVIt\n3byUe96/hw+v/JAqpr57kWjR++jeTFsxjetmX8dj/R4LOk6Jpaenk56eHtY6wroxLdQJPM7de4Sm\nbwLy3P3OQm0eBtLdfWpoegVwJvlFYqG7Hxma3xkY6e59irxH1N2Ylp2bTftH2/PXU/7KwLYDg44j\nIqW0M3snbR5uw4SeE+hzdJ8DLxCBgrgxbTHQ0syamVk14CJgepE204HUUMBOwHZ3/9rdNwPrzezo\nULuuwKdh5okIY9PH0qJuC1JPSA06ioiUQc2kmjxx7hNc+fqVbP1ha9BxKk3YQ1eYWU/gXiABmOTu\n481sMIC7Twy1+elKpN3A5e7+UWj+CcBjQDVgdei174usP6qOEN5b9x4XvHgBy65aRv2D6gcdR0TC\ncP3s61m3Yx0vXPACZqX6sh24shwhaCyjcrTrx120fbgt/+r2L8479ryg44hImLJyszjpkZMYffpo\nLvntJUHHKRUVhIANeWMIe3L38ET/J4KOIiLl5MNNH9LzmZ4sGbyExocUvYgycmlwuwDNXjWbmatm\ncl+P+4KOIiLl6KRGJzG041CumH5FzD92UwWhHGzbs40rpl/B5H6TqZVcK+g4IlLObup8E9/t+Y6J\nH8b2Ew51yqgcXPrKpRxa/VDSeupBGyKxasXWFXSe3Jn3//Q+Leq2CDrOAemUUQBe/PRFFm9azB1d\n7wg6iohUoFaHtWLMGWMYOG0ge/P2Bh2nQqgghOGrnV8xdNZQnuz/JDWqxtSoGyKyD8NOHkZSQhJ3\n/zc2n4euU0Zl5O70fa4v7Rq20xPQROLIl9u/pP2j7ZmfOp82DdoEHadYOmVUiSYvmcymnZsYc+aY\noKOISCU6ovYR3NX1Lga8OoDs3Oyg45QrHSGUwRfbvqDjYx15e+DbHF//+KDjiEglc3f6P9+f1vVa\nc3uXyHz0po4QKkGe5zHotUHccOoNKgYiccrMeKTPI0xeMpmF6xcGHafcqCCU0r3v30ue53HdKdcF\nHUVEAtTg4AY80OsBUqelsvvH3UHHKRc6ZVQKy7cs58wnzmTRnxZxVJ2jgo4jIhFgwKsDqJVUi/t7\n3R90lF/QKaMKlLM3hwGvDuC2s29TMRCRAhN6TmD6yunMXT036Chh0xHCfsyYsYC0tDlkZyeyvsVb\n1Gn9IxnXLIy6YXBFpGLNXT2XS1+4jOPfvYy8H2qSlJTL8OHd6d37jMAyleUIIdxHaMasGTMWMGLE\nbFavvg0aZUCHhzhi8kXMPPrdQP8ni0jk+XFFEtkfN+Xt5G9g1r8BWL16NEBU7S90yqgYaWlz8otB\n4h44LxVmpfHlJ2lMmBD9h4UiUr7S0uaw4+V3oMkiOPZlAFavvi3q9hcqCMXIzg4dPJ2cBt8eA59e\nBEBWVkKAqUQkEmVnJ0LOQfDaJDjnOkjMAqJvf6GCUIykpFxI3gan3g3zfh64Ljk5Nge1EpGyS0rK\nzf9l3emwuS10eBCIvv2FCkIxhg/vTu0+vWFFf9jaCoDmzUcxbFi3gJOJSKQZPrw7zZvn9xkw/3bo\nfAfNWl0XdfuLsK8yMrMewL1AAvCYu9+5jzZpQE/gB2CQuy8p9FoCsBjY4O5997FsIFcZbdyxkWPT\njuPEDwbBjjokJ+9l2LBuUdVBJCKVZ8aMBUyYMJesrAQ+b/0qp5/QlqlXTgksT6U/Uzm0M18JdAU2\nAhnAxe6eWahNL2Cou/cys5OB+9y9U6HXrwNOAmq6e799vEcgBWHw64OplVyLu7rdVenvLSLR7cvt\nX3LiIyey/OrlNDi4QSAZgrgxrSOwyt3XunsOMBU4t0ibfsAUAHdfBNQ2swahwE2AXsBjQMRc3L9y\n60peznyZkZ1HBh1FRKLQEbWPILVNKrcsiK6h8cMtCI2B9YWmN4TmlbTNPcDfgLwwc5SrMW+P4fpT\nrqdu9bpBRxGRKDXq9FFM/WQqa7atCTpKiYV7Y1pJz+UU/fZvZtYH+Mbdl5hZyv4WHjduXMHvKSkp\npKTst3lYFm9azH/W/YfHz328wt5DRGJfvYPqMfzk4Yx5ewzP/O6ZCn+/9PR00tPTw1pHuH0InYBx\n7t4jNH0TkFe4Y9nMHgbS3X1qaHoFkAIMBwYAuUAycAjwsrunFnmPSu1D6PZUN84/9nyuan9Vpb2n\niMSmXT/uokVaC9687E3aNmxbqe8dRB/CYqClmTUzs2rARcD0Im2mA6mhgJ2A7e6+2d1HuXtTdz8S\n+APwVtFiUNnmrZnH2u1ruaLdFUHGEJEYcXC1gxl9+mhGzR8VdJQSCasguHsuMBSYDSwHnnf3TDMb\nbGaDQ21mAmvMbBUwEbi6uNWFkyVc7s7IeSO59axbqZpQNcgoIhJDBrcfzIqtK3hn7TtBRzkgjXYa\n8uKnL3LHe3eQ8ecMqpju1xOR8vP0x0/zQMYD/PeP/6200ZL1PIQyytmbw+i3RjO+y3gVAxEpd5f8\n9hJ+yPmB6SuLnlGPLNr7AY8vfZymtZrS7ajous1cRKJDFavC7Wffzqi3RrE3L3LHN4r7gvBDzg/c\n/M7NjO8yXg++EZEK06tlLw6tfihPLnsy6CjFivuCMGHRBE5pcgodG3cMOoqIxDAz446udzA2fSxZ\nuVlBx9mnuC4I2/Zs4+6Fd3Pr2bcGHUVE4sCpTU+l3eHteDDjwaCj7FNcX2U0ct5Ivv3hWx7t92iF\nrF9EpKhPv/mUs6acxefDPqdWcq0Ke59KH+20MlRUQdi4YyNtHm7DsquW0eSQJuW+fhGR4gyaNoim\nhzTllrMrbvA7FYRS0PDWIhKUyhgeWwWhhFZuXclpk0/js2GfaURTEQnEtW9eS05eDvf3ur9C1q+C\nUEIXvngh7Rq246bTbyrX9YqIlNSW3Vs49oFj+eDPH3BUnaPKff26U7kEFm9azHvr32NEpxFBRxGR\nOFZ4eOxIEXcF4ab5NzHmjDHUqFoj6CgiEueuO+U65q+Zz9LNS4OOAsRZQdDw1iISSSJteOy4KQga\n3lpEIlEkDY8dNwXhpeUv4Ti/b/37oKOIiBSollCNf571T0bOH0nQF/nERUHQ8NYiEsl+Gh77tZWv\nBZojLvaOGt5aRCJZwfDY84MdHjvmC4KGtxaRaNCrZS8Oq3FYoMNjx3xB0PDWIhINImF47LALgpn1\nMLMVZva/+xRZAAAKd0lEQVS5md1YTJu00OvLzKxdaF5TM3vbzD41s0/MbHi4WYrS8NYiEk2CHh47\nrKErzCwBWAl0BTYCGcDF7p5ZqE0vYKi79zKzk4H73L2TmTUEGrr7UjM7GPgQ6F942dDyZR66QsNb\ni0i0+eSbTzh7ytlhD48dxNAVHYFV7r7W3XOAqcC5Rdr0A6YAuPsioLaZNXD3ze6+NDR/F5AJNAoz\nT4GNOzby6EePMjZlbHmtUkSkwh1f/3h6tezF3f+9u9LfO9yC0BhYX2h6Q2jegdr84gEEZtYMaAcs\nCjNPgX++80+uaHeFnnUgIlHn5pSbeXDxg3y96+tKfd/EMJcv6bmcooctBcuFThe9BIwIHSn8yrhx\n4wp+T0lJISUlZb9vtnLrSl5Z8Qorh64sYTwRkchxRO0jSG2Tyi0Lbinx8Njp6emkp6eH9b7h9iF0\nAsa5e4/Q9E1AnrvfWajNw0C6u08NTa8AznT3r82sKvAGMMvd7y3mPUrdh6DhrUUk2m3ZvYVWD7Qi\n488ZZRoeO4g+hMVASzNrZmbVgIuA6UXaTAdSQwE7AdtDxcCAScDy4opBmQJpeGsRiQH1DqrHiJNH\nVOrw2GEVBHfPBYYCs4HlwPPunmlmg81scKjNTGCNma0CJgJXhxY/DbgMOMvMloR+eoSTBzS8tYjE\njsoeHjumnpg2b808hswYwvKrl2tEUxGJCRMWTWDWqlnMvHRmqZaL6yemaXhrEYlFlTk8dswUBA1v\nLSKxqDKHx46JgqDhrUUkllXW8NgxsffU8NYiEssqa3jsqC8IGt5aROJBZQyPHfUFQcNbi0g8qIzh\nsaO6IGh4axGJJxU9PHZU34eg4a1FJN6UdHjsstyHELUFYeOOjbR5uA3LrlqmEU1FJK4MmjaIpoc0\n5Zazbym2TVwVhMGvD6ZWci3u6nZXAKlERILz5fYvOfGRE1l+9XIaHNxgn23ipiCs3LqSzo93ZuXQ\nldStXjegZCIiwbn2zWvJycspdnjsuCkIGt5aROLdgYbHjouxjDS8tYhIxQyPHXUFQcNbi4jku7bT\nteU6PHZUFYR5a+axdvtarmh3RdBRREQCVzOpJqNPH82o+aPKZX1RUxA0vLWIyK9dedKVZG7NLJfh\nsaOmIGh4axGRX0tKTOKWs24pl+Gxo6IgaHhrEZHiXXz8xez+cXfYw2OHvXc1sx5mtsLMPjezG4tp\nkxZ6fZmZtSvNsqDhrUVE9iehSgLju4wPe3jssAqCmSUA9wM9gOOAi83s2CJtegEt3L0lcCXwUEmX\n/YmGtxYR2b9eLXtxaI1DwxoeO9wjhI7AKndf6+45wFTg3CJt+gFTANx9EVDbzBqWcFkActcewpal\nFTPcq4hILDAz7ux6Jze+OZKuPUaWaR3hFoTGwPpC0xtC80rSplEJlgXgm+deZcSI2cyYsSDMuCIi\nsWvbx7nsXl2L+Tvql2n5cAtCSbu0wzvXs7UVq1ffxoQJc8NajYhILEtLm8MPr78Cne8o0/LhFoSN\nQNNC003J/6a/vzZNQm1KsmzIOGAcK1a8S3p6ejh5RURiUnp6OitX/ge+eQmeOLNM6wi3ICwGWppZ\nMzOrBlwETC/SZjqQCmBmnYDt7v51CZcNGQeMo1Wr00lJSQkzsohI7ElJSeGYYzoD42DLi2VaR1gF\nwd1zgaHAbGA58Ly7Z5rZYDMbHGozE1hjZquAicDV+1u2uPdq3nwUw4bpslMRkeIMH96d5s1Hl3n5\nqBj++pxz/s6wYd3o3fuMoOOIiES0GTMWMGHCXGbPvjU+nocgIiL7FxfPQxARkYqhgiAiIoAKgoiI\nhKggiIgIoIIgIiIhKggiIgKoIIiISIgKgoiIACoIIiISooIgIiKACoKIiISoIIiICKCCICIiISoI\nIiICqCCIiEiICoKIiAAqCCIiEqKCICIiQBgFwczqmtlcM/vMzOaYWe1i2vUwsxVm9rmZ3Vho/r/M\nLNPMlpnZK2ZWq6xZREQkfOEcIYwE5rr70cD80PQvmFkCcD/QAzgOuNjMjg29PAdo7e4nAJ8BN4WR\nJS6kp6cHHSFiaFv8TNviZ9oW4QmnIPQDpoR+nwL030ebjsAqd1/r7jnAVOBcAHef6+55oXaLgCZh\nZIkL+mP/mbbFz7QtfqZtEZ5wCkIDd/869PvXQIN9tGkMrC80vSE0r6g/AjPDyCIiImFK3N+LZjYX\naLiPl0YXnnB3NzPfR7t9zSv6HqOBH9392QO1FRGRimPuB9xn73tBsxVAirtvNrPDgbfdvVWRNp2A\nce7eIzR9E5Dn7neGpgcBfwa6uHtWMe9TtoAiInHO3a007fd7hHAA04GBwJ2h/07bR5vFQEszawZs\nAi4CLob8q4+AvwFnFlcMoPT/IBERKZtwjhDqAi8AvwHWAhe6+3YzawQ86u69Q+16AvcCCcAkdx8f\nmv85UA34LrTKhe5+dRj/FhERCUOZC4KIiMSWiLlTubgb2Iq0SQu9vszM2lV2xspyoG1hZpeGtsHH\nZvaembUJImdFK8nfRKhdBzPLNbPfVWa+ylTCz0eKmS0xs0/MLL2SI1aaEnw+DjOzN81saWhbDAog\nZqUws8lm9rWZ/W8/bUq+33T3wH/IP520CmgGVAWWAscWadMLmBn6/WTg/aBzB7gtTgFqhX7vEYvb\noiTboVC7t4A3gPODzh3g30Rt4FOgSWj6sKBzB7gtxgHjf9oOwLdAYtDZK2h7nA60A/5XzOul2m9G\nyhFCsTewFVJwI5y7LwJqm9m+7n2IdgfcFu6+0N2/D03G6k19JfmbABgGvARsqcxwlawk2+IS4GV3\n3wDg7lsrOWNlKcm2+Ao4JPT7IcC37p5biRkrjbu/C2zbT5NS7TcjpSCU5Aa2fbWJxR1hSW/m+8kV\nxOZNfQfcDmbWmPydwUOhWbHaIVaSv4mWQF0ze9vMFpvZgEpLV7lKsi0eBVqb2SZgGTCikrJFolLt\nN8O57LQ8lfSDXPQS1FjcAZT432RmZ5F/l/dpFRcnMCXZDvcCI93dzcz49d9HrCjJtqgKnAh0AWoA\nC83sfXf/vEKTVb6SbItRwFJ3TzGz5sBcMzvB3XdWcLZIVeL9ZqQUhI1A00LTTcmvZPtr0yQ0L9aU\nZFsQ6kh+FOjh7vs7ZIxWJdkOJwFT82sBhwE9zSzH3adXTsRKU5JtsR7Y6u57gD1mtgA4AYi1glCS\nbXEqcBuAu682sy+AY8i/LyrelGq/GSmnjApuYDOzauTfwFb0Qz0dSIWCO6C3+89jKcWSA24LM/sN\n8ApwmbuvCiBjZTjgdnD3o9z9SHc/kvx+hCExWAygZJ+P14DOZpZgZjXI70BcXsk5K0NJtsUKoCtA\n6Hz5McCaSk0ZOUq134yIIwR3zzWzocBsfr6BLdPMBoden+juM82sl5mtAnYDlwcYucKUZFsA/wDq\nAA+Fvh3nuHvHoDJXhBJuh7hQws/HCjN7E/gYyCP/5tCYKwgl/Lu4HXjczJaR/6X3Bnf/rtiVRjEz\new44EzjMzNYDY8k/fVim/aZuTBMRESByThmJiEjAVBBERARQQRARkRAVBBERAVQQREQkRAVBREQA\nFQQREQlRQRAREQD+H2Gz7ECR6pNEAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 111 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.9 page number 245" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "P_Max = 10 #N - the maximum distribution in a triangular distribution\n", + "L = 3 #mt the total length of force distribution \n", + "L_X = 5 #mt - the horizantal length of the rod\n", + "#caliculations \n", + "\n", + "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n", + "L_com = 2*L /3 #mt - the resultant force acting as a result of distribution acting position \n", + "#F_X = 0 forces in x directions\n", + "R_A_X = 0 # since there are no forces in X-direction\n", + "R_B_X = 0\n", + "#M_A = 0 momentum at point a is zero\n", + "#F_y*L_com - R_B_Y*L_X = 0\n", + "R_B_Y = F_y*L_com/L_X\n", + "\n", + "#M_B= 0 momentum at point b is zero\n", + "#- R_A_Y*L_X = F_y*(L_X-L )\n", + "\n", + "R_A_Y = - F_y*L/L_X\n", + "\n", + "#caliculating for some random value\n", + "#For a---a section \n", + "l_a = 2 #mt - a---a section from a \n", + "l_com_a = 2*l_a/3\n", + "v_a = R_A_Y + 0.5*l_a*(10.0*2/3) #*(10*2/3) because the maximum moves\n", + "\n", + "M_a = (10.0*0.66)*l_a*(0.33) + R_A_Y*l_a\n", + "\n", + "print \"The force and moment in section a--a are\",round(v_a,2),\"KN ,\",M_a,\"KN-m\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The force and moment in section a--a are -2.33 KN , -13.644 KN-m\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.13 page number 254" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "l_ab = 4 #L - The total length lets say '3L'\n", + "R_1 = 1 #p - The force applied at b\n", + "R_2 = 1 #p - The force applied at c\n", + "l_ab = 1 #L\n", + "l_bc = 3 #L \n", + "\n", + "#Logical step \n", + "#Since the system is in symmetry we can avoid moment M = 0 caliculations\n", + "\n", + "#F_Y = 0 \n", + "R_A = (R_1 + R_2)/2\n", + "R_B = (R_1 + R_2)/2\n", + "\n", + "#Lets take '3' sections \n", + "#Considering section 1-----1 at 0.5L\n", + "l_1 = 0.5 #L - distance of the section from the A\n", + "v_1 = R_A #F_Y = 0 \n", + "M_1 = R_A*l_1 #MAking moment at section 1 = 0\n", + "\n", + "#Considering section 2-----2 at 1L\n", + "l_2 = 1 #L - distance of the section from the A\n", + "v_2 = R_A #F_Y = 0 \n", + "M_2 = R_A*l_2 #MAking moment at section 2 = 0\n", + "\n", + "#Considering section 3-----3 at 1.5L\n", + "l_3 = 3 #L - distance of the section from the A\n", + "v_3 = 0 #F_Y = 0 \n", + "M_3 = R_A*l_2 #MAking moment at section 2 = 0 and symmetry \n", + "\n", + "#GRAPH\n", + "#Since the symmetry exists the graphs are also symmetry\n", + "%matplotlib inline\n", + "import math \n", + "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n", + "#Drawing of shear and bending moment diagram\n", + "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n", + "X = [0,0.5,1,1.0000001,2,2.9999999999,3,3.5,4] # For graph precision \n", + "\n", + "V = [R_A,v_1,v_2,v_3,v_3,v_3,-v_2,-v_1,-R_B];\t\t\t#Shear matrix\n", + "M = [0,M_1,M_2,M_3,M_3,M_3,M_2,M_1,0];\t\t\t#Bending moment matrix\n", + "plot(X,V);\t\t\t#Shear diagram\n", + "plot(X,M);\t\t\t#Bending moment diagram\n", + "suptitle( 'Shear and bending moment diagram')\n", + "xlabel('X axis')\n", + "ylabel( 'Y axis') ;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEhCAYAAABoTkdHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHDtJREFUeJzt3X+8XHV95/HXm/xAfmUJagNIFFtBQSNGCEYQuA2oASoU\nSwSqDT98YJZd1K7Yh4pa0m1XwPqjApUqBiGWApsu0FiCgDTXUORHYn4QSIJhJbuImHUf/EyySiCf\n/eN8bzJMZu7MuXdmzpmZ9/PxuI+cmfnOnM9852Y+95z3nDOKCMzMzJq1S9EFmJlZd3HjMDOzXNw4\nzMwsFzcOMzPLxY3DzMxyceMwM7Nc3Dh6nKQvSnpE0ipJKyRNS9dvkLRP0fU1Uq9OSZvatL7rJP1J\nWr5G0iHtWE8ZSDpM0olNjh2U9O60fLukCe2tzspsbNEFWPtIei9wMjA1IramN+Bd080BqMXrGxsR\nL7fyMcnqzHN9K9YXABFxfpvWURZTgcOBO5oYu32+I+LkVqxc0piIeKUVj2Wd5S2O3rYv8H8jYitA\nRDwTEU9X3P5JST+T9LCktwJI2kPStZIelLRc0inp+gMlLUnjf5aaEpIGJN0r6V+AR6sLkPRtSUvT\nVs/cius3SJpbY/2vlXRXGn8NwzQ3Sd9I434s6XXpuj+QdIekZaneoce9TtK3JN0n6X9WbFVI0lWS\n1km6G/i9isev/Ct7k6S/kbRS0v2Sfq9ifQ+k5/A3kl6sUeeB6fG/L+kxSTdI+kCq5ecVW4H7SLot\nbR3eL2lKun6upOvT89kg6cOSvpbWeYeksWnc4anmZZJ+JGnfiudxWXpNH5P0PknjgP8KnJG2RGdV\n1bybpJskrZF0C7Bb1Wu3T1q+Na3vEUnnV4z5eFrXg2nL7cqK1+EfJD0AXC5pmqSfpt+1+yQdnMad\nk+biLklPSLpQ0mfTuPslTaz3e2EdEBH+6dEfYA9gBfAY8PfAsRW3PQH857R8AXBNWv4K8NG0vHe6\n7+5kbxy7pusPApam5QFgE/CmOjVMTP+OARYD72iw/iuAL6Xlk4BtwD41HncbcFZa/jJwZVq+B3hL\nWn4PcE9avg64OS0fAqxPyx8G7iJrUPsBzwIfTrctBt5dsb6T0/LlwBfT8r8CZ6TlOcCLNWo9ENgK\nvD2tZxkwL912CnBrWr4S+HJa/kNgRVqeCyxJc/hOYAvwwXTbLcCpwDjgp8Br0/VnVKxjMfC3aflE\n4O60fDZwRZ3X7TPA99LylFT/0Fw8MfSaVLy+uwGrgYnA/mnM3mR7NZYMrSe9DgsBpct7AWPS8gnA\nP6flc4D1ZL/DrwOeBz6RbvsG8Omi/3/18493VfWwiNgs6XDgGLI3opslfT4irk9Dbkn/Lid7AwX4\nAPAhSZ9Nl3cFJgO/Bq6SdBjwClnzGPJQRPyvOmWckf4SHUv2xnwo8Mgw6z8GOC3Vv0jSs3Uedxtw\nc1r+R+AWSXsARwELpO0bKuOHpgO4LT3uWkmT0vXHAv8U2TvS05L+rc76XoqI29Pyz4D3p+XpZG/+\nADcCX6tz/yci4lEASY8CP07XP0LWWACOJs1DRCxOW197pdrviIhXJD0C7BIRd6b7rE73P5isMf04\nPfcxwK8q1l8510PrE/W36I4BvpVqWS3p4TrjPi3pj9PyAamO/YCfRMRz6fkuSNeTnsuCNN+QNZf5\nkt6Sbqt8T1ocEZuBzZKeA35Y8ZzfWace6wA3jh4XEduAnwA/kbSa7K/Mocbxu/TvK7z6d+HDEbG+\n8nGU7WZ6OiL+TNIY4LcVN2+utW5JbwYuAo6IiOclfR94TcWQeuvPm72I7E1nF+DZiJhaZ9xLNdbR\nbNaztWJ5G/n/7/yuYnlbRS3Vj1Wvlpcgez0l1apFwKMRcVSD9VfP9XCGnRdJA8DxwPSI+K2kxWSv\nb3X+VP04WyqW/5psq/A0SW8CBmvUDNnz/F3Fst+7CuSMo4dJOlhS5ZbBVGBDg7vdCXyq4jGG3oQn\nkG11AMwm+4u2kQlkTeWF9Bd+M5/gWQL8aVr3iWS7PmrZBRjaL/+nwL0R8SLwhKTT0/0lqdFfpkvI\ntop2kbQf2ZZZHg8Ap6flM3Pet9q9wEdh+5vyb9JzaqaxPQa8XtL0dP9xkg5tcJ8XyHYV1VL5OryD\n2n/hTyBr1L+V9Dayra8AlgLHSdo75S9/Qv0PM0xgx5bRuQ3qHdLSD3VYfm4cvW1P4DpJj0paBbyN\nbH85vPo/clRc/mtgXApeHwH+Kl3/beBsSSuBt5LlGpX330lErCLLWNYBNwD/XqfOyvX/FXBsWvdp\nQL1dYJuBI9NW1ABZ0AvZG+/HU52PsGM3Uq3nTETcSrYvfQ3ZlthPh6mxVr1/Dnwmre8PyPbFN7p/\nzVrIXpvD02v1FbKtw+r11XysyD4AcTpZ4LySbN7f26CWxcChtcJx4GpgT0lryF6TZTUe50fA2DTm\nUuD+VMyvUv0Pkb3mT/Dqeams/6vApZKWk/0xEhVj6j3n6tusw7RjV6OZ5SVpt4j4f2n5TLKg/LSC\nyyqcpD1SxjaWLF+ZFxH/UnRd1hreT2g2OodLuops98mzwHkF11MWcyWdQJZ53Omm0Vu8xWFmZrk4\n4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLpdDGoex7Hzam00bUG3OFpPXK\nvqOg3snrzMysQ4re4vg+MLPejZJOIvtuhYOAT5CdP8fMzApUaOOIiHvJTtNQzymkU4BHxIPA3hXf\no2BmZgUoeoujkTcAT1Zc/iXZl8WYmVlByt44YOdz7/vkWmZmBSr72XGfIvva0iEHpOteRZKbiZnZ\nCERE7i/GKvsWx0Kyb5sjfbPZcxGxsdbAor+8vZmfSy65pPAaav1s27aNj93yMc677TygnDV2y1y6\nzvb+fOgTH+Ltf/92Nr+0ufBaemE+R6roj+PeSPaNa2+V9KSk8yTNkTQHICIWAb+Q9DjwHeA/FVhu\nz7p2xbWseHoFV550ZdGlmA1r6r5TmbrfVD656JNFl9LXCt1VFRFnNTHmwk7U0q9Wb1zN5+/5PEvO\nWcLu43YvuhyzYUni6pOv5ojvHsH8VfOZfdjsokvqS2XfVdVTBgYGii7hVTa9tIlZC2bx9Q98nUNe\nf0i6dqDIkppWtrmsx3W21sDAAHuO35MFsxZw0V0XsfY3a4suqaZumc+R6olvAJQUvfA8OikimH3b\nbMbvMp55p87bfr0EnkrrBvOWz+ObD3yTh85/yFvLIySJ6MFw3NrEuYZ1u/Omnue8oyBuHH1oKNdY\nMGuB/1KzrjWUd9z35H3MXzW/6HL6ihtHn6mda5h1p27IO3qRM44+Ui/XqOSMw7qR846RccZhDTnX\nsF7lvKOz3Dj6hHMN62XOOzrLjaMPONewfuC8o3OccfS4ZnKNSs44rNs572ieMw6rybmG9RvnHe3n\nxtHDnGtYP3Le0X5uHD3KuYb1M+cd7eWMowflzTUqOeOwXuK8Y3jOOGw75xpmGecd7eHG0WOca5jt\n4LyjPdw4eohzDbOdOe9oPWccPWI0uUYlZxzWq5x37MwZR59zrmE2POcdrePG0QOca5g15ryjddw4\nupxzDbPmOe9oDWccXaxVuUYlZxzWD5x3ZJxx9CHnGmYj47xjdNw4upRzDbORc94xOm4cXci5htno\nOe8YOWccXaYduUYlZxzWb/o573DG0Seca5i1lvOO/Nw4uohzDbPWc96RnxtHl3CuYdY+zjvyccbR\nBdqda1RyxmH9rN/yDmccPcy5hllnOO9ojhtHyTnXMOsc5x3NceMoMecaZp3nvKMxZxwl1clco5Iz\nDrNMP+Qdzjh6jHMNs2I576jPjaOEnGuYFc95R31uHCXjXMOsPJx31OaMo0SKyjUqOeMw21mv5h3O\nOHqAcw2zcnLe8WpuHCXhXMOsvJx3vJobRwk41zArP+cdOzjjKFgZco1KzjjMhtdLeYczji7lXMOs\nuzjvcOMolHMNs+7jvMONozDONcy6V7/nHc44ClC2XKOSMw6z5nV73uGMo4s41zDrDf2adxTaOCTN\nlLRO0npJn6tx+4Ck5yWtSD9fKqLOVnKuYdY7+jXvGFvUiiWNAa4CTgCeApZKWhgR1TsMfxIRp3S8\nwDZwrmHWe4byjhnzZzBt/2l98X+7yC2OI4HHI2JDRGwFbgJOrTEu9/63MooILrj9Ao6efDSzD5td\ndDlm1kJTJk3hsuMvY9aCWWzZuqXoctquyMbxBuDJisu/TNdVCuAoSaskLZJ0aMeqazHnGma9rZ/y\njsJ2VZE1hUaWA5MjYoukE4HbgINrDZw7d+725YGBAQYGBlpQYmsM5RpLzlniXMOsRw3lHdOumcb8\nVfNLuWdhcHCQwcHBUT9OYR/HlTQdmBsRM9PlLwDbIuLyYe7zBHB4RDxTdX1pP4676aVNHPHdI7j4\nmItL+YtUzR/HNRud1RtXM2P+DJacs6T0eUc3fhx3GXCQpAMljQfOABZWDpA0SZLS8pFkje6ZnR+q\nnJxrmPWffsg7CmscEfEycCFwJ7AGuDki1kqaI2lOGnY6sFrSSuDvgDOLqXZknGuY9adezzt85Hib\ndNPmaiXvqjJrjW7YTd2Nu6p6lo/XMLNePp+VtzharMznoWqGtzjMWqvM57PyFkdJONcws0q9mHe4\ncbSQz0NlZtV68XxWbhwt4lzDzOrptbzDGUcLdHuuUckZh1n7lC3vcMZRIOcaZtaMXsk73DhGybmG\nmTWrV/ION45RcK5hZnn1Qt7hjGOEeinXqOSMw6wzypB3OOPoMOcaZjYa3Zx3uHGMgHMNMxutbs47\n3Dhycq5hZq3SrXmHM44cejXXqOSMw6zziso7nHF0gHMNM2uHbss73Dia5FzDzNql2/ION44mONcw\ns3brprzDGUcD/ZBrVHLGYVasTuYdzjjaxLmGmXVSN+QdbhzDcK5hZp3WDXmHG0cdzjXMrChlzzuc\ncdTQb7lGJWccZuXR7rzDGUcLOdcwszIoa97hxlHFuYaZlUVZ8w43jgrONcysbMqYdzjjSPo516jk\njMOsnNqRdzjjGCXnGmZWZmXKO9w4cK5hZuVXpryj7xuHcw0z6xZlyTv6OuNwrrEzZxxm5deqvMMZ\nxwg41zCzblR03tG3jcO5hpl1q6Lzjr5sHM41zKzbFZl39F3G4VxjeM44zLrLaPIOZxxNcq5hZr2k\niLyjrxqHcw0z6zVF5B190zica5hZr+p03tEXGYdzjeY54zDrXnnzjrZlHJI+ImlCWv6ypFslvTvv\niorkXMPM+kGn8o5mdlV9OSJekPQ+4HhgHnB1W6tqIecaZtYvOpV3NNM4Xkn//hFwTUT8KzC+bRW1\nkHMNM+s3ncg7mmkcT0n6LnAGcLuk1zR5v0JFBBfcfgFHTz6a2YfNLrocM7OOmTJpCpcdfxmzFsxi\ny9YtLX/8huG4pD2AmcDDEbFe0n7AlIi4q+XVjFCtcLzdX/LeqxyOm/WGZj4UNNJwvG7jkDQhZRv7\n1Cnqmbwra5fqxrF642pmzJ/BknOWeBdVTm4cZr1j00ubOOK7R3DxMRfX3PMy0sYxdpjbbgROBpYD\ntd5K3px3ZZ3gXMPMLDOUd8yYP4Np+09r2XtiTx3H4eM1Rs9bHGa9p96u+3Yex/HxqstjJV2Sd0Wd\n4OM1zMx21urjO5r5dNQJkhZJ2l/SO4D7gQmtWLmkmZLWSVov6XN1xlyRbl8laWq9x/LxGmZmtbX6\n+I7hMg4AIuIsSWcCDwObgY9GxL+PdsWSxgBXAScATwFLJS2MiLUVY04C3hIRB0l6D9mBh9NrPZ5z\nDTOz+lqZdzSzq+pg4FPALcD/Bj6WPqI7WkcCj0fEhojYCtwEnFo15hTgeoCIeBDYW9KkWg/m4zXM\nzIbXquM7mtlVtRD4y4j4BHAcsB5YOuI17vAG4MmKy79M1zUac0CtB3OuYWbWWCvyjoa7qoD3RMTz\nABGxDfi6pB+OeI07NPvZnerEv+b9vvrfvrp9eWBggIGBgZFV1ecmTsw+WWVWRhMnwjOlOYKs+wwO\nDjI4OMjkVyaz8LGFI36cpj6OK2kKcCjwGtIbd0SMKmGRNB2YGxEz0+UvANsi4vKKMf8ADEbETeny\nOuC4iNhY9VhNf3WsmXUvf1y8tdr5cdy5wBXAlcAA8FWy7GG0lgEHSTpQ0niyc2FVt8CFwOxUx3Tg\nueqmYWZmndXMrqrTgcOA5RFxbgqnbxjtiiPiZUkXAncCY4B5EbFW0px0+3ciYpGkkyQ9TvaJrnNH\nu14zMxudZk5yuDQipkn6GTADeAFYFxFv7USBzfCuKrP+4F1VrdWOc1UNWSppInAN2e6lzcBP867I\nzMx6Q65zVUl6MzAhIla1r6T8vMVh1h+8xdFaLT+tejdx4zDrD24crdW2T1WZmZlVqts4JN2Rdk2Z\nmZltN9wWx7XAnZK+KGlcpwoyM7NyGzbjkLQn8JfAB4EfsON0HxER32h/ec1xxmHWH5xxtFa7Po67\nFdhEdqqRvYBtI6jNzMx6SN3GIWkm8A3gh8DUiBj5OXjNzKxn1N1VJele4D9GxKOdLSk/76oy6w/e\nVdVaLT+OQ130btxFpZrZKLhxtFbLj+PwO7GZmdXiAwDNzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzM\nLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjMzCwXNw4zM8vFjcPM\nzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjM\nzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3D\nzMxyGVvESiXtA9wMvAnYAHwkIp6rMW4D8ALwCrA1Io7sYJlmZlZDUVscnwfujoiDgXvS5VoCGIiI\nqW4aZmblUFTjOAW4Pi1fD/zxMGPV/nLMzKxZRTWOSRGxMS1vBCbVGRfAjyUtk3R+Z0ozM7PhtC3j\nkHQ3sG+Nm75YeSEiQlLUeZijI+JpSa8H7pa0LiLurTVw7ty525cHBgYYGBgYUd1mZr1qcHCQwcHB\nUT+OIuq9Z7ePpHVk2cWvJe0HLI6ItzW4zyXApoj4eo3boojnYWadJYH/q7eOJCIidxxQ1K6qhcDZ\nafls4LbqAZJ2l7RXWt4D+ACwumMVmplZTUVtcewD/HfgjVR8HFfS/sA1EXGypN8Hbkl3GQvcEBGX\n1nk8b3GY9QFvcbTWSLc4CmkcrebGYdYf3Dhaq9t2VZmZWZdy4zAzs1zcOMzMLBc3DjMzy8WNw8zM\ncnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjMzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzM\nLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjMzCwXNw4zM8vFjcPM\nzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjM\nzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3D\nzMxyceMwM7NcCmkckmZJelTSK5LePcy4mZLWSVov6XOdrNHMzGoraotjNXAasKTeAEljgKuAmcCh\nwFmSDulMee0xODhYdAkNdUON4DpbrVvqhMGiC2hK98znyBTSOCJiXUT8vMGwI4HHI2JDRGwFbgJO\nbX917dMNv0zdUCO4zlbrljrdOMqhzBnHG4AnKy7/Ml1nZmYFGtuuB5Z0N7BvjZsujogfNvEQ0eKS\nzMysBRRR3PuzpMXARRGxvMZt04G5ETEzXf4CsC0iLq8x1k3GzGwEIkJ579O2LY4c6hW9DDhI0oHA\nr4AzgLNqDRzJEzczs5Ep6uO4p0l6EpgO3C7pjnT9/pJuB4iIl4ELgTuBNcDNEbG2iHrNzGyHQndV\nmZlZ9ynzp6pepZmDASVdkW5fJWlqp2tMNQxbp6QBSc9LWpF+vlRAjddK2ihp9TBjyjCXw9ZZhrlM\ndUyWtDgd1PqIpE/VGVfonDZTZxnmVNJrJD0oaaWkNZIurTOusPlspsYyzGVFLWNSDTU/mJR7LiOi\n9D/AGOBx4EBgHLASOKRqzEnAorT8HuCBktY5ACwseD6PAaYCq+vcXvhcNlln4XOZ6tgXeFda3hN4\nrKS/n83UWZY53T39OxZ4AHhfCeezUY2lmMtUy2eAG2rVM5K57JYtjmYOBjwFuB4gIh4E9pY0qbNl\nNn3QYqFhfkTcCzw7zJAyzGUzdULBcwkQEb+OiJVpeROwFti/aljhc9pknVCOOd2SFseT/UH2TNWQ\nMsxnoxqhBHMp6QCy5vA9ateTey67pXE0czBgrTEHtLmuas3UGcBRaZNwkaRDO1Zd88owl80o3Vym\nTwFOBR6suqlUczpMnaWYU0m7SFoJbAQWR8SaqiGFz2cTNZZiLoFvAn8BbKtze+657JbG0WyCX91N\nO538N7O+5cDkiDgMuBK4rb0ljVjRc9mMUs2lpD2BfwY+nf6i32lI1eVC5rRBnaWY04jYFhHvInsD\nO1bSQI1hhc5nEzUWPpeS/gj4PxGxguG3fnLNZbc0jqeAyRWXJ5N1xeHGHJCu66SGdUbEi0ObuBFx\nBzBO0j6dK7EpZZjLhso0l5LGAf8D+MeIqPUGUYo5bVRnmeY01fA8cDtwRNVNpZhPqF9jSebyKOAU\nSU8ANwIzJM2vGpN7LrulcWw/GFDSeLKDARdWjVkIzIbtR50/FxEbO1tm4zolTZKktHwk2Ueia+0b\nLVIZ5rKhssxlqmEesCYi/q7OsMLntJk6yzCnkl4nae+0vBvwfmBF1bBC57OZGsswlxFxcURMjog3\nA2cC/xYRs6uG5Z7LMhw53lBEvCxp6GDAMcC8iFgraU66/TsRsUjSSZIeBzYD55axTuB04AJJLwNb\nyF7MjpJ0I3Ac8DplB2JeQvYpsNLMZTN1UoK5TI4GPgY8LGnozeNi4I1QqjltWCflmNP9gOsl7UL2\nx+0PIuKekv1/b1gj5ZjLagEw2rn0AYBmZpZLt+yqMjOzknDjMDOzXNw4zMwsFzcOMzPLxY3DzMxy\nceMwM7Nc3DjMGlB2OvJfSJqYLk9Ml9/Ygse+b/QVmnWWj+Mwa4KkvwDeEhFzJH0H+EVEXF50XWZF\n8BaHWXO+CUyX9Odk5//5Wq1Bkm6VtEzZFyWdn657k6SfS3ptOqPqvZJOSLdtSv/uJ2mJsi/bWS3p\nfR16Xma5eYvDrEmSPgjcAbw/Iu6pM2ZiRDybzl/0EHBsuvxx4IPAUuD3I+KCNP7FiNhL0kXArhHx\nlXR+oz3qnGHXrHDe4jBr3onAr4Apw4z5dPqOhvvJzjJ6MEBEzAP+AzAH+GyN+z0EnCvpEuCdbhpW\nZm4cZk2Q9C7gBOC9wH+RtG+NMQPA8cD09D0NK4Fd0227kzWSAPaqvm/6tsNjyE5nfZ2kP2vPMzEb\nPTcOswbSrqOryb746Engb6mdcUwAno2I30p6GzC94rbLgR+QneH3mhrreCPwm4j4HtlXfE5t7bMw\nax03DrPGzgc2VOQa3wYOkXRM1bgfAWMlrQEuJdtdhaTjgMOByyPin4CXJJ2d7jMUMv4hsFLScuAj\nwLfa9mzMRsnhuJmZ5eItDjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjM\nzCyX/w/0OTZCPXzVtAAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 126 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.14 page number 255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "l = 1.0 #l - The length of the beam\n", + "p = 1.0 #W - The total load applied\n", + "#since it is triangular distribution \n", + "l_com = 0.66*l#l - The distance of force of action from one end\n", + "#F_Y = 0\n", + "#R_A + R_B = p\n", + "#M_a = 0 Implies that R_B = 2*R_A\n", + "R_A = p/3.0\n", + "R_B = 2.0*p/3\n", + "\n", + "#Taking Many sections \n", + "\n", + "#Section 1----1\n", + "l = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n", + "M = [0,0,0,0,0,0,0,0,0,0,0]\n", + "v = [0,0,0,0,0,0,0,0,0,0,0]\n", + "for i in range(10):\n", + " v[i] = p*(l[i]**2) - p/3.0\n", + " M[i] = p*(l[i]**3)/(3.0)- p*l[i]/3.0\n", + "\n", + "v[10] = R_B #again concluded Because the value is tearing of \n", + "\n", + "\n", + "#Graph\n", + "import numpy as np\n", + "values = M\n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "import numpy as np\n", + "values = v\n", + "y = np.array(values)\n", + "t = np.linspace(0,1,11)\n", + "poly_coeff = np.polyfit(t, y, 2)\n", + "import matplotlib.pyplot as plt\n", + "plt.plot(t, y, 'o')\n", + "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n", + "plt.show()\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEACAYAAABcXmojAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjfX///HHyzAz2ZNIKDUYFZUWKuLIMsMISYkSfSrV\n52PGL30kVKaF1k+ytEoiWSplG2UmmfBNSYnIWKYIMUW2LGOW1+8Pp4npjBlz5pzrnDOv++3m1rW8\nr+s8u24z5zXv630toqoYY4wxAGWcDmCMMSZwWFEwxhiTx4qCMcaYPFYUjDHG5LGiYIwxJo8VBWOM\nMXm8LgoiEisiaSKySUSGFNBmrHv9ahFp6l5WV0QWi8g6EVkrIgneZjHGGOMdr4qCiIQB44FY4GKg\nl4hclK9NJ6C+qjYA+gOvuVdlAQ+q6iXANcB/8m9rjDHGv7ztKTQDNqvqFlXNAmYAXfO16QJMBlDV\nr4GqIlJTVXep6vfu5X8C64FzvcxjjDHGC94WhdrAthPmt7uXFdamzokNRKQe0BT42ss8xhhjvOBt\nUSjqMzKkoO1EpCLwITDQ3WMwxhjjkLJebr8DqHvCfF2O9wRO1aaOexkiUg6YBUxV1dmePkBE7OFM\nxhhTDKqa/w/yQnnbU1gJNBCReiISDvQE5uZrMxe4E0BErgH2qWqGiAgwEfhRVV8+1Yeoqv1TZcSI\nEY5nCJR/dizsWNixOPW/4vKqp6Cq2SIyAFgIhAETVXW9iNznXv+Gqi4QkU4ishk4BNzl3rwFcAew\nRkRWuZcNVdVPvclkjDGm+Lw9fYSqfgJ8km/ZG/nmB3jYbhl285wxxgQU+1IOIi6Xy+kIAcOOxd/s\nWPzNjoX3xJtzT/4gIhroGY0xJtCICOrAQLMxxpgQYkXBGGNMHisKxhhj8lhRMMYYk8eKgjHGmDxB\nURTW/77e6QjGGFMqBEVReOKLJ5yOYIwxpUJQFIXFWxaz9re1TscwxpiQFxRFYfB1g623YIwxfhAU\nReGBqx5g2S/LWL1rtdNRjDEmpAVFUagQXoGHr3uYxC8SnY5ijDEhLSiKAsD9V93Pih0r+G7nd05H\nMcaYkBU0ReGMcmcwpMUQElMTnY5ijDEhK2iKAkD/K/vz3c7vWPnrSqejGGNMSAqqohBZNpJh1w9j\nROoIp6MYY0xICqqiAHB307v5IeMHvtr+ldNRjDEm5ARdUYgoG8Hw64fb2IIxxviA10VBRGJFJE1E\nNonIkALajHWvXy0iTU9nW0/uanoXabvT+HLbl97GN8YYcwKvioKIhAHjgVjgYqCXiFyUr00noL6q\nNgD6A68VdduChIeF82irR21swRhjSpi3PYVmwGZV3aKqWcAMoGu+Nl2AyQCq+jVQVUTOKeK2AMTE\nPEpS0pKTlvW9rC/pf6SzZOsST5sYY0yplJS0hJiYR4u9vbdFoTaw7YT57e5lRWlzbhG2BSA5+WkG\nDlx4UmEoF1aOx1o9Zr0FY4xxS0pawsCBC0lOfrrY+/C2KGgR24mXn0N6+kjGjUs5aVmfy/qwbf82\nFv+82NvdG2NM0Bs7Npn09JFe7cPborADqHvCfF2O/8V/qjZ13G2Ksq1bIpBIWtpSUlNT85aWLVOW\nx1s/zojUEagWtT4ZY0zoSU1NZcOGZfz1fVlc3haFlUADEaknIuFAT2BuvjZzgTsBROQaYJ+qZhRx\nW7dEIJFGja7H5XKdtKZ3k95kHMpg0c+LvPxfMcaY4OVyuYiObomjRUFVs4EBwELgR2Cmqq4XkftE\n5D53mwXATyKyGXgD+Pepti3os6KihhEf3/4fy8uWKcuI1iOst2CMKfUSEjoQFTXcq31IoH+RiojG\nxDxKfHx74uJaeWyTk5tDk9eaMDpmNDH1Y/yc0BhjAkdS0hLGjUth4cKnUdXTHs8NiqJQlIwz185k\n9FejWX73ckS8Htc2xpigJiLFKgpB95iLgtxyyS38eexPPtn8idNRjDEmaIVMUSgjZUh0JdrYgjHG\neCFkigJA94u6cyznGPM3znc6ijHGBKWQKgplpAyJra23YIwxxRVSRQGgW6NuAMzZMMfhJMYYE3xC\nriiICE+4nmBE6ghyNdfpOMYYE1RCrigAdG7YmfCwcD5a/5HTUYwxJqiEZFH4q7eQmJpovQVjjDkN\nIVkUADrW70jF8Ip8sO4Dp6MYY0zQCNmikNdb+CKRnNwcp+MYY0xQCNmiANAhqgPVzqjGzHUznY5i\njDF+s2XflmJvG9JF4a/ewhNfPEF2brbTcYwxxi/+s+A/xd42pIsCQNsL2lKzQk2m/zDd6SjGGONz\nyenJbNyzsdjbh3xREBGebPOk9RaMMSEvOzebQQsH8UL7F4q9j5AvCgCuei7qVqnLu6vfdTqKMcb4\nzNur3qZ6+ep0je5a7H2EzPsUCrNk6xL6ze7HhgEbKBdWrgSSGWNM4DiQeYDo8dEk9U7iilpX2PsU\nCtPq/FZEVYti8urJTkcxxpgS98zSZ4iJiuGKWld4tZ9S01MA+HLbl/Se1ZuN8RsJDwsvkX0aY4zT\ntuzbwpVvXsma+9dQu3JtwKE3r4lINRFJEZGNIpIsIlULaBcrImkisklEhpyw/AURWS8iq0XkIxGp\n4k2ewlxX9zoaVW/EpFWTfPkxxhjjV0MXDSWhWUJeQfCGt6ePHgFSVLUhsMg9fxIRCQPGA7HAxUAv\nEbnIvToZuERVLwM2AkO9zFOoJ1xPMHLpSDKzM339UcYY43PLty1n6dal/Pe6/5bI/rwtCl2Av07S\nTwa6eWjTDNisqltUNQuYAXQFUNUU1bwn1n0N1PEyT6Ga12lOk5pNmLhqoq8/yhhjfEpVGZQ8iJE3\njKRCeIUS2ae3RaGmqma4pzOAmh7a1Aa2nTC/3b0sv38BC7zMUyRPuJ5g1NJRHM0+6o+PM8YYn5i5\nbibHco7R57I+JbbPsoU1EJEU4BwPq4afOKOqKiKeRoQLHSUWkeHAMVWd5ml9YmJi3rTL5cLlchW2\ny1O66tyruKLWFbz57ZskNE/wal/GGOOEI1lHeOSzR5jcbTJlpAypqamkpqZ6vV+vrj4SkTTApaq7\nRKQWsFhVG+Vrcw2QqKqx7vmhQK6qPuee7wfcC7RV1X/86V6SVx+daNXOVcRNiyM9IZ0zyp1R4vs3\nxhhfenbZs6zYsYKPenp+mZhT9ynMBfq6p/sCsz20WQk0EJF6IhIO9HRvh4jEAoOBrp4Kgi81rdWU\na+pcw+srX/fnxxpjjNcy/szgxS9f5Ll2z5X4vr3tKVQD3gfOA7YAt6rqPhE5F5igqnHudh2Bl4Ew\nYKKqPuNevgkIB/5w73K5qv4732f4pKcAsCZjDTFTY9gcv7nEBmmMMcbX7pt3HxXCK/BSzEsFtilu\nT6FU3bzmyS0f3ELz2s1L7HIuY4zxpR8yfqDtlLZsGLCBM884s8B2VhSKae1va2k7pS3pCelUDK/o\ns88xxhhvqSoxU2O4seGNxDePP2Vbe/ZRMTWu0Zg29drwyopXnI5ijDGn9OnmT9m6fyv3X3W/zz6j\n1PcUANb/vp7W77QmPSGdShGVfPpZxhhTHNm52Vz62qU81+45boy+sdD21lPwwkVnX0T7qPaMWzHO\n6SjGGOPRm9++Sa1KtejcsLNPP8d6Cm4bdm+g5aSWbI7fTJVInz6XzxhjTsu+o/uIHh/NwjsWcvk5\nlxdpG+speCm6ejQd63dkzNdjnI5ijDEnGbV0FDc2vLHIBcEb1lM4waY9m7h24rVsTthM1UiPTwE3\nxhi/+mnvT1w94WrWPrCWWpVqFXk76ymUgAZnNaBLdBdGLx/tdBRjjAFgyGdDePCaB0+rIHjDegr5\n/FWVN8VvotoZ1fz2ucYYk9+yX5bRe1Zv0gakUb5c+dPa1noKJeTCMy+ke6PuvLS84NvHjTHG13I1\nl0ELBzGq7ajTLgjesKLgwfBWw3lt5WvsPrzb6SjGmFJq+g/TAejdpLdfP9dOHxXg/vn3c2bkmbTM\n7MjYsclkZpYlIiKbhIQOxMW18nseY0zpcTjrMI3GN2LazdNoeV7LYu2juKePCn3JTmk17PphNB7X\nhOkzjrB13ct5y9PTj79byAqDMcZXXlr+Es3rNC92QfCGnT4qwHlVzqPq9gZsPbfcScvT00cyblyK\nQ6mMMaFu58GdjP5qtE/elVAUVhROofbPreCKiVAh46TlR4+GOZTIGBPqHlv8GHc3vZsLz7zQkc+3\nonAKlSkPq/tAy5MrdmRkjkOJjDGhbPWu1czbOI9h1w9zLIMVhVNISOjA+duBy9+BytsBiIoaRnx8\ne0dzGWNCj6oyKHkQI1qPcPSJCjbQfAp/DSYP/HgV+/q048rNPUiIj7VBZmNMiZu/cT47D+6k/5X9\nHc1hl6QWQWZ2Jpe/cTlPt3mamy++2dEsxpjQk5WTRePXGjM6ZjSdGnQqkX36/Y5mEakmIikislFE\nkkXEY39HRGJFJE1ENonIEA/rHxKRXBEJ2GdKRJSN4K0b3yLh0wT2HtnrdBxjTIh5feXr1Ktaj471\nOzodxasxhUeAFFVtCCxyz59ERMKA8UAscDHQS0QuOmF9XaA9sNWLHH7R4rwWdIvuxuCUwU5HMcaE\nkL1H9vLUkqd4sf2LiJz2H/Ylzpui0AWY7J6eDHTz0KYZsFlVt6hqFjAD6HrC+peAh73I4FfPtHuG\n5PRkPv/5c6ejGGNCxFNLnuKmRjfRpGYTp6MA3hWFmqr61wX8GUBND21qA9tOmN/uXoaIdAW2q+oa\nLzL4VeWIyrwa9yr95/XncNZhp+MYY4Lcpj2bmLx6Mk+2edLpKHlOefWRiKQA53hYNfzEGVVVEfE0\nGuxxhFhEzgCGcfzUUd7ignIkJibmTbtcLlwuV4GZfa1zw85MXTOVJ1Kf4Ln2ztxxaIwJDUM+G8J/\nr/0vNSt6+pv69KSmppKamur1fop99ZGIpAEuVd0lIrWAxaraKF+ba4BEVY11zw8FcoEkjo9D/PXn\ndh1gB9BMVX/Ltw/Hrz7KL+PPDC59/VI+uf0Trqh1hdNxjDFB6IstX9B3dl/SBqQRWTayxPfvxPsU\n5gJ93dN9gdke2qwEGohIPREJB3oCc1V1rarWVNULVPUCjp9WuiJ/QQhUNSvW5Pl2z3PP3HvIzs12\nOo4xJsjkai6DkgfxbLtnfVIQvOFNUXgWaC8iG4Eb3POIyLkikgSgqtnAAGAh8CMwU1XXe9hXYHUF\niuDOy+7krPJn2ct4jDGn7d3V7xIeFk7PS3o6HeUf7OY1L/y09yeaTWjGV/d8Rf1q9Z2OY4wJAoeO\nHSJ6fDQf3PIB19a91mefY6/jdMCFZ17IsOuH0X9efwK1cBljAsuLX75Iy/Na+rQgeMOKgpcSmidw\n8NhB3l71ttNRjDEBbseBHYxdMZZn2z3rdJQC2emjErB612rav9ue1fevplalWk7HMcYEqH6z+1Gr\nYi2eafeMzz+ruKePrCiUkGGLhrHpj018cMsHTkcxxgSgb3/9lrhpcWyM30jliMo+/zwbU3DY460f\nZ03GGmaneboy1xhTmqkqDyU/xBOuJ/xSELxhRaGERJaN5M3ObzJgwQD2H93vdBxjTACZnTabPUf2\ncPcVdzsdpVB2+qiE3TfvPkSE1zu/7nQUY0wAOJZzjItfuZhX416lQ1QHv32unT4KEM+3f575G+ez\nZOsSp6MYYwLAKyteoeFZDf1aELxhRaGEVYmswvhO47l33r0czT7qdBxjjIP2HN7DqGWjeLHDi05H\nKTIrCj7QrVE3mtRowlNfPOV0FGOMg5784kluufgWLj77YqejFJmNKfjIzoM7uez1y0jpk8Jl51zm\ndBxjjJ9t2L2BFm+3YP1/1nN2hbP9/vk2phBgalWqxTNtn+GeefYkVWNKo8EpgxnSYogjBcEbVhR8\n6F9N/0Wl8EqM/Xqs01GMMX606KdFrP1tLfHN452OctqsKPiQiPDmjW8yaukoftr7k9NxjDF+kJOb\nw0PJD/Fcu+cC7l0JRWFFwcfqV6vPwy0e5v7599uTVI0pBd75/h0qhlekx8U9nI5SLFYU/GDQtYPY\nfXg3U1ZPcTqKMcaHdh/ezWOLH+OlmJcQOe0x3oBgVx/5yXc7vyN2aiw/PPBDibyk2xgTWFSV5mNa\n8NuPSr2NMUREZJOQ0IG4uFaO5Cnu1UdlfRHG/NMVta6g3+X9+H8L/x/Tb57udBxjTAm7b1ICa9K3\nkvn2z2zNCQcgPX04gGOFoTjs9JEfJboS+WbHN8zfON/pKMaYErTy15W889PbZL63FNwFASA9fSTj\nxqU4mOz0FbsoiEg1EUkRkY0ikiwiVQtoFysiaSKySUSG5FsXLyLrRWStiDxX3CzBony58rx545s8\nkPQABzIPOB3HGFMCDmQe4LYPb6PBhk6w98J/rD96NMyBVMXnTU/hESBFVRsCi9zzJxGRMGA8EAtc\nDPQSkYvc69oAXYBLVbUxEDwPB/HCDRfcQIcLOzBs0TCnoxhjvKSq3D//ftpe0JY6B6I9tomMzPFz\nKu94UxS6AJPd05OBbh7aNAM2q+oWVc0CZgBd3eseAJ5xL0dVf/ciS1B5scOLfLT+I/7vl/9zOoox\nxguTvp/Emow1jI4dTUJCB6Kihp+0PipqGPHx7R1KVzzeDDTXVNUM93QG4OmSmtrAthPmtwPN3dMN\ngFYiMgo4CvxXVVd6kSdonHnGmYztOJZ7593LqvtWEVE2wulIxpjT9OPvPzLksyGk9k2lfLnyeYPJ\n48Y9xtGjYURG5hAfHxtUg8xQSFEQkRTgHA+rTiqHqqoi4um60VNdS1oWOFNVrxGRq4H3gX+ekAMS\nExPzpl0uFy6X61Sxg8LNF93M1DVTGbV0FE+0ecLpOMaY03Ak6wg9P+zJM22f4ZIal+Qtj4tr5VgR\nSE1NJTU11ev9FPs+BRFJA1yquktEagGLVbVRvjbXAImqGuueHwrkqupzIvIJ8KyqfuFetxlorqp7\n8u0jJO5T8GTHgR1c/sblLO67mMY1GjsdxxhTRPfPv5/9mfuZ1n1awN6k5sRTUucCfd3TfQFPb6xf\nCTQQkXoiEg70dG+Hu/0NACLSEAjPXxBCXe3KtXm6zdPcM/cecnKDazDKmNLqg3Uf8NlPn/FG5zcC\ntiB4w5ui8CzQXkQ2cvzL/VkAETlXRJIAVDUbGAAsBH4EZqrqevf2bwMXisgPwHTgTi+yBK17r7yX\n8LBwXvnmlQLbJCUtISbmUVyuRGJiHiUpyV71aYwTft77M/9Z8B9m9JhB5YjKTsfxCXvMRQD462Uc\n3/b/lvOrnn/SuqSkJQwcuJD09JF5y6KihjNmTEzQDWAZE8yycrJoOaklPS/pyaBrBzkdp1D2kp0g\nFl09mkHXDuKBpAf+8STVsWOTTyoIEJx3SRoT7B79/FHOLn82D17zoNNRfMqKQoAYfN1gth/YzrQf\npp20PDPT8wViwXaXpDHB7NPNnzJt7TTe6fZOSI4jnMiKQoAoF1aOt7q8xUPJD/H7ob/v44uI8Pwq\nz2C7S9KYYLXz4E7umnMXU2+aSvXy1Z2O43NWFAJIs9rN6N2kN4OS/z5fGSp3SRoTjHJyc7jj4zu4\n78r7aF2vtdNx/MIGmgPMoWOHaPxaY16Le43Y+rHA8cHmceNSTrhLsr0NMhvjByOXjCTlpxQW3bmI\nsDLBdcq2uAPNVhQCUHJ6Mv3n9Wftv9dSMbyi03GMKZWW/bKMHu/34Nv+31K7cm2n45w2u/oohHSI\n6kDreq159PNHnY5iTKn0x5E/6D2rNxO7TAzKguAN6ykEqD2H99D4tcbM7jmb5nWaF76BMaZEqCrd\nZnYj6swoXop5yek4xWY9hRBzVvmzGB0zmnvm3cOxnGNOxzGm1Bi/Yjw7Duzg2XbPOh3FEVYUAljP\nS3pyfpXzeW5ZyL+UzpiAsGrnKp5c8iQzeswgPCy88A1CkBWFACYivBr3KmO+HsP639cXvoExptgO\nZh6k54c9GRs7lvrV6jsdxzE2phAEXlnxCtPXTmfJXUsoI1bHjfGFOz++k/CwcN7q8pbTUUqEjSmE\nsAeufoBczeWVFQU/SdUYU3yTv5/Myl9XMiZ2jNNRHGc9hSCxYfcGrp90PTN6zOCGC25wOo4xIWPD\n7g20nNSSz+/8nCY1mzgdp8RYTyHERVePZmaPmdz24W2s/W2t03GMCQlHs49y64e38nSbp0OqIHjD\nikIQaXNBG0bHjCZuWhy/HvzV6TjGBL3/Jv+X6LOi6X9lf6ejBAzPz2U2Aev2S29n6/6txE2LY0m/\nJVSKqOR0JGOC0kfrP2LBpgV8d993If847NNhYwpBSFW5f/79bN2/lXm95lEurJzTkYwJKlv3beXq\nCVczr9e8kH1igI0plCIiwitxrxBWJszj29qMMQXLysmi16xeDL5ucMgWBG8UuyiISDURSRGRjSKS\nLCJVC2gXKyJpIrJJRIacsLyZiKwQkVUi8o2IXF3cLKVR2TJlmdljJqt2rWLk0pGFb2CMAWBE6giq\nRFbhoesecjpKQPKmp/AIkKKqDYFF7vmTiEgYMB6IBS4GeonIRe7VzwOPqWpT4HH3vDkNFcMrMr/X\nfN767i2mrJ7idBxjAl5KegpTVk9hcrfJdiNoAbw5Kl2Aye7pyUA3D22aAZtVdYuqZgEzgK7udTuB\nKu7pqsAOL7KUWrUq1WLB7QsYnDKYRT8tcjqOMQEr488M+s7uy5SbplCjQg2n4wQsb4pCTVXNcE9n\nADU9tKkNbDthfrt7GRzvWfxPRH4BXgCGepGlVLv47It5v8f79JrVix8yfnA6jjEBJ1dz6fNxH+5u\nerfd/FmIU16SKiIpwDkeVp300mBVVRHxNNp5qhHQiUCCqn4sIrcAbwMeXzycmJiYN+1yuXC5XKeK\nXSq1rteal2NfJm5aHMvvXl7qXgxizKk8/3/PcyT7CCNcI5yO4jOpqamkpqZ6vZ9iX5IqImmAS1V3\niUgtYLGqNsrX5hogUVVj3fNDgVxVfU5EDqhqZfdyAfapapV8H2OXpJ6mZ5c9y4y1M1hy1xIqR1R2\nOo4xjlu+bTndZnZj5b0rqVulrtNx/MaJS1LnAn3d032B2R7arAQaiEg9EQkHerq3A9gsIq3d0zcA\nG73IYtyGtBjCtXWupcf7PcjKyXI6jjGO2ntkL71m9WLCjRNKVUHwhjc9hWrA+8B5wBbgVlXdJyLn\nAhNUNc7driPwMhAGTFTVZ9zLrwJeASKAI8C/VXWVh8+xnsJpys7NptuMbtSoUIOJXSba3ZqmVFJV\nenzQgzqV6jCmY+l7+mlxewp2R3OI+vPYn7jecdEluguPt37c6TjG+N2r37zKW9+9xfK7lxNRNsLp\nOH5ndzSbk1QMr8j83vOZ9P0kJn8/ufANjAkhq3etZkTqCGb2mFkqC4I37IF4IeyciuewoPcCXJNd\nnFvpXNpHeby4y5iQcujYIXp+2JPRMaNpcFYDp+MEHTt9VAos2bqEHu/34LM7P+PSmpc6HccYn7pr\nzl0ATOo6yeEkzrLTR6ZArc5vxdiOY4mbFsf2A9udjmOMz0xdM5Xl25YzruM4p6MELTt9VErc1vg2\nftn/C53e68TSu5ZSJfIft4QYE9Q27N7Agwsf5LM+n1ExvKLTcYKW9RRKkcHXDeb6866nxwc9OJZz\nzOk4xpSYH3//kXbvtuP5ds9z2TmXOR0nqNmYQimTnZtN95ndqXZGNSZ1nWT3MJig9+2v39J5emde\naP8Cd1x6h9NxAobdp2CK7NCxQ7gmu4hrEEeiK7HI2yUlLWHs2GQyM8sSEZFNQkIH4uJa+S6oMYVY\nunUpN79/M2/e+CbdGnl6UHPpVdyiYGMKpVCF8ArM7zWfaydey/lVzueupncVuk1S0hIGDlxIevrf\nL/RJTz/+XEQrDMYJn27+lDs/vpNpN0+j3YXtnI4TMmxMoZSqWbEmn9z+CUMXDSU5PbnQ9mPHJp9U\nEADS00cyblyKryIaU6APf/yQvrP7Mue2OVYQSpgVhVIsuno0H976IXd8dAerd60+ZdvMTM+dyqNH\nw3wRzZgCTVo1iYRPEki+I5lr617rdJyQY0WhlGt5XkvGdxpP5+md2bZ/W4HtIiKyPS6PjMzxVTRj\n/mHMV2NI/CKRxX0X21VGPmJFwXDrJbcysPlAOk3rxP6j+z22SUjoQFTUSe9WIipqGPHx9ugM43uq\nylNfPMX4b8azpN8SoqtHOx0pZNnVRwY4/ksX/0k8abvTWHD7AsLDwv/RJilpCePGpXD0aBiRkTnE\nx7e3QWbjc6rK4JTBJKcnk9wnmXMqenoZpMnPLkk1XsvJzaH7+92pGlmVd7q+Y/cwGMfl5ObwQNID\nrMlYw4LbF1DtjGoe29nl0v9kRcGUiMNZh2kzuQ0xUTE82eZJp+OYUiwrJ4s+H/fh98O/M7vnbCpF\nVPLYztPl0lFRwxkzJqZUFwZ7IJ4pEeXLlWder3m898N7TPxuotNxTCl1JOsIN828icNZh0nqnVRg\nQQC7XLqkWVEw/1CjQg0W9F7A8M+Hs3DzQqfjmFLmQOYBOr7XkSqRVZh16ywiy0aesr1dLl2yrCgY\nj6KrRzPr1ln0+bgPq3b+49XZxvjEnsN7aDelHY2qN+Ldm96lXFi5Qrexy6VLVrGLgohUE5EUEdko\nIskiUrWAdm+LSIaI/FCc7Y1zWpzXglfjXuXG6Tfyy/5fnI5jQtzOgztp/U5r2tRrw2txr1FGivb1\nZJdLl6xiDzSLyPPAblV9XkSGAGeq6iMe2l0P/AlMUdUmxdjeBpod9tLyl3h71dss+9cyqkZa7TYl\nb8u+LbSb0o5/Nf0XQ1sOPe0r3+xy6X/y+9VHIpIGtFbVDBE5B0hV1UYFtK0HzMtXFIq0vRUF56kq\nAz8dyNrf1vLpHZ96vIfBmOJK251Gh3c78HCLhxnQbIDTcUKGE1cf1VTVDPd0BlDTz9sbPxERRseM\npkpkFe6eeze5mut0JBMivtv5HW0mt+HpG562ghAgTvnobBFJATzdPnjSCTxVVREp9p/zhW2fmJiY\nN+1yuXC5XMX9KFNMYWXCeK/7e3R6rxOxU2OZctMUu7PUeGXZL8voPrM7b3R+g5suusnpOEEvNTWV\n1NRUr/fJXzH9AAAO4klEQVTj7ekjl6ruEpFawOJinD4qdHs7fRRYsnOzefKLJ5nw3QTe7vI2HRt0\ndDqSCUILNy+kz8d9eK/7e7SPsgFhX3Di9NFcoK97ui8w28/bGweULVOWJ9s8yfSbp9N/fn8GLRxE\nZnam07FMEJn14/FLnT/u+bEVhADkTU+hGvA+cB6wBbhVVfeJyLnABFWNc7ebDrQGzgJ+Ax5X1UkF\nbe/hc6ynEKD2HN7DPfPuYeu+rUy/ebo9udIUavL3k3lk0SMs6L2AprWaOh0npNmzj4wjVJU3vn2D\nxxY/xvPtnqff5f3sQXrGo3Ffj+OFL18guU8yjap7PNNsSpAVBeOotb+tpdesXjSu0ZjX416nSmQV\npyOZAKGqjFo6iknfT+KzOz+jXtV6TkcqFeyBeMZRjWs0ZsU9K6gWWY3L37ic5duWOx3JBABVZchn\nQ5ixbgZL71pqBSEIWE/BlLjZabO5b/59JDRL4JGWjxBWxh5MVhrl5ObwnwX/YdWuVXxy+ycFvgvB\n+IadPjIBZfuB7dzx0R2ICFNvmkrtyrWdjmT8KCsni76z+7Lzz53MvW3uKR99bXzDTh+ZgFKnch0W\n3bmIthe05Yo3r2BO2hynIxk/OZJ1hO7vd+fgsYMs6L3ACkKQsZ6C8bkvt33J7R/dTqf6nXixw4uc\nUe4MpyMZHzmYeZCuM7pSs2JNpnSbUqRHXxvfsJ6CCVjX1b2OVfetYveR3TR7qxnrflvndCTjA38c\n+YN277ajfrX6TL1pqhWEIGVFwfhF1ciqzLh5Bg9e8yCuyS5eX/k61gMMHbv+3IXrHRetzmvFG53f\nsIsLgpidPjJ+l7Y7jV6zenFB1Qt4q8tbdlVKEMvVXGb9OIuHP3uYu5vezfDrh9vNiwHCrj4yQSUz\nO5NHPnuEWetnMbX7VFqdX7QXoiQlLWHs2GQyM8sSEZFNQkKHUv8yFSeoKgvTFzL88+EIwqi2o+gQ\n1cHpWOYExS0Kp3x0tjG+ElE2gtGxo2kf1Z6eH/ak/xX9eaz1Y5QtU/CPZFLSEgYOXEh6+si8Zenp\nx5/iboXBf5b9soxhi4bx++HfebrN03S/qLv1DkKI9RSM43Ye3Mmds+/kSNYR3uv+HudXPd9ju5iY\nR0lOftrD8sf49NOnfB2z1Pt+1/cM/3w4635bR6IrkTsuveOURdw4y64+MkGrVqVaLLxjIV2ju3L1\nhKv5YN0HHttlZnr+Ajp61AY1fWnjno3c9uFtdHyvIx3rd2TDgA30u7yfFYQQZUXBBIQyUobBLQaT\n1DuJoYuGcu/cezl07NBJbSIisj1uGxmZ44+Ipc62/du4d+69tHi7BZfVvIzN8ZsZ0GwAEWUjnI5m\nfMiKggkoV9e+mlX3rSIzJ5OrJlzF6l2r89YlJHQgKuqkN8ESFTWM+Hh7UUtJ+v3Q7wxaOIjL37ic\nsyuczcYBGxl6/VAqhFdwOprxAxtTMAFr6pqpPLjwQR5r9RjxzeIREZKSljBuXApHj4YRGZlDfHx7\nG2QuIfuP7ud/y//HK9+8Qu/GvRneari9hzuI2SWpJiRt/mMzvWf1pkaFGkzqOomzK5ztdKSQcyTr\nCONXjOeFL1+gU4NOJLoS7RHXIcAGmk1Iql+tPsv+tYxLzr6Ey9+4nEU/LXI6UsjIysni9ZWv02Bc\nA77e8TWp/VJ5p9s7VhBKOa96Cu73LM8EzufU71l+G4gDflPVJicsfwHoDBwD0oG7VHV/vm2tp2AA\nSElPod+cfvS5tA9PtXnKnq1TTDm5OcxYO4PHUx+nfrX6jLxhJFede5XTsUwJc+T0kYg8D+xW1edF\nZAhwpqo+4qHd9cCfwJR8RaE9sEhVc0XkWYD821tRMCf6/dDv9JvTjx9//5GbGt1E1+iutDivhV0e\nWQSqyryN8xj++XAqhVdiVNtRuOq5vN6v3WUemJwqCmlAa1XNEJFzgFRV9fhGbhGpB8w7sSjkW38T\ncLOq3pFvuRUFcxJVZXXGauakzWHOhjn8sv8X4hrG0TW6Kx2iOlAxvKLTEQPO5z9/zrBFwzicdZiR\nN4ykc8POJXIXsqe7zKOihjNmTIwVBoc5VRT2quqZ7mkB/vhr3kPbepy6KMwDpqvqtHzLrSiYU/pl\n/y/M3TCXORvm8PX2r2l1fiu6RHehS3SXUn/1zIodKxj++XB+3vszT7V5ip6Ne1JGSm4o0e4yD1w+\ne/aRiKQAnn6zTrpgXFVVRIr17S0iw4Fj+QuCMUVxXpXzGNBsAAOaDWDf0X18sukT5myYw5DPhhB9\nVjRdo7vStVFXLqp+Ual5Rs+639bx2OLHWLFjBY+3fpy7Lr/LJ2Mwdpd56Cm0KKhqgXcGiUiGiJyj\nqrtEpBbw2+kGEJF+QCegbUFtEhMT86ZdLhcul+t0P8aUElUjq9KrSS96NenFsZxjpG5JZe6GucRM\njSGybOTxAhHdlevqXheSz/z/ee/PjEgdwcL0hTx83cO81/09n77pzu4yDxypqamkpqZ6vZ+SGGje\no6rPicgjQFVPA83utvXId/pIRGKB/3F8XGJ3AdvZ6SPjNVVl1a5VeeMQOw7uoHPDznnjEOXLlXc6\nold2HtzJ00ueZsa6GcQ3i2fQtYOoHFHZ55/reUxhGGPGxNqYgsOcGlOoBrwPnMcJl6SKyLnABFWN\nc7ebDrQGzuJ4b+JxVZ0kIpuAcOAP9y6Xq+q/832GFQVT4rbs25I3DvHNjm9w1XPRNborN0bfSI0K\nNZyOV6hczWX34d3sOLCDmetmMuG7CfS7rB9Drx9K9fLV/ZrF7jIPTHZHszHFtPfIXhZsWsCcDXNI\nTk/mkhqX5J1miq4e7fc82bnZ7PpzF9sPbGfHgR1sP7D9+L+Df8//evBXKoZXpHbl2lxX5zqGtxpO\nncp1/J7VBC4rCsaUgMzsTFK3pDJnwxzmbphLxfCKdI3uSpfoLlxT55q8cYjiXpt/NPsovx789e8v\n+r+++A/+Pf3bod+oXr46dSrXoU7lOtSuVDtvuk7lOtSuXJvalWr7dKzABD8rCsaUMFXl253f5o1D\nZBzKoHODztT+sz5Tn9zLzxufz2sbFTWcZ166nsbXnn/8y/3g33/hnzh9IPMA51Y69x9f9idOn1Px\nHLtb23jNioIxPvbT3p+Yu2EuT77/Mnsj9sK2FlAmGypvh0o7CCt3hKgaF/z9V32l43/Vn/jFf3aF\ns0v0PgFjCmJFwRg/cbkS+WJFAtRLhazycKAOHKhDq+aj+SL1CafjGQP48OY1Y8zJIiKy4Ug1WN/9\npOVnROb6NYc9c8j4ghUFY05TQkIH0tOH/+Pa/Pj4WL9l8HR/QHr68YcMWGEw3rDTR8YUg9PX5tsz\nh0xh7PSRMX4UF9fK0b/I7ZlDxlfsMghjgpA9c8j4ihUFY4JQQkIHoqJOelCxe1yjwOdXGlMkNqZg\nTJByelzDBDa7T8EYY0ye4hYFO31kjDEmjxUFY4wxeawoGGOMyWNFwRhjTB4rCsYYY/JYUTDGGJPH\nioIxxpg8xS4KIlJNRFJEZKOIJItI1QLavS0iGSLyQwHrHxKRXBGpVtwsxhhjSoY3PYVHgBRVbQgs\ncs97Mgnw+ExhEakLtAe2epGj1EhNTXU6QsCwY/E3OxZ/s2PhPW+KQhdgsnt6MtDNUyNVXQrsLWAf\nLwEPe5GhVLEf+L/ZsfibHYu/2bHwnjdFoaaqZrinM4Cap7OxiHQFtqvqGi8yGGOMKUGnfJ+CiKQA\n53hYddLjGVVVRaTIDygSkfLAMI6fOspbXNTtjTHG+EaxH4gnImmAS1V3iUgtYLGqNiqgbT1gnqo2\ncc83AT4DDrub1AF2AM1U9bd829rT8Iwxphj8/ea1uUBf4Dn3f2cXdUNV/YETTjeJyM/Alar6h4e2\n1oMwxhg/8WZM4VmgvYhsBG5wzyMi54pI0l+NRGQ68CXQUES2ichdHvZlvQFjjAkAAf8+BWOMMf4T\nMHc0i0isiKSJyCYRGVJAm7Hu9atFpKm/M/pLYcdCRG53H4M1IvJ/InKpEzn9oSg/F+52V4tItoh0\n92c+fyri74hLRFaJyFoRSfVzRL8pwu9IdRH5VES+dx+Lfg7E9LnCbg52tzm9701VdfwfEAZsBuoB\n5YDvgYvytekELHBPNwe+cjq3g8fiWqCKezq2NB+LE9p9DswHbnY6t4M/F1WBdUAd93x1p3M7eCwS\ngWf+Og7AHqCs09l9cCyuB5oCPxSw/rS/NwOlp9AM2KyqW1Q1C5gBdM3XJu9mOVX9GqgqIqd1b0SQ\nKPRYqOpyVd3vnv2a41dvhaKi/FwAxAMfAr/7M5yfFeVY9AZmqep2AFXd7eeM/lKUY7ETqOyergzs\nUdVsP2b0Cz31zcFQjO/NQCkKtYFtJ8xvdy8rrE0ofhkW5Vic6G5ggU8TOafQYyEitTn+hfCae1Go\nDpIV5eeiAVBNRBaLyEoR6eO3dP5VlGMxAbhERH4FVgMD/ZQt0Jz296Y3l6SWpKL+Iue/PDUUvwBO\n5ybANsC/gBa+i+OoohyLl4FHVFVFRAjdmyCLcizKAVcAbYHywHIR+UpVN/k0mf8V5VgMA75XVZeI\nRAEpInKZqh70cbZAdFrfm4FSFHYAdU+Yr8vxinaqNn/d8BZqinIscA8uTwBiVfVU3cdgVpRjcSUw\n43g9oDrQUUSyVHWufyL6TVGOxTZgt6oeAY6IyBLgMiDUikJRjsV1wEgAVU133wsVDaz0S8LAcdrf\nm4Fy+mgl0EBE6olIONCT4zfHnWgucCeAiFwD7NO/n70USgo9FiJyHvARcIeqbnYgo78UeixU9UJV\nvUBVL+D4uMIDIVgQoGi/I3OAliIS5n6UTHPgRz/n9IeiHIs0oB2A+xx6NPCTX1MGhtP+3gyInoKq\nZovIAGAhx68smKiq60XkPvf6N1R1gYh0EpHNwCHA001wQa8oxwJ4HDgTeM39F3KWqjZzKrOvFPFY\nlApF/B1JE5FPgTVALjBBVUOuKBTx52IUMElEVnP8j9+H1cMTE4Kd++bg1kB1EdkGjOD4acRif2/a\nzWvGGGPyBMrpI2OMMQHAioIxxpg8VhSMMcbksaJgjDEmjxUFY4wxeawoGGOMyWNFwRhjTB4rCsYY\nY/L8f6G/NIrkiT5JAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4tJREFUeJzt3Xl0VdX99/H3lzDEEUTEAVAEFRkcaAXUthgFJIoKYhVR\nRARHauRp7a8qTllOLW39PTXRUhQUFBUHHMAgCSIh1gdRJrEICFEskxZQhgqEDN/njwQIIYHk3uSe\nO3xea2V5z7373vP1rNxPNmefs7e5OyIikjjqBV2AiIhEloJfRCTBKPhFRBKMgl9EJMEo+EVEEoyC\nX0QkwYQd/GaWambLzGyFmd1TyevNzGy6mS0ys3+Z2ZBw9ykiIqGzcK7jN7MkYDnQE1gLfAYMdPel\n5dqkA43c/T4za1bW/lh3LwqncBERCU24Pf6uwEp3X+XuhcAkoG+FNuuBI8seHwlsUuiLiASnfpjv\nbwGsLre9BuhWoc1zwIdmtg44ArgmzH2KiEgYwu3xV+c80UhgkbufAJwNPGNmR4S5XxERCVG4Pf61\nQKty260o7fWXdz7wOIC755vZN0A7YF75RmamSYNERELg7laT9uH2+OcBp5pZazNrCAwAplRos4zS\nwV/M7FhKQ//ryj7M3fXjzsMPPxx4DdHyo2OhY6FjceCfUITV43f3IjO7E8gGkoBx7r7UzG4re30M\n8ATwgpl9Tukfmj+4+w/h7FdEREIX7qke3P194P0Kz40p93gjcHm4+xERkdqhO3ejUEpKStAlRA0d\ni710LPbSsQhPWDdw1SYz82ipRUQkVpgZHuHBXRERiTEKfhGRBKPgFxFJMAp+EZEEo+AXEUkwCn4R\nkQSj4BcRSTAKfhGRBKPgFxFJMAp+EZEEo+AXEUkwCn4RkQSj4BcRSTAKfhGRBKPgFxFJMAp+EZEY\nlJWVR+/eD4T0Xi3EIiISY7Ky8hgxIpv8/McBLcQiIhL3MjJySkP/8PUhvV/BLyISYwoK6kOLuXDH\nWSG9X8EvIhJjdh21FgZeAe+8ENL7FfwiIjFk+cblLO/yNscuOB9W9AnpM+rXck0iIlJHvt38Lb1e\n6sVfLvkzx551CpkNHiQ7u+afo6t6RERiwPpt6+k+vjtpXdO4q9tde54301U9IiJxZ9P2TfR6qRdD\nzhqyT+iHSj1+EZEotrVgKz1e7MFFrS/iTz3/hNm+nftQevwKfhGRKLW9cDupE1Pp1LwTz1z6zH6h\nDwGd6jGzVDNbZmYrzOyeKtqkmNlCM/uXmeWGu08RkXhXUFRA/9f607pJa56+9OlKQz9UYfX4zSwJ\nWA70BNYCnwED3X1puTZNgI+B3u6+xsyaufvGSj5LPX4REaCopIgBbw7A3Xn96tepX6/qCzCD6PF3\nBVa6+yp3LwQmAX0rtLkOmOzuawAqC30RESlV4iUMfXcoP+36iVevevWAoR+qcIO/BbC63PaasufK\nOxVoamazzGyemd0Q5j5FROKSu5M2LY1Vm1fx1oC3aFS/UZ3sJ9w/JdU5N9MA+BnQAzgUmGNmn7j7\nijD3LSISN9yd+2bex9y1c5k5eCaHNji0zvYVbvCvBVqV225Faa+/vNXARnffAewwszzgLGC/4E9P\nT9/zOCUlhZSUlDDLExGJDX/85x9576v3mD1kNo2TG1fZLjc3l9zc3LD2Fe7gbn1KB3d7AOuAT9l/\ncPd04GmgN9AImAsMcPcvK3yWBndFJCFlzM0gY24GH930EccfcXyN3hvK4G5YPX53LzKzO4FsIAkY\n5+5Lzey2stfHuPsyM5sOLAZKgOcqhr6ISKJ6YeELPDnnSfKG5NU49EOlG7hERALyxpI3GDF9BLlD\ncjnt6NNC+oyI9/hFRCQ001ZM48737yRnUE7IoR8qBb+ISITlrsplyDtDmDpwKmcdF9oqWuHQ7Jwi\nIhE0d81crnnjGl779Wt0a9ktkBoU/CIiEbL4+8VcMekKXuj7AheefGFgdSj4RUQi4KtNX5E6MZXM\nSzLpc1poSybWFgW/iEgd271k4mMXPcY1Ha8JuhwFv4hIXVq/bT09X+rJ3efdzdDOQ4MuB1Dwi4jU\nmdpeMrG26AYuEZE6cLAlE2uLll4UEYkC1VkysbYo+EVEAlZQVEDfSX1pflhzxvcbTz2r2zPqCn4R\nkQDVZMnE2qK5ekREAlLiJQybMoyfdv3Eu9e+G5HQD1X0ViYiEiN2L5n4zY/fMH3Q9DpbMrG2KPhF\nRMI0cubIiCyZWFsU/CIiYXjioyeY+tXUgy6ZGE0U/CIiNZCVlUdGRg4FBfX5/qQ5bGm/hPm/+Yyj\nDz066NKqTXfuiohUU1ZWHiNGZJOT8xizt5zEsqOX0uDVvizIWxF0aTWi4BcRqaaMjBzy8x+HM16B\nHvfDizP49+JnyMycEXRpNaLgFxGppoKC+vDzZ6HXH+ClHNjUDoCdO5MCrqxmdI5fRKSa1p/8T2ic\nD+Nz4YdT9jyfnFwcXFEhUI9fROQg3J2HZj3E9tNXcNKHl+0T+m3bjiQtrVeA1dWcpmwQETmAEi/h\nd9m/Y/a3s8kelM1nucvIzJzBzp1JJCcXk5bWiz59ugdWn+bqERGpRcUlxdw69VaWblzKtOun0SS5\nSdAl7Udz9YiI1JJdxbsY9NYgftz5Izk35HB4w8ODLqnWKPhFRCrYUbiDq16/ioZJDZk6cCrJ9ZOD\nLqlWaXBXRKScrQVbueTlS2h6SFPeuPqNuAt9UPCLiOyxafsmerzYg/bN2vPilS/SIKlB0CXVCQW/\niAiwftt6Lhh/ARe1voi/9/l7na+cFaSw/8/MLNXMlpnZCjO75wDtuphZkZn1D3efIiK1adXmVfzq\nhV9x3RnX1enC6NEirOA3syTgaSAV6AAMNLP2VbQbBUwH4vuIikhMWb5xOd1f6M6IbiMY+auRcR/6\nEH6Pvyuw0t1XuXshMAnoW0m7NOBNYEOY+xMRqTWLvltEyoQUHrnwEdK6pQVdTsSEG/wtgNXltteU\nPbeHmbWg9I/B6LKndJeWiARuzuo59J7Ym8xLMhly9pCgy4mocK/jr06I/w24193dSv8NVeW/o9LT\n0/c8TklJISUlJczyRET2N/PrmVw7+Vpe7Pcil5x6SdDl1Ehubi65ublhfUZYUzaY2blAurunlm3f\nB5S4+6hybb5mb9g3A7YDt7j7lAqfpSkbRKTOTVk+hZun3Myb17xJ95OCm2OntkR8rh4zqw8sB3oA\n64BPgYHuvrSK9i8AU939rUpeU/CLSJ165YtX+F3273jvuvc454Rzgi6nVkR8rh53LzKzO4FsIAkY\n5+5Lzey2stfHhPP5IiK15dn5z/LI7Ef4YPAHdGreKehyAqXZOUUk7v3l478wet5oZtwwg7ZN2wZd\nTq3S7JwiIuXsXkDlzaVvkndTHi2PbBl0SVFBwS8icanES/jt9N+S9+88Zg+ZTfPDmgddUtRQ8ItI\n3CkuKeaWqbewfNNyZt04KyoXUAmSgl9E4so+C6gMyuGwhocFXVLUUfCLSNzYXridX7/+67hdQKW2\nxO+8oyKSUBJhAZXaouAXkZi3ewGVDs06xPUCKrVFwS8iMS2RFlCpLTpCIhKzEm0BldqiwV0RiRlZ\nWXlkZORQUFCfoibf8VW3t3nwogcSai792qDgF5GYkJWVx4gR2eTnPw7HLYTrL+WYWV1pc+ZZQZcW\nc3SqR0RiQkZGTmnot5wDN/SG9zPZMGMqmZkzgi4t5qjHLyIxoaCgPnR4A/oMh7dfhJWlC6js3JkU\ncGWxR8EvIlHP3VnTdhb87Hl4KQe+67znteTk4gAri0061SMiUW1H4Q4GTh5I/fYbOWnGlfuEftu2\nI0lL6xVgdbFJPX4RiVrrtq2j76S+nHb0aSwcMY8P239GZuaD7NyZRHJyMWlpqfTpE/vLJ0aaFmIR\nkag0f918+r3WjzvOuYP7fnmfrtGvghZiEZG48MaSNxg+bThjLhtD//b9gy4n7ij4RSRquDuP5j3K\n2AVjyRmUQ+fjOx/8TVJjCn4RiQo7Cndw07s3sWrzKubePJfjjzg+6JLilq7qEZHArdu2ju7ju5NU\nL4lZN85S6NcxBb+IBGr+uvl0G9uNK0+/kolXTuSQBocEXVLc06keEQmMBnGDoeAXkYjTIG6wFPwi\nElEaxA2ezvGLSMTsHsStZ/U0iBsgBb+IRMTuQdx+7frxcv+XNYgbIJ3qEZE6p0Hc6BJ2j9/MUs1s\nmZmtMLN7Knn9ejP73MwWm9nHZnZmuPsUkdjg7jwy+xHuzrmbnEE5Cv0oEVaP38ySgKeBnsBa4DMz\nm+LuS8s1+xro7u5bzCwVeBY4N5z9ikj00yBu9Aq3x98VWOnuq9y9EJgE9C3fwN3nuPuWss25QMsw\n9ykiUU6DuNEt3OBvAawut72m7LmqDAOmhblPEYliGsSNfuEO7lZ7An0zuxAYCvyiqjbp6el7Hqek\npJCSkhJGaSISabsHcf/R5x9c1eGqoMuJS7m5ueTm5ob1GWEtxGJm5wLp7p5atn0fUOLuoyq0OxN4\nC0h195VVfJYWYhGJUeXvxH332nd1J24EBbEQyzzgVDNrDawDBgADKxR1IqWhP6iq0BeR2KVB3NgT\n1jl+dy8C7gSygS+B19x9qZndZma3lTV7CDgKGG1mC83s07AqFpGooUHc2KQ1d0UkJLvXxL3957cz\n8lcjtSZuQLTmrojUiaysPDIycigoqE+jRkX8bFADxn73tAZxY5SCX0QOKCsrjxEjssnPfxxwuOBR\nPvziSZ7s8qRCP0ZpkjYROaCMjJzS0G+wHa66Dk6dRtHoZUwb923QpUmIFPwickAFBfWh+RdwSxco\nqQ/jZ8F/j2fnzqSgS5MQ6VSPiFTJ3fn+pDnQ9RnI+St8PhgoHUdMTi4OtjgJmXr8IlKpDT9t4IpJ\nV1DU6Vtazfg1fH4ju0O/bduRpKX1CrZACZl6/CKynw++/oAh7wzhujOuY/I1k5nR4RMyMx9k584k\nkpOLSUtLpU+f7kGXKSHSdfwisseu4l08+OGDTPxiIuP7jqdXW/Xqo52u4xeRkK38YSUDJw/k2MOO\nZdFtizjmsGOCLknqiM7xiyQ4d+fFz1/kvHHnMfjMwUwdOFWhH+fU4xdJYFsLtnJH1h0sXL+QmYNn\ncuaxWhk1EajHL5KgPlnzCZ3HdOaIhkcw79Z5Cv0Eoh6/SIIpLilm1MejeGruU4zuM1oLoCcgBb9I\nAlmzdQ03vH0D7s78W+fT8kgtgZ2IdKpHJEG8s+wdfv7sz+l5ck9mDp6p0E9g6vGLxLnthdu5O/tu\nsvOzeWfAO5zX6rygS5KAqccvEse++P4LujzXhS0FW1h420KFvgAKfpG45O48/enTXPTiRdzzi3t4\nuf/LNE5uHHRZEiV0qkckzmzcvpGh7w5l/X/XM2fYHE5pekrQJUmUUY9fJI7M/HomZ//jbNo3a8/H\nQz9W6Eul1OMXiQO7infx0KyHeGnxS0zoN4GebXoGXZJEMQW/SIzbPbnacYcfp8nVpFp0qkckhr30\n+UucN+48bjzrRqZcO0WhL9WiHr9IDNpasJXhWcNZ+J0mV5OaU/CLRLmsrDwyMnIoKKhPo0ZFXDy0\nBX///q9c3OZiPrvlMw5tcGjQJUqM0QpcIlEsKyuPESOyyc9/HKwYfjmKpPMf555O9/H4oAeCLk+i\nQCgrcOkcv0gUy8jIKQ39I9bC4J7QNofi0cuZP7Eg6NIkhin4RaLYzoJ6cM5ouL0zfN0TJsyErS3Z\nuTMp6NIkhoUd/GaWambLzGyFmd1TRZuMstc/N7PO4e5TJBHMWzePRV3GwhmvwoQP4aP7wUsDPzm5\nOODqJJaFFfxmlgQ8DaQCHYCBZta+QptLgVPc/VTgVmB0OPsUiXebd27mN1m/4fJXL2dYpyG0yfsl\n/KfTntfbth1JWlqvACuUWBfuVT1dgZXuvgrAzCYBfYGl5dpcAUwAcPe5ZtbEzI519+/D3LdIXHF3\nXv7iZf4w4w/0bdeXJcOX0PSQpvRolkdm5oPs3JlEcnIxaWmp9OnTPehyJYaFG/wtgNXlttcA3arR\npiWg4Bcps3TDUoZPG86WnVt4e8DbdGu592vUp093Bb3UqnCDv7rXX1a81KjS96Wnp+95nJKSQkpK\nSkhFicSK7YXbeXT2o4xdOJaHuj/E8C7DSaqngVupWm5uLrm5uWF9RljX8ZvZuUC6u6eWbd8HlLj7\nqHJt/gHkuvuksu1lwAUVT/XoOn5JNFOWT+Gu9+/i/Fbn8+TFT3L8EccHXZLEoFCu4w+3xz8PONXM\nWgPrgAHAwAptpgB3ApPK/lBs1vl9SWSrNq9ixPQRLNu4jHFXjKNHmx5BlyQJJqyrety9iNJQzwa+\nBF5z96VmdpuZ3VbWZhrwtZmtBMYAw8OsWSQm7SrexZ/++SfOefYcup7QlcW3L1boSyA0ZYNIBMz6\nZhbDpw2nzVFtyLwkkzZHtQm6JIkTQZzqEZED+P6/3/P7Gb8n79s8nkp9ir7t+mJWo++oSK3TlA0i\ndaC4pJi/f/Z3Oo3uxAmHn8CS4Uvod3o/hb5EBfX4RWrZvHXzuCPrDg6pfwizbpxFp+adDv4mkQhS\n8IvUks07N3P/zPt5a9lbjOo5ihvOvEE9fIlKOtUjEiZ3Z+LiibR/pj3FXsyS4UsYfNZghb5ELfX4\nRcJQfqqFdwa8s89UCyLRSj1+kRBsL9zOfR/cR/fx3el/en8+veVThb7EDPX4RWqo/FQLi29frKkW\nJOYo+EWqUHGR8wG3ncG7u17RVAsS8xT8IpXYZ5HzpF1w3v/ywWc3cX2b61l8++s0qt8o6BJFQqZz\n/CKVKF3k/DE4bSrcfhac+BElY/7FfyYfp9CXmKcev0gF7s7aw/Ph1nOgXhF8MAqWXw6YFjmXuKDg\nFynj7rz31Xukz07n27Zr4L3RsKwf+N5/GGuRc4kHCn5JeOUDv6ikiIcveJgGJzTlt2/NIN/772lX\nush5aoCVitQOBb8krMoCv9/p/ahn9aA91LN6WuRc4pLm45eEc8DAF4kxmo9f5AAU+CKlFPwS9xT4\nIvtS8EvcUuCLVE7BL3HH3clakUV6bjqFJYUKfJEKFPwSNxT4ItWj4JeYp8AXqRkFv8QsBb5IaBT8\nEnMU+CLhUfBLzFDgi9QOBb9EpfKLoDRsVMh5g48g66c3FfgitUBTNkjU2bsIymNwWhakpNMweTW/\n75LGo9ePVOCLlKMpGyQuPPnMFPKbtoFenQGH2Q+za1k/5l/8MPUGKfRFwhVW8JtZU+A14CRgFXCN\nu2+u0KYV8CLQHHDgWXfPCGe/En/cndnfzmbcwnHk/ewNWN4XZvwZvu65Zz58LYIiUjvC7fHfC8xw\n9z+b2T1l2/dWaFMI/NbdF5nZ4cB8M5vh7kvD3LfEgfXb1jN+0XieX/Q8yfWTGdZ5GGsWHkPutP/d\nr60WQRGpHeEG/xXABWWPJwC5VAh+d/8O+K7s8X/NbClwAqDgT1BFJUVMWzGttHf/bR5Xd7iaiVdO\npGuLrpgZpw7PY/Xy+0sXOi+jRVBEak9Yg7tm9qO7H1X22IAfdm9X0b41MBvo6O7/rfCaBnfj3IpN\nK3h+4fNM+HwCJx91Mjd3vpmrO17N4Q0P369tVlYemZkzyi2C0kuLoIhUIpTB3YMGv5nNAI6r5KX7\ngQnlg97MfnD3plV8zuGU/ovgMXd/p5LXFfxxaEfhDiYvnczYBWNZunEpN5x5A8M6D6P9Me2DLk0k\nLtTJVT3u3usAO/zezI5z9+/M7HjgP1W0awBMBiZWFvq7paen73mckpJCSkrKwcqTKLVg/QLGLRjH\npCWT6NqiK2ld07i83eU0TGoYdGkiMS03N5fc3NywPiPcUz1/Bja5+ygzuxdo4u73VmhjlJ7/3+Tu\nvz3AZ6nHH+N+3PEjr3zxCuMWjuOHHT8wtPNQhpw9hBMbnxh0aSJxq05O9Rxkh02B14ETKXc5p5md\nADzn7n3M7JdAHrCY0ss5Ae5z9+kVPkvBH4N2X4Y5dsFY3vvqPVJPSWVY52H0aNNDN1qJREDEg782\nKfhjy7pt65iwaALjFo7jkAaHcHPnmxl05iCOPvTooEsTSSgKfqlTuy/DHLtgLB/9+yOu7nA1wzoP\n23MZpohEnoJfwlZ+crRGjYq4666LOe3c43l+4fOM/3w8bY5qc8DLMEUkshT8Epa9k6M9Dg22Q/vJ\nJJ//AMkttzGsy1BdhikShRT8EpYLLhtB3trO0DYb2ubA2q6w4GZ6nTSfnPefCLo8EamEZueUGiko\nKuCf//4n01dOJzs/m6Vnr4BDL4P83pDzV9jWAoBdzb8IuFIRqU0K/gTi7ny16Suy87PJzs/mo28/\nomPzjvRu25sxl43hoZun8kHO/j17TY4mEl8U/HFuy84tfPjNh3t69UUlRfRu25shZw3hpStfoukh\ne2fY+D93FfJNviZHE4l3OscfZ0q8hPnr5u/p1S/6bhHntzqf3m1707ttbzoc0+GAl15qcjSR2KLB\n3QS1ftt6cvJzmJ4/nQ++/oDmhzXfE/TdT+rOIQ0OCbpEEakjCv4EsXtQdnevfvWW1fRo02NP2Ldq\n3CroEkUkQhT8Ma6ym6f69OmOu7PihxV7ztOXH5Tt3bY3XVp0oX49DdeIJCIFfwzb5+YpgEZbOPa8\nYXS+upBlhYspLC4sDfpTetOzTc99BmVFJHEp+GPUruJdXHhVGv9vZQ9o/i9oPQuOWwSrz6dd/RIm\nj/rbQQdlRSQx6QauKLereBcrNq1gyYYlfLnhS5ZsWMKS/yzhm83fYO0Og+QNsKED5D0A33aHokM4\n7oJ0OjbvGHTpIhJHFPx14EABf2LjE+l4TEc6HtOR/qf358HuD9Lu6HZc0edRcnIe2++zdPOUiNQ2\nneoJQ3UDvsMxHejYvCPtjm5Ho/qNKv2s/c7xU3rz1FNPpeo6ehGpks7xh6iqq2l2q82AP1gdunlK\nRGoi5oP/4ovv3y9069o+Pe2kXdB0Bcee8QAXDWhC4VH/3RPwJzU+qTTYj+lIx+alIR9qwIuI1JaY\nD35w2ra9n6ee6l3j8C8oKmBLwRa2Fmzd52fLzn2fq9hmwZJlbNt1GDTaCo22webWsKEDbY7YwOMj\nfqOAF5GoFvtX9Ry/gPziXjw48Rl+aPntAQO74nPuTuPkxhzZ6EgaNyr97+6f8tstj2xZ+lxZ27vf\nfJUFc/4HdjaGgsZQ3BCAVhekc22nawM+ICIitS+6gv+Km6HgSP59+Hqy8xscMLArhnqoPfJmhR/A\nD6fs97yuphGReBVdwT9mAQDn9H6QiZmPRmSXd911MfmailhEEkh0BT+RD93dYwmZmQ+Wu5pGl1CK\nSPyKqsHd3r0f0CWMIiI1EPNX9URLLSIisSKU4K9XV8WIiEh0UvCLiCQYBb+ISIIJOfjNrKmZzTCz\nr8wsx8yaHKBtkpktNLOpoe5PRERqRzg9/nuBGe5+GjCzbLsqI4AvAY3eVkNubm7QJUQNHYu9dCz2\n0rEITzjBfwUwoezxBKBfZY3MrCVwKTAW0BJS1aBf6r10LPbSsdhLxyI84QT/se7+fdnj74Fjq2j3\nf4H/AUrC2JeIiNSSA965a2YzgOMqeen+8hvu7qWza+73/suA/7j7QjNLCadQERGpHSHfwGVmy4AU\nd//OzI4HZrn76RXaPAHcABQBycCRwGR3H1zJ5+n8v4hICCJ2566Z/RnY5O6jzOxeoIm7VznAa2YX\nAL9398tD2qGIiNSKcM7x/wnoZWZfAReVbWNmJ5hZVhXvUa9eRCRgUTNXj4iIREbE79w1s1QzW2Zm\nK8zsniraZJS9/rmZdY50jZFysGNhZteXHYPFZvaxmZ0ZRJ11rTq/E2XtuphZkZn1j2R9kVTN70dK\n2Q2R/zKz3AiXGDHV+H40M7PpZrao7FgMCaDMiDCz583sezP74gBtqp+b7h6xHyAJWAm0BhoAi4D2\nFdpcCkwre9wN+CSSNUbZsTgPaFz2ODUej0V1jkO5dh8C7wFXBV13gL8TTYAlQMuy7WZB1x3gsUgH\n/rj7OACbgPpB115Hx+NXQGfgiyper1FuRrrH3xVY6e6r3L0QmAT0rdBmz41h7j4XaGJmVd0jEMsO\neizcfY67bynbnAu0jHCNkVCd3wmANOBNYEMki4uw6hyL6yi9Mm4NgLtvjHCNkVKdY7Ge0isFKfvv\nJncvimCNEePuHwE/HqBJjXIz0sHfAlhdbntN2XMHaxOPgVedY1HeMGBanVYUjIMeBzNrQemXfnTZ\nU/E6MFWd34lTgaZmNsvM5pnZDRGrLrKqcyyeAzqa2Trgc0qnhklUNcrNSC+9WN0vbMVrUuPxi17t\n/yczuxAYCvyi7soJTHWOw9+Ae93dzcyI36k/qnMsGgA/A3oAhwJzzOwTd19Rp5VFXnWOxUhgkbun\nmFlbYIaZneXu2+q4tmhV7dyMdPCvBVqV225F6V+mA7VpWfZcvKnOsaBsQPc5INXdD/RPvVhVnePw\nc2BSaebTDLjEzArdfUpkSoyY6hyL1cBGd98B7DCzPOAsIN6CvzrH4nzgcQB3zzezb4B2wLyIVBhd\napSbkT7VMw841cxam1lDYABQ8cs7BRgMYGbnApt975xA8eSgx8LMTgTeAga5+8oAaoyEgx4Hd2/j\n7ie7+8mUnue/Iw5DH6r3/XgX+GXZVOeHUjqQ92WE64yE6hyLZUBPgLLz2e2AryNaZfSoUW5GtMfv\n7kVmdieQTemo/Th3X2pmt5W9Psbdp5nZpWa2EvgJuCmSNUZKdY4F8BBwFDC6rLdb6O5dg6q5LlTz\nOCSEan4/lpnZdGAxpRMfPufucRf81fy9eAJ4wcw+p7QT+wd3/yGwouuQmb0KXAA0M7PVwMOUnvYL\nKTd1A5eISILR0osiIglGwS8ikmAU/CIiCUbBLyKSYBT8IiIJRsEvIpJgFPwiIglGwS8ikmD+P2jq\nbKRBM81FAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.16 page number 259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "l = 6.0 #a - length of the rod\n", + "F = 1.0 #p - force applies in x direction \n", + "d = 1.0 #a \n", + "M = 1.0 #pa - torque applies on the rod\n", + "l_ab = 4.0 #a application of torque point from A\n", + "#M = 0 implies that\n", + "R_A = F/6.0 #p - The reaction at A\n", + "R_B = - R_A #F_Y = 0\n", + "\n", + "#Caliculations \n", + "\n", + "#Taking sections \n", + "#Section 1---1\n", + "l_1 = 1 #a - the length of the section \n", + "M_1 = - R_A*l_1 #M = 0\n", + "\n", + "#Section 2---2\n", + "l_2 = 4 #a - the length of the section \n", + "M_2 = - R_A*l_2 #M = 0\n", + "\n", + "l_4 = 2 #a - the length of the section \n", + "M_4 = 1/3.0 #pa #M = 0 '-M' because there is moment couple in between\n", + "\n", + "\n", + "#Section 3---3\n", + "l_3 = 1 #a - the length of the section \n", + "M_3 = 1/6.0#pa M = 0 '-M' because there is moment couple in between\n", + "print R_A\n", + "\n", + "#GRAPH\n", + "#Since the symmetry exists the graphs are also symmetry\n", + "%matplotlib inline\n", + "import math \n", + "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n", + "#Drawing of shear and bending moment diagram\n", + "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n", + "X = [0,1,4,4.00001,5,6] # For graph precision \n", + "M = [0,M_1,M_2,M_4,M_3,0];\t\t\t#Bending moment matrix\n", + "plot(X,M);\t\t\t#Bending moment diagram\n", + "suptitle( 'Shear and bending moment diagram')\n", + "xlabel('X axis')\n", + "ylabel( 'Y axis') ;\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.166666666667\n", + "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEhCAYAAACKklw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHmxJREFUeJzt3XuYHHWZ9vHvTUIQIpCgbggSDauGMxqCiAdiKwdBfCPJ\nuiDrISIiuCq4GoTdLGR43QtMVlQOyroRdNxF8ZUlLgqRBMwIKgaQAAkJBNZk5RjJGlBwlQDP+0f9\nBjuTrpmepLurq/v+XNdcU9X9666nppO+u+rpqlJEYGZmVss2RRdgZmbtyyFhZma5HBJmZpbLIWFm\nZrkcEmZmlsshYWZmuRwSHU7SbEkrJN0laZmk16fb10rapej6hpJXp6SnmrS8b0r6qzQ9X9LezVhO\nO5D0WklH1zm2T9KBafpaSTs1tzprFyOLLsCaR9IbgWOAyRGxMb3ZbpfuDkANXt7IiHi2kc9JVudw\nbm/E8gIgIk5u0jLaxWRgCrCwjrEv/L0j4phGLFzSiIh4rhHPZc3jLYnOtiuwPiI2AkTEbyPi0ar7\nPynpl5LulrQngKTRki6XtFTSHZKmpdsnSropjf9lCiAkVSTdLOk/gXsGFiDpq5JuS1szPVW3r5XU\nU2P5L5G0KI2fzyBBJumLadwNkl6abnuVpIWSbk/19j/vNyVdKOlnkv6ramtBki6RdK+kxcBfVD1/\n9afnpyT9k6Q7Jd0i6S+qlveLtA7/JOn3NeqcmJ7/G5Luk3SFpCNTLaurtu52kfT9tNV3i6T90+09\nknrT+qyVNEPSF9IyF0oamcZNSTXfLulHknatWo/Pp9f0PklvkbQt8H+B49MW5l8PqHl7SVdKWinp\namD7Aa/dLml6QVreCkknV405KS1radoiu7jqdfgXSb8A5kp6vaSfp39rP5M0KY37UPpbLJK0RtIn\nJM1K426RNDbv34U1WET4p0N/gNHAMuA+4CvA1Kr71gAfT9MfA+an6fOA96XpMemxO5C9SWyXbn8N\ncFuargBPAa/MqWFs+j0CWALsN8TyLwL+MU2/E3ge2KXG8z4PnJCmzwYuTtM3Aq9O028AbkzT3wS+\nm6b3Bu5P0zOARWRhNB7YAMxI9y0BDqxa3jFpei4wO03/EDg+TZ8C/L5GrROBjcC+aTm3A5el+6YB\nC9L0xcDZafptwLI03QPclP6GBwB/AN6R7rsaeDewLfBz4CXp9uOrlrEE+Oc0fTSwOE3PBC7Ked0+\nDXw9Te+f6u//W6zpf02qXt/tgeXAWGC3NGYM2d6Km/qXk16HawCl+R2BEWn6cOCqNP0h4H6yf8Mv\nBZ4EPpru+yJwetH/v7rlx7ubOlhEPC1pCnAo2ZvOdyWdFRG9acjV6fcdZG+WAEcC/0fSrDS/HTAB\neAy4RNJrgefIgqLfrRHx3zllHJ8+YY4kexPeB1gxyPIPBaan+q+TtCHneZ8Hvpum/x24WtJo4E3A\n96QXNkBG9f85gO+n510laVy6fSrw7cjefR6V9OOc5T0TEdem6V8CR6TpQ8je6AG+A3wh5/FrIuIe\nAEn3ADek21eQhQjAm0l/h4hYkraqdky1L4yI5yStALaJiOvTY5anx08iC6Eb0rqPAB6pWn7137p/\neSJ/S+1Q4MJUy3JJd+eMO13SsWl691THeOAnEfFEWt/vpdtJ6/K99PeGLEi+JenV6b7q96QlEfE0\n8LSkJ4AfVK3zATn1WIM5JDpcRDwP/AT4iaTlZJ8e+0PiT+n3c2z6b2FGRNxf/TzKdhU9GhEfkDQC\n+GPV3U/XWrakPYDPAAdFxJOSvgG8qGpI3vKH2ysR2RvMNsCGiJicM+6ZGsuotzezsWr6eYb/f+dP\nVdPPV9Uy8LnyankGstdTUq1aBNwTEW8aYvkD/9aDGfTvIqkCHAYcEhF/lLSE7PUd2C8a+Dx/qJr+\nHNnW3nRJrwT6atQM2Xr+qWra710t4p5EB5M0SVL1J/7JwNohHnY9cFrVc/S/4e5EtjUB8EGyT6pD\n2YksQH6XPrnX802am4C/Scs+mmz3RS3bAP370f8GuDkifg+skfSe9HhJGuoT501kWzvbSBpPtsU1\nHL8A3pOm3zvMxw50M/A+eOEN+PG0TvWE2H3AyyQdkh6/raR9hnjM78h299RS/TrsR+1P7juRhfIf\nJe1FtlUVwG3AWyWNSf2SvyL/iwY78ectnhOHqLdfQ79wYYNzSHS2FwPflHSPpLuAvcj2b8Om/2mj\nav5zwLapKboCODfd/lVgpqQ7gT3J+hDVj99MRNxF1hO5F7gC+GlOndXLPxeYmpY9HcjbjfU0cHDa\nOqqQNWEhe5M9KdW5gj/vCqq1zkTEArJ93yvJtrB+PkiNter9FPDptLxXke07H+rxNWshe22mpNfq\nPLKtvoHLq/lckX054T1kzeA7yf7ubxyiliXAPrUa18ClwIslrSR7TW6v8Tw/AkamMecDt6RiHkn1\n30r2mq9h079Ldf3zgPMl3UH2wSOqxuSt88D7rIn0512DZjZckraPiP9N0+8la2JPL7iswkkanXpi\nI8n6IZdFxH8WXZcNn/frmW2dKZIuIdsFsgH4cMH1tIseSYeT9Siud0CUl7ckzMwsl3sSZmaWyyFh\nZma5HBJmZpbLIWFmZrkcEmZmlsshYWZmuRwSZmaWq9CQkHSUsvPs3y/pzEHGvV7Ss5Jm5I0xM7PG\nKywk0plELwGOIjt99AmqcanING4u2XlifGIvM7MWKnJL4mDggYhYm05OdiXZxVMG+iRwFfB4K4sz\nM7NiQ+LlwINV8w+l214g6eVkwXFpusnnEDEza6EiQ6KeN/wvA2elq1gNdhUtMzNrgiLPAvsw2WUx\n+00g25qoNgW4Ml2O8aXA0ZI2RsQ11YMkeQvDzGwLRMSgH76L3JK4HXiNpImSRpFduH2TN/+I+MuI\n2CMi9iDrS3xsYEBUje3Ynzlz5hReg9fN6+f167yfehS2JRERz0r6BNnlMkeQXZRklaRT0v1fK6o2\nMzPLFHrRoYhYCCwccFvNcIiIeq9/a2ZmDeIjrkugUqkUXULTdPK6gdev7Dp9/erREVemkxSdsB5m\nZq0kiWjjxrWZmbU5h4SZmeVySJiZWS6HhJmZ5XJImJlZLoeEmW2R+++HH/4Q/MXCzuaQMLMtsmAB\nTJ8OU6fC0qVFV2PN4pAwsy122mlw4okwYwaccAKsWVN0RdZoDgkz22IjRsCHPwyrV8Pee8NBB8EZ\nZ8ATTxRdmTWKQ8LMttro0XDOObBiRRYQe+4JF10EzzxTdGW2tRwSZtYw48fD/Plwww2wcCHsuy9c\nfbWb22XmkDCzhtt//ywkvvIV6Olxc7vMHBJm1jRHHgnLlrm5XWYOCTNrKje3y80hYWYt4eZ2OTkk\nzKyl3NwuF4eEmRXCze1ycEiYWaHc3G5vDgkzK1yt5vZnP+vmdjtwSJhZ26hubm/Y4OZ2O3BImFnb\ncXO7fTgkzKxt1Wpu33pr0VV1F4eEmbW96ub29OlZc3vt2qKr6g4OCTMrhYHN7SlT3NxuBYeEmZWK\nm9ut5ZAws1Jyc7s1Cg0JSUdJulfS/ZLOrHH/+yTdJeluST+TdEARdZpZ+3Jzu7kKCwlJI4BLgKOA\nfYATJO09YNivgKkRcQDwOeBfW1ulmZWFm9vNUeSWxMHAAxGxNiI2AlcC764eEBG3RMSTaXYpsHuL\nazSzEnFzu/GKDImXAw9WzT+UbstzEnBdUysys47g5nbjFBkSdbeXJL0N+DCwWd/CzCxPreb2ggVu\nbg/HyAKX/TAwoWp+AtnWxCZSs3o+cFREbMh7sp6enhemK5UKlUqlUXWaWcn1N7cXLYJZs+CLX4QL\nLoCDDy66stbq6+ujr69vWI9RFBSpkkYC9wGHAY8AtwInRMSqqjGvAH4MvD8ifjHIc0VR62HWrebN\ng/Xrs99l8txz0NsLZ5+dfRPq/PNh4sSiqyqGJCJCg40pbHdTRDwLfAK4HlgJfDciVkk6RdIpadg5\nwFjgUknLJPmLbWa2VdzcHp7CtiQayVsSZq1X1i2JgR59NGtyX3MNzJ4Np54Ko0YVXVVrtPWWhJlZ\nO3Bze3AOCTMzNj1ye84cH7ndzyFhZlal/8jtD33IR26DQ8LMbDMjRsBJJ7m5DQ4JM7NcPnLbIWFm\nNqSBze399uue5rZDwsysTv3N7Usu6Z7mtkPCzGyYuum05A4JM7Mt0C1HbjskzMy2Qqc3tx0SZmYN\n0KnNbYeEmVkDdVpz2yFhZtYEndLcdkiYmTVJJzS3HRJmZk1W5ua2Q8LMrEXK2Nx2SJiZtViZmtsO\nCTOzgpShue2QMDMrULs3tx0SZmZtoFZz++KLi29uOyTMzNpIdXP7uuuKb247JMzM2lC7NLcdEmZm\nbazo5rZDwsyszRXZ3HZImJmVRBHNbYeEmVnJtLK57ZAwMyupVjS3HRJmZiXXzOa2Q8LMrAM0q7ld\naEhIOkrSvZLul3RmzpiL0v13SZrc6hrNzMqk0c3twkJC0gjgEuAoYB/gBEl7DxjzTuDVEfEa4KPA\npS0v1MyshBrV3C5yS+Jg4IGIWBsRG4ErgXcPGDMN6AWIiKXAGEnjWlummVl5bW1ze2TzShvSy4EH\nq+YfAt5Qx5jdgXXNLc3MrLP0N7d7e7Pm9tSp9T2uyJCod6NH9Txuv/16OOwwGDsWKpUKlUplq4oz\nM+s0N9/cx69/3cfMmfVvTRQZEg8DE6rmJ5BtKQw2Zvd022aOO66HCy+Ek06C172uoXWamXWEgR+g\npXOHfEyRPYnbgddImihpFHA8cM2AMdcAHwSQdAjwRETU3NVU1ouMm5m1s8JCIiKeBT4BXA+sBL4b\nEasknSLplDTmOuBXkh4Avgb87WDPOfAi4/vuC1df3d4XGTcza2eKDngHlRS11mPRIpg1C3beGb7w\nBXjDwLa4mW2xefNg/frst5WTJCJiYN93Ex19xHX1oeozZmSHqq9ZU3RVZmbl0dEhAZsfqn7QQe11\nkXEzs3bW8SHRr9ah6m5um5kNrmtCop+b22Zm9eu6kOjXf6j6V74CPT3Z0YdLlxZdlZlZe+nakOjn\n5raZWb6uDwlwc9vMLI9Dooqb22Zmm3JI1ODmtplZxiExCDe3zazbOSTq4Oa2mXUrh0Sd3Nw2s27k\nkBgmN7fNrJs4JLaQm9tm1g0cElupVnN7OBcZNzNrZw6JBqlubk+fnjW3164tuiozs63jkGiggc3t\nKVPc3DazcnNINIGb22bWKRwSTeTmtpmV3ZAhIek4STul6bMlLZB0YPNL6xxubptZWdWzJXF2RPxO\n0luAw4DLgEubW1ZncnPbzMqmnpB4Lv1+FzA/In4IjGpeSZ3NzW0zK5N6QuJhSf8KHA9cK+lFdT7O\nBuHmtpmVQT1v9scB1wNHRsQTwFjgjKZW1UXc3DazdpYbEv3NamA7YAnwP5J2Af4E3N6C2rqKm9tm\n1o4G25L4Tvp9B/DLGj/WBLWa2z4tuZkVJTckIuKY9HtiROwx8Kd1JXaf6ub2Xnv5tORmVpx6jpM4\nacD8SElzmleS9Rs9GubMcXPbzIpTT+P6cEnXSdpN0n7ALcBOQz1oKJJ2kbRY0mpJiySNqTFmgqQl\nku6RtELSaVu73DJyc9vMijJkSETECcC3gLuBa4G/i4jPNGDZZwGLI2IScGOaH2hjWt6+wCHAxyXt\n3YBll5Kb22bWavXsbpoEnAZcDfwaeL+k0Q1Y9jSgN033AscOHBARj0XEnWn6KWAVsFsDll1qPnLb\nzFqlnt1N1wDnRMRHgbcC9wO3NWDZ4yJiXZpeB4wbbLCkicBkYGkDll16PnLbzFphZB1j3hARTwJE\nxPPABZJ+UM+TS1oM7FrjrtnVMxERknL3sEt6MXAVcHraothMT0/PC9OVSoVKpVJPiaXXf+T2ySdn\nv/fcE2bPhlNPhVE+eYqZVenr66Ovr29Yj1HU0f2UtD+wD/AiIAAi4lvDL3GT57wXqETEY5LGA0si\nYq8a47YFfggsjIgv5zxX1LMe3WD58myL4oEHYO7cbHeUVHRV1onmzYP167PfVk6SiIhB3yHq6Un0\nABcBFwMVYB5ZP2FrXQPMTNMzge/XWLbIzjq7Mi8gbFNubptZI9XTk3gPcDjwaEScCLwW2Ozrqlvg\n88ARklYDb0/zpK/aXpvGvBl4P/A2ScvSz1ENWHbHc3PbzBqhnpD434h4DnhW0s7Ab4AJW7vgiPht\nRBweEZMiov/kgUTEI1VHe/80IraJiNdFxOT086OtXXa3cHPbzLZWPSFxm6SxwHyyE/stA37e1Kqs\noXxacjPbUvUcTPe3EbEhIv4FOBKYmXY7Wcn4yG0zG65hXTwoItZExF3NKsZaw81tM6uXrzDXxdzc\nNrOhDHbRoYWSfErwDufmtpkNZrAticuB6yXNTge0WQdzc9vMahnsokPfAw4EdgZulzRL0mfSz6db\nVqG1lJvbZlZtqJ7ERuApstNx7Ai8OP3s2OS6rGBubpsZDHKCv3Rk8xeBHwCTI+IPLavK2kZ/c7u3\nN2tuT50K558PEycWXZmZtcJgWxKzgb+OiDMdEN3NzW2z7jVYSEyNiHtaVom1PTe3zbrPYI1rtyqt\nJje3zbqHD6azLebmtlnnc0jYVvOR22adyyFhDeHmtllnckhYQ7m5bdZZHBLWFG5um3UGh4Q1lZvb\nZuXmkLCWcHPbrJwcEtYybm6blY9DwlrOzW2z8nBIWGHc3DZrfw4JK5yb22btyyFhbcPNbbP245Cw\ntuLmtll7cUhYW3Jz26w9OCSsrbm5bVYsh4SVgpvbZsUoJCQk7SJpsaTVkhZJGjPI2BGSlkn6QStr\ntPbk5rZZaxW1JXEWsDgiJgE3pvk8pwMrAe9gMMDNbbNWKiokpgG9aboXOLbWIEm7A+8Evg6oNaVZ\nWbi5bdZ8RYXEuIhYl6bXAeNyxn0JOAN4viVVWSm5uW3WPCOb9cSSFgO71rhrdvVMRISkzf47S3oX\n8JuIWCapMtTyenp6XpiuVCpUKkM+xDpMf3N70SKYNQu+9CW44AI4+OCiKzNrD319ffT19Q3rMYoC\nPm5JuheoRMRjksYDSyJirwFjzgM+ADwLvAjYCfiPiPhgjeeLItbD2tdzz0FvL5x9dvZNqPPPh4kT\ni66qs8ybB+vXZ7+tnCQREYPuyi9qd9M1wMw0PRP4/sABEfEPETEhIvYA3gv8uFZAmNXi5rZZYxQV\nEp8HjpC0Gnh7mkfSbpKuzXmMNxVs2NzcNts6hYRERPw2Ig6PiEkRcWREPJFufyQijqkx/icRMa31\nlVqncHPbbMv4iGvrKrWO3F66tOiqzNqXQ8K6UvWR2zNmZEdur1lTdFVm7cchYV2rurm9115w0EFu\nbpsN5JCwrjd6NMyZ4+a2WS0OCbPEzW2zzTkkzAZwc9vszxwSZjnc3DZzSJgNys1t63YOCbM6uLlt\n3cohYTYMbm5bt3FImG0BN7etWzgkzLaCm9vW6RwSZlvJzW3rZA4JswZxc9s6kUPCrMHc3LZO4pAw\naxI3t60TOCTMmszNbSszh4RZC7i5bWXlkDBrITe3rWwcEmYFcHPbysIhYVYgN7et3TkkzNqAm9vW\nrhwSZm3CzW1rRw4Jszbj5ra1E4eEWZtyc9vagUPCrM25uW1FckiYlYSb21YEh4RZibi5ba1WSEhI\n2kXSYkmrJS2SNCZn3BhJV0laJWmlpENaXatZO3Jz21qlqC2Js4DFETEJuDHN13IhcF1E7A0cAKxq\nUX1mpeDmtjVbUSExDehN073AsQMHSNoZODQiLgeIiGcj4snWlWhWHm5uW7MUFRLjImJdml4HjKsx\nZg/gcUnfkHSHpPmSdmhdiWbl4+a2NVrTQiL1HJbX+JlWPS4iAqi1cTwSOBD4akQcCDxN/m4pM0vc\n3LZGGtmsJ46II/Luk7RO0q4R8Zik8cBvagx7CHgoIm5L81cxSEj09PS8MF2pVKhUKltStlnH6G9u\nf/SjcM45WXN79mw49VQYNaro6qwIfX199PX1DesxigI6XJLmAf8TEXMlnQWMiYjNAkDSTcBHImK1\npB5g+4g4s8a4KGI9zMpk+fJsi+KBB2DuXJg+HaQtf75582D9+uy3lZMkImLQfwVF9SQ+DxwhaTXw\n9jSPpN0kXVs17pPAFZLuIvt203ktr9SsQ7i5bVuiabubBhMRvwUOr3H7I8AxVfN3Aa9vYWlmHa+/\nud3bmzW3p06F886DPfYoujJrRz7i2qwLublt9XJImHUxH7ltQ3FImJmP3LZcDgkze4Gb2zaQQ8LM\nNuMjt62fQ8LManJz28AhYWZDcHO7uzkkzKwuA5vb555bdEXWCoWclqPRfFoOs9a78UZ42cvggAOK\nrsS2VD2n5XBImJl1qXY+d5OZmZWAQ8LMzHI5JMzMLJdDwszMcjkkzMwsl0PCzMxyOSTMzCyXQ8LM\nzHI5JMzMLJdDwszMcjkkzMwsl0PCzMxyOSTMzCyXQ8LMzHI5JMzMLJdDwszMcjkkzMwsl0PCzMxy\nFRISknaRtFjSakmLJI3JGff3ku6RtFzStyVt1+pazcy6WVFbEmcBiyNiEnBjmt+EpInAycCBEbE/\nMAJ4bwtrbBt9fX1Fl9A0nbxu4PUru05fv3oUFRLTgN403QscW2PM74CNwA6SRgI7AA+3prz20sn/\nUDt53cDrV3advn71KCokxkXEujS9Dhg3cEBE/Ba4APg18AjwRETc0LoSzcxsZLOeWNJiYNcad82u\nnomIkBQ1Hv8q4FPAROBJ4HuS3hcRVzShXDMzq0ERm70/N3+h0r1AJSIekzQeWBIRew0YczxwRER8\nJM1/ADgkIj5e4/lavxJmZh0gIjTY/U3bkhjCNcBMYG76/f0aY+4Fzpa0PfBH4HDg1lpPNtRKmpnZ\nlilqS2IX4P8BrwDWAsdFxBOSdgPmR8QxadxnyULkeeAO4CMRsbHlBZuZdalCQsLMzMqh1EdcSzpK\n0r2S7pd0ZtH1NJKkyyWtk7S86FqaQdIESUvSwZIrJJ1WdE2NJOlFkpZKulPSSknnF11To0kaIWmZ\npB8UXUujSVor6e60fjV3c5eZpDGSrpK0Kv37PCR3bFm3JCSNAO4j61U8DNwGnBARqwotrEEkHQo8\nBXwrHUzYUSTtCuwaEXdKejHwS+DYTnn9ACTtEBF/SMf5/BSYFRE/LbquRpH0aWAKsGNETCu6nkaS\ntAaYkr6K33Ek9QI/iYjL07/P0RHxZK2xZd6SOBh4ICLWpj7FlcC7C66pYSLiZmBD0XU0S0Q8FhF3\npumngFXAbsVW1VgR8Yc0OYrsjAEd84YjaXfgncDXgU794khHrpeknYFDI+JygIh4Ni8goNwh8XLg\nwar5h9JtVjLpFCyTgaXFVtJYkraRdCfZAaNLImJl0TU10JeAM8i+VNKJArhB0u2STi66mAbbA3hc\n0jck3SFpvqQd8gaXOSTKuZ/MNpF2NV0FnJ62KDpGRDwfEa8DdgemSqoUXFJDSHoX8JuIWEaHftoG\n3hwRk4GjgY+n3b+dYiRwIPDViDgQeJoa58/rV+aQeBiYUDU/gWxrwkpC0rbAfwD/HhG1jpXpCGlT\n/lrgoKJraZA3AdPSfvvvAG+X9K2Ca2qoiHg0/X4cWEC2e7tTPAQ8FBG3pfmryEKjpjKHxO3AayRN\nlDQKOJ7sID0rAUkCLgNWRsSXi66n0SS9tP8U+OmA0COAZcVW1RgR8Q8RMSEi9iA7M/OPI+KDRdfV\nKJJ2kLRjmh4NHAl0zLcMI+Ix4EFJk9JNhwP35I0v6ojrrRYRz0r6BHA9WVPwsg77Zsx3gLcCL5H0\nIHBORHyj4LIa6c3A+4G7JfW/ef59RPyowJoaaTzQK2kbsg9j/xYRNxZcU7N02q7fccCC7HMMI4Er\nImJRsSU13CeBK9IH7P8CTswbWNqvwJqZWfOVeXeTmZk1mUPCzMxyOSTMzCyXQ8LMzHI5JMzMLJdD\nwszMcjkkzIaQTmv+K0lj0/zYNP+KBjz3z7a+QrPm8XESZnWQdAbw6og4RdLXgF9FxNyi6zJrNm9J\nmNXnS8Ahkj5Fdu6iL9QaJGlBOnPoiv6zh0p6paTVkl6Szgx7s6TD031Ppd/jJd2ULnKzXNJbWrRe\nZoPyloRZnSS9A1gIHJF3ig1JYyNiQzpf063A1DR/EvAOsotj/WVEfCyN/31E7CjpM8B2EXFeOq/V\n6E47K66Vk7ckzOp3NPAIMNiVAk9P15C4hewU4ZMAIuIyYGfgFGBWjcfdCpwoaQ5wgAPC2oVDwqwO\nkl5HdrbMNwJ/ly6/OnBMBTgMOCRdR+JOYLt03w5koRHAjgMfm65EeCjZKfC/KekDzVkTs+FxSJgN\nIe3+uZTswkgPAv9M7Z7ETsCGiPijpL2A6ovLzwX+DZgDzK+xjFcAj0fE18kuCTq5sWthtmUcEmZD\nOxlYW9WH+Cqwd42rlf0IGClpJXA+2S4nJL0VmALMjYhvA89Impke098UfBtwp6Q7gOOAC5u2NmbD\n4Ma1mZnl8paEmZnlckiYmVkuh4SZmeVySJiZWS6HhJmZ5XJImJlZLoeEmZnlckiYmVmu/w/9pUNg\nWRkRIwAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 150 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter6.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter6.ipynb new file mode 100644 index 00000000..a76cd86c --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter6.ipynb @@ -0,0 +1,578 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:6a2b99a338c7d2a71ec20bddeaf4c19ec8da980602f4c9834a7faee562a1e5cc" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6:Pure Bending and Bending with Axial force " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.3 page number 293" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#Entire area - hallow area\n", + "l_e = 60.0 #mm - length of the entire area\n", + "b_e = 40 #mm - width of the entire area\n", + "l_h = 30 #mm - length of the hallow area\n", + "b_h = 20 #mm - width of the hallow area\n", + "A_e = l_e*b_e #mm2 - The entire area\n", + "A_h = -l_h*b_h #mm2 - The hallow area '-' because its hallow\n", + "A_re = A_e + A_h #mm2 resultant area\n", + "y_e = l_e/2 # mm com from bottom \n", + "y_h = 20+l_h/2 #mm com from bottom \n", + "y_com = (A_e*y_e + A_h*y_h)/A_re \n", + "#moment of inertia caliculatins - bh3/12 +ad2\n", + "I_e = b_e*(l_e**3)/12 + A_e*((y_e-y_com)**2) #Parallel axis theorm\n", + "I_h = b_h*(l_h**3)/12 - A_h*((y_h-y_com)**2) #Parallel axis theorm\n", + "I_total = I_e - I_h\n", + "print \"The moment of inertia of total system is \",I_total,\"mm4\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The moment of inertia of total system is 655000.0 mm4\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.4 page number 295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "l = 400 #mm - Length \n", + "b = 300 #mm - breath \n", + "F = 20 #KN _ the force applied on the beam \n", + "F_d = 0.75 #KN-m - The force distribution \n", + "d = 2 #mt - the point of interest from the free end\n", + "#caliculations \n", + "#From moment diagram\n", + "M = F*d - F_d*d*1\n", + "I = b*(l**3)/12 #mm4 - Bending moment diagram \n", + "c = l/2 # the stress max at this C\n", + "S = I/c #The maximum shear stress \n", + "shear_max = M*(10**6)/S #MPA - the maximum stress \n", + "print \"The maximum stress at 2 mt is\",round(shear_max,2),\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress at 2 mt is 4.81 Mpa\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.5 pagr number 297" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#We will divide this into three parts\n", + "F = 8 #k - force applied\n", + "d = 16 #inch -distance\n", + "l_1 = 1 #in \n", + "l_2 = 3 #in \n", + "b_1 = 4 #in \n", + "b_2 = 1 #in\n", + "A_1 = l_1* b_1 #in2 - area of part_1\n", + "y_1 = 0.5 #in com distance from ab\n", + "A_2 =l_2*b_2 #in2 - area of part_1\n", + "y_2 = 2.5 #in com distance from ab\n", + "A_3 = l_2*b_2 #in2 - area of part_1\n", + "y_3 = 2.5 #in com distance from ab\n", + "\n", + "y_net = (A_1*y_1 +A_2*y_2 + A_3*y_3)/(A_1+A_2+A_3) #in - The com of the whole system\n", + "c_max = (4-y_net) #in - The maximum distace from com to end\n", + "c_min = y_net #in - the minimum distance from com to end\n", + "I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n", + "I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n", + "I_3 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n", + "I_net = I_1 + I_2 + I_3 #in4 - the total moment of inertia\n", + "M_c = F*d*c_max \n", + "stress_cmax = M_c/I_net #Ksi - The maximum compressive stress\n", + "\n", + "M_t= F*d*c_min \n", + "stress_tmax = M_t/I_net #Ksi - The maximum tensile stress\n", + "print \"The maximum tensile stress\",stress_tmax ,\"Ksi\"\n", + "print \"The maximum compressive stress\",round(stress_cmax,1) ,\"Ksi\"\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum tensile stress 16.0 Ksi\n", + "The maximum compressive stress 21.6 Ksi\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.8 page number 303" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#Given \n", + "#We will divide this into two parts\n", + "E_w = 10.0 #Gpa - Youngs modulus of wood\n", + "E_s = 200.0 #Gpa - Youngs modulus of steel\n", + "M = 30.0 #K.N-m _ applied bending moment \n", + "n = E_s/E_w \n", + "l_1 = 250 #mm \n", + "l_2 = 10 #mm\n", + "b_1 = 150.0 #mm\n", + "b_2 = 150.0*n #mm\n", + "A_1 = l_1* b_1 #mm2 - area of part_1\n", + "y_1 = 125.0 #mm com distance from top\n", + "A_2 =l_2*b_2 #mm2 - area of part_1\n", + "y_2 = 255.0 #mm com distance from top\n", + "y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) #mm - The com of the whole system from top\n", + "I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n", + "I_2 = b_2*(l_2**3)/12.0 + A_2*((y_2-y_net)**2)\n", + "I_net = I_1 + I_2 #mm4 - the total moment of inertia\n", + "c_s= y_net # The maximum distance in steel \n", + "stress_steel = M*(10.0**6)*c_s/I_net #Mpa - The maximum stress in steel \n", + "\n", + "c_w= l_1+l_2-y_net # The maximum distance in wood \n", + "stress_wood = n*M*(10.0**6)*c_w/I_net #MPa - The maximum stress in wood \n", + "\n", + "print \"The maximum stress in steel \",round(stress_steel,2) ,\"Mpa\"\n", + "print \"The maximum stress in wood\",round(stress_wood,2) ,\"Mpa\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress in steel 11.49 Mpa\n", + "The maximum stress in wood 97.09 Mpa\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.9 page number 305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "M = 50000 #ft-lb , positive bending moment applied\n", + "N = 9 # number of steel bars \n", + "n = 15 # The ratio of steel to concrete \n", + "A_s = 30 #in2 area of steel in concrete\n", + "#(10*y)*(y/2) = 30*(20-y)\n", + "#y**2 + 6*y -120\n", + "#solving quadractic equation \n", + "import math\n", + "\n", + "a = 1\n", + "b = 6\n", + "c = -120\n", + "# calculate the discriminant\n", + "d = (b**2) - (4*a*c)\n", + "\n", + "# find two solutions\n", + "sol1 = (-b-math.sqrt(d))/(2*a)\n", + "sol2 = (-b+math.sqrt(d))/(2*a)\n", + "y = sol2 # Nuetral axis is found\n", + "l_1 = y #in- the concrete below nuetral axis is not considered\n", + "b_1 = 10 #in - width\n", + "A_1 = l_1* b_1 #in2 - area of concrete\n", + "y_1 = y/2 #in com of the concrete \n", + "y_2 = 20-y #in com of the transformed steel \n", + "I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y)**2) #in4 parallel axis theorm\n", + "I_2 = A_s*((y_2)**2) #in4 first part is neglected\n", + "I_net = I_1 + I_2 #in4 - the total moment of inertia\n", + "c_c= y #in The maximum distance in concrete \n", + "stress_concrete = M*12*c_c/I_net #psi - The maximum stress in concrete \n", + "c_s= 20- y \n", + "stress_steel =n*M*12*c_s/I_net #psi - The maximum stress in concrete \n", + "print \"The maximum stress in concrete \",round(stress_concrete,2) ,\"psi\"\n", + "print \"The stress in steel\",round(stress_steel,2) ,\"psi\"\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress in concrete 834.07 psi\n", + "The stress in steel 17427.61 psi\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 6.10 page number 309" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "l = 50.0 #mm - the length of the beam \n", + "b = 50.0 #mm - the width of the beam\n", + "M = 2083 #Nm\n", + "A = l*b #mm2 - The area \n", + "#straight beam \n", + "I = b*(l**3)/12.0 #mm4 - The moment of inertia of the beam\n", + "c_1= l/2 # the distance where the stress is maximum \n", + "c_2 = -l/2 # the distance where the stress is maximum \n", + "s_1 = I/c_1\n", + "s_2 = I/c_2\n", + "stress_max_1 = M*(10**3)/s_1 #Mpa - the maximum strss recorded in the crossection\n", + "stress_max_2 = M*(10**3)/s_2 #Mpa - the maximum strss recorded in the crossection \n", + "print \"The maximum stress upward in straight case is\",stress_max_1,\"Mpa\"\n", + "print \"The maximum stress downward in straight case is\",stress_max_2,\"Mpa\"\n", + "\n", + "#curved beam \n", + "import math\n", + "r = 250.0 #mm Radius of beam curved \n", + "r_0 = r - l/2 # inner radius \n", + "r_1 = r + l/2 # outer radius\n", + "R = l/(math.log(r_1/r_0)) #mm \n", + "e = r - R \n", + "stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)\n", + "stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)\n", + "print \"The maximum stress upward in curved case is\",stressr_max_1,\"Mpa\"\n", + "print \"The maximum stress downward in curved case is\",stressr_max_2,\"Mpa\"\n", + "\n", + "#curved beam _2 \n", + "import math\n", + "r = 75.0 #mm Radius of beam curved \n", + "r_0 = r - l/2 # inner radius \n", + "r_1 = r + l/2 # outer radius\n", + "R = l/(math.log(r_1/r_0)) #mm \n", + "e = r - R \n", + "stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)\n", + "stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)\n", + "print \"The maximum stress upward in curved case2 is\",stressr_max_1,\"Mpa\"\n", + "print \"The maximum stress downward in curved case2 is\",stressr_max_2,\"Mpa\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress upward in straight case is 99.984 Mpa\n", + "The maximum stress downward in straight case is -99.984 Mpa\n", + "The maximum stress upward in curved case is 107.093207632 Mpa\n", + "The maximum stress downward in curved case is -93.6813516989 Mpa\n", + "The maximum stress upward in curved case2 is 128.733538525 Mpa\n", + "The maximum stress downward in curved case2 is -81.0307692623 Mpa\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Page number 6.14 page number 318" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given \n", + "#from example 6.9\n", + "St_ul = 2500 #psi - ultimate strength\n", + "st_yl = 40000 #psi _ yielding strength \n", + "b = 10 #in - width from example \n", + "A = 2 #in2 The area of the steel\n", + "d = 20 \n", + "t_ul = st_yl*A #ultimate capasity\n", + "y = t_ul/(St_ul*b*0.85) #in 0.85 because its customary\n", + "M_ul = t_ul*(d-y/2)/12 #ft-lb Plastic moment \n", + "print \"The plastic moment of the system is \",M_ul,\"ft-lb\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The plastic moment of the system is 120784.313725 ft-lb\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.15 page number 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "#From example 5.8 \n", + "W = 4.0 #N/m - The force distribution \n", + "L = 3 # m - The length of the force applied\n", + "M = W*L/8.0 # KN.m The moment due to force distribution\n", + "o = 30 # the angle of force applid to horizantal\n", + "l = 150.0 #mm length of the crossection \n", + "b = 100.0 #mm - width of the crossection \n", + "import math \n", + "M_z = M*(math.cos(3.14/6))\n", + "M_y = M*(math.sin(math.pi/6))\n", + "I_z = b*(l**3)/12.0\n", + "I_y = l*(b**3)/12.0\n", + "#tanb = I_z /I_y *tan30\n", + "b = math.atan(math.radians(I_z*math.tan(3.14/6.0)/I_y ))\n", + "print \"The angle at which nuetral axis locates is\",b,\"radians\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The angle at which nuetral axis locates is 0.0226547191205 radians\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.16 pagenumber 323" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "M = 10 #KN.m - The moment applied\n", + "I_max = 23.95*(10**6) #mm4 - I_z The moment of inertia\n", + "I_min = 2.53*(10**6) #mm4 - I_y The moment of inertia\n", + "o = 14.34 # degress the principle axis rotated\n", + "#Coponents of M in Y,Z direction \n", + "M_z = M*(10**6)*math.cos(math.radians(o))\n", + "M_y = M*(10**6)*math.sin(math.radians(o))\n", + "#tanb = I_z /I_y *tan14.34\n", + "b = math.atan((I_max*math.tan(math.radians(o))/I_min ))\n", + "B = math.degrees(b) \n", + "y_p = 122.9 # mm - principle axis Y cordinate\n", + "z_p = -26.95 #mm - principle axis z cordinate\n", + "stress_B = - M_z*y_p/I_max + M_y*z_p/I_min #Mpa - Maximum tensile stress\n", + "y_f = -65.97 # mm - principle axis Y cordinate\n", + "z_f = 41.93 #mm - principle axis z cordinate\n", + "stress_f = - M_z*y_f/I_max + M_y*z_f/I_min #Mpa - Maximum compressive stress\n", + "print \"The maximum tensile stress\",round(stress_B,2) ,\"Mpa\"\n", + "print \"The maximum compressive stress\",round(stress_f,2),\"Mpa\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum tensile stress -76.1 Mpa\n", + "The maximum compressive stress 67.73 Mpa\n" + ] + } + ], + "prompt_number": 83 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.18 page number 328" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "l = 50 #mm - The length of the beam \n", + "b = 50 #mm - The width of the beam \n", + "A = l*b #mm2 - The area of the beam \n", + "p = 8.33 #KN - The force applied on the beam \n", + "stress_max = p*(10**3)/A #Mpa After cutting section A--b\n", + "print \"The maximum stress in the beam\",stress_max ,\"Mpa \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress in the beam 3.332 Mpa \n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.24 page number 339" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "M = 10 #KN.m - The moment applied\n", + "I_max = 23.95*(10**6) #mm4 - I_z The moment of inertia\n", + "I_min = 2.53*(10**6) #mm4 - I_y The moment of inertia\n", + "o = 14.34 # degress the principle axis rotated\n", + "#Coponents of M in Y,Z direction \n", + "M_z = M*(10**6)*math.cos(math.radians(o))\n", + "M_y = M*(10**6)*math.sin(math.radians(o))\n", + "#tanb = I_z /I_y *tan14.34\n", + "b = math.atan((I_max*math.tan(math.radians(o))/I_min ))\n", + "B = math.degrees(b) \n", + "y_p = 122.9 # mm - principle axis Y cordinate\n", + "z_p = -26.95 #mm - principle axis z cordinate\n", + "stress_B = - M_z*y_p/I_max + M_y*z_p/I_min #Mpa - Maximum tensile stress\n", + "y_f = -65.97 # mm - principle axis Y cordinate\n", + "z_f = 41.93 #mm - principle axis z cordinate\n", + "stress_f = - M_z*y_f/I_max + M_y*z_f/I_min #Mpa - Maximum compressive stress\n", + "#location of nuetral axis To show these stresses are max and minimum \n", + "#tanB = MzI_z + MzI_yz/MyI_y +M_YI_yz\n", + "I_z = 22.64 *(10**6) #mm4 moment of inertia in Z direction\n", + "I_y = 3.84 *(10**6) #mm4 moment of inertia in Y direction\n", + "I_yz =5.14 *(10**6) #mm4 moment of inertia in YZ direction \n", + "M_y = M #KN.m bending moment in Y dorection \n", + "M_z = M #KN.m bending moment in Y dorection \n", + "B = math.atan(( M_z*I_yz)/(M_z*I_y )) #radians location on neutral axis\n", + "beta = math.degrees(B)\n", + "print \"By sketching the line with angle\",round(beta,1),\"degrees The farthest point associated with B and F\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "By sketching the line with angle 53.2 degrees The farthest point associated with B and F\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter7.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter7.ipynb new file mode 100644 index 00000000..05e3cf36 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter7.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:88c8946645e4f3f31d0d74d88b4d147ad878a660c1c0e5aff6962c72b58f187c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "chapter 4:Shear stress in Beams and Related Problems " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.1 page number 365" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "shear_v = 3000 #N - Transmitted vetical shear \n", + "shear_al = 700 #N - The maximum allowable \n", + "#We will divide this into two parts\n", + "l_1 = 50.0 #mm \n", + "l_2 = 200.0 #mm \n", + "b_1 = 200.0 #mm \n", + "b_2 = 50.0 #mm\n", + "A_1 = l_1* b_1 #mm2 - area of part_1\n", + "y_1 = 25.0 #mm com distance \n", + "A_2 =l_2*b_2 #mm2 - area of part_1\n", + "y_2 = 150.0 #in com distance \n", + "y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) #mm - The com of the whole system\n", + "c_max = (4-y_net) #mm - The maximum distace from com to end\n", + "c_min = y_net #mm - the minimum distance from com to end\n", + "I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n", + "I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n", + "I_net = I_1 + I_2 #mm4 - the total moment of inertia\n", + "Q = A_1*(-y_1+y_net) #mm3\n", + "q = shear_v*Q/I_net #N/mm - Shear flow\n", + "d = shear_al/q # The space between the nails \n", + "print \"The minimal space between the nails \",round(d,0) ,\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimal space between the nails 42.0 mm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.2 pagenumber 365" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "l = 6 #m -length of the beam \n", + "p = 3 #KN-m _ the load applied\n", + "R_a = l*p/2 #KN -The reaction at a, Since the system is symmetry \n", + "R_b = l*p/2 #KN -The reaction at b \n", + "l_s = 10 #mm - The length of the screw \n", + "shear_al = 2 #KN - The maximum load the screw can take \n", + "I = 2.36*(10**9) #mm2 The moment of inertia of the whole system\n", + "#We will divide this into two parts\n", + "l_1 = 50.0 #mm \n", + "l_2 = 50.0 #mm \n", + "b_1 = 100.0 #mm \n", + "b_2 = 200.0 #mm\n", + "A_1 = l_1* b_1 #in2 - area of part_1\n", + "y_1 = 200.0 #mm com distance \n", + "A_2 =l_2*b_2 #mm2 - area of part_1\n", + "y_2 = 225.0 #in com distance\n", + "Q = 2*A_1*y_1 + A_2*y_2 # mm3 For the whole system\n", + "q = R_a*Q*(10**3)/I #N/mm The shear flow \n", + "d = shear_al*(10**3)/q #mm The space between the nails\n", + "print \"The minimal space between the nails \",round(d,0),\"mm\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimal space between the nails 123.0 mm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.6 page number 376" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#we will divide this into two equal parts and other part\n", + "l = 10.0 # in - The height \n", + "t = 0.1 # in - The width\n", + "b = 5.0 #mm- The width of the above part \n", + "A = t* b #in2 - area of part\n", + "y_net = l/2 # The com of the system \n", + "y_1 = l # The position of teh com of part_2\n", + "I_1 = t*(l**3)/12 #in4 The moment of inertia of part 1\n", + "I_2 = 2*A*((y_1-y_net)**2) #in4 The moment of inertia of part 2 \n", + "I = I_1 + I_2 #in4 The moment of inertia \n", + "e = (b**2)*(l**2)*t/(4*I) #in the formula of channels\n", + "l_sc = e - t/2 #in- The shear centre \n", + "print \"The shear centre from outside vertical face is \",l_sc ,\"in\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The shear centre from outside vertical face is 1.825 in\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.8 page number 387" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "dia = 10.0 #mm - The diameter of the cylinder \n", + "c = dia/2 #mm - the radius of the cylinder \n", + "A = 3.14*(c**2) #mm2 The area of the crossection \n", + "y = 4*c/(3*3.14) #mm The com of cylinder \n", + "I = 3.14*(c**4)/4 #mm4 - The moment of inertia of the cylinder\n", + "j = 3.14*(dia**4)/32 #mm4\n", + "T = 20.0 #N.m - The torque \n", + "V = 250.0 #N - The shear \n", + "M = 25.0 #N-m The bending moment \n", + "Q = A*y/2 #mm\n", + "stress_dmax = 4*V/(3*A) #V*Q/(I*d) #Mpa The direct maximum stress\n", + "stress_tmax = T*c*(10**3)/j #-Mpa The torsion maximum stress\n", + "stress_total = stress_dmax + stress_tmax #Mpa The total stress\n", + "print \"The direct maximum stress\",round(stress_dmax,2),\"Mpa\"\n", + "print \"The torsion maximum stress\",round(stress_tmax,2),\"Mpa\"\n", + "print \"The total stress\",round(stress_total,2),\"Mpa\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The direct maximum stress 4.25 Mpa\n", + "The torsion maximum stress 101.91 Mpa\n", + "The total stress 106.16 Mpa\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.9 page number 393" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "dia = 15 #mm - The diameter of the rod\n", + "h = 0.5 #mt - The freely falling height \n", + "A = 3.14*(dia**2)/4 #mm2 The area of the crossection\n", + "E = 200 #Gpa -Youngs modulus\n", + "L = 750 #mm - The total length of the rod\n", + "G = 80 #gpa - Shear modulus \n", + "N = 10 #number of live coils\n", + "d = 5 #mm the diameter of live coil \n", + "m = 3 # the mass of freely falling body\n", + "H = 500 #mm -from mass to spring \n", + "F= m*9.81 #Kg the force due to that mass\n", + "#e = e_rod + e_spr\n", + "#e_rod\n", + "e_rod = p*L*(10**-3)/(A*E) #mm The elongation due to freely falling body\n", + "#e_spr\n", + "e_spr = 64*F*(dia**3)*N*(10**-3)/(G*(d**4)) #mm The elongation due to spring\n", + "e = e_rod + e_spr #mm The total elongation \n", + "p_dyn =F*(1+pow((1+(2*H/e)),0.5))\n", + "Stress_max = p_dyn/A #MPa - The maximum stress in the system \n", + "print \"The maximum stress in the system \",round(Stress_max,2),\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum stress in the system 4.84 Mpa\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter8.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter8.ipynb new file mode 100644 index 00000000..fb95b611 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter8.ipynb @@ -0,0 +1,332 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:bed4afe1f989fb55f213b8e274b88cbf3d61242768410ad03d4984a97542fc14" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8:Transformation of stress and strain and Yield and Fracture criteria " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1 page number 405 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "o = 22.5 #degrees , The angle of infetisimal wedge \n", + "A = 1 #mm2 The area of the element \n", + "A_ab = 1*(math.cos(radians(o))) #mm2 - The area corresponds to AB\n", + "A_bc = 1*(math.sin(radians(o))) #mm2 - The area corresponds to BC\n", + "S_1 = 3 #MN The stresses applying on the element \n", + "S_2 = 2 #MN\n", + "S_3 = 2 #MN\n", + "S_4 = 1 #MN \n", + "F_1 = S_1*A_ab # The Forces obtained by multiplying stress by their areas \n", + "F_2 = S_2*A_ab\n", + "F_3 = S_3*A_bc\n", + "F_4 = S_4*A_bc\n", + "#sum of F_N = 0 equilibrim in normal direction \n", + "N = (F_1-F_3)*(math.cos(radians(o))) + (F_4 - F_2)*(math.sin(radians(o)))\n", + "\n", + "#sum of F_s = 0 equilibrim in tangential direction \n", + "\n", + "S = (F_2-F_4)*(math.cos(radians(o))) + (F_1 - F_3)*(math.sin(radians(o)))\n", + "\n", + "Stress_Normal = N/A #Mpa - The stress action in normal direction on AB\n", + "Stress_tan = S/A #Mpa - The stress action in tangential direction on AB\n", + "print \"The stress action in normal direction on AB\",round(Stress_Normal,2),\"Mpa\"\n", + "print \"The stress action in tangential direction on AB\",round(Stress_tan,2),\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The stress action in normal direction on AB 1.29 Mpa\n", + "The stress action in tangential direction on AB 2.12 Mpa\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2 page number 413" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "o = -22.5 #degrees , The angle of infetisimal wedge \n", + "A = 1 #mm2 The area of the element \n", + "A_ab = 1*(math.cos(radians(o))) #mm2 - The area corresponds to AB\n", + "A_bc = 1*(math.sin(radians(o))) #mm2 - The area corresponds to BC\n", + "S_1 = 3.0 #MN The stresses applying on the element \n", + "S_2 = 2.0 #MN\n", + "S_3 = 2.0 #MN\n", + "S_4 = 1.0 #MN\n", + "#Caliculations \n", + "\n", + "F_1 = S_1*A_ab # The Forces obtained by multiplying stress by their areas \n", + "F_2 = S_2*A_ab\n", + "F_3 = S_3*A_bc\n", + "F_4 = S_4*A_bc\n", + "#sum of F_N = 0 equilibrim in normal direction \n", + "N = (F_1-F_3)*(math.cos(radians(o))) + (F_4 - F_2)*(math.sin(radians(o)))\n", + "\n", + "#sum of F_s = 0 equilibrim in tangential direction \n", + "\n", + "S = (F_2-F_4)*(math.cos(radians(o))) + (F_1 - F_3)*(math.sin(radians(o)))\n", + "\n", + "Stress_Normal = N/A #Mpa - The stress action in normal direction on AB\n", + "Stress_tan = S/A #Mpa - The stress action in tangential direction on AB\n", + "print \"a) The stress action in normal direction on AB\",round(Stress_Normal,2),\"Mpa\"\n", + "print \"a) The stress action in tangential direction on AB\",round(Stress_tan,2),\"Mpa\"\n", + "\n", + "#Part- b\n", + "\n", + "S_max = (S_4+S_1)/2 + (((((S_4-S_1)/2)**2) + S_3**2)**0.5) #Mpa - The maximum stress\n", + "S_min = (S_4+S_1)/2.0 - (((((S_4-S_1/2))**2) + S_3**2)**0.5) #Mpa - The minumum stress\n", + "k = 0.5*math.atan(S_3/((S_1-S_4)/2)) #radians The angle of principle axis\n", + "k_1 = math.degrees(k)\n", + "k_2 = k_1+90 #The principle plane angles\n", + "print \"b) The principle stress \",round(S_max,1),\"Mpa tension\"\n", + "print \"b) The principle stress \",round(S_min,2),\"Mpa compression\"\n", + "print \"b) The principle plane angles are\",round(k_1,0),\",\",round(k_2,0),\"degrees\"\n", + "\n", + "#part-c\n", + "#The maximum shear stress case\n", + "t_xy = (((((S_4-S_1)/2)**2) + S_3**2)**0.5) #Mpa - The maximum shear stress case\n", + "K = 0.5*math.atan((-(S_1-S_4)/(2*S_3))) #radians The angle of principle axis\n", + "K_0 = math.degrees(K)\n", + "if K_0<0:\n", + " K_1 = K_0+90\n", + "else:\n", + " K_1 = K_0\n", + "K_2 = K_1+90 #PRinciple plain angles\n", + "T_xy = -((S_1-S_4)/2)*(math.sin(radians(2*K_1))) + ((S_4+S_1)/2)*(math.cos(radians(2*K_1))) # Shear stress\n", + "print \"c) The maximum shear is \",round(T_xy,2),\"Mpa\" \n", + "S_mat_a = array([round(S_max,1),round(S_min,1),0]) #MPa maximum stress matrix\n", + "S_mat_b = array([(S_4+S_1)/2,round(T_xy,2),round(T_xy,2),(S_4+S_1)/2]) #MPa maximum stress matrix at maximum shear\n", + "print \"a)\",S_mat_a,\"Mpa\"\n", + "print \"b)\",S_mat_b,\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) The stress action in normal direction on AB 4.12 Mpa\n", + "a) The stress action in tangential direction on AB 0.71 Mpa\n", + "b) The maximum stress 4.2 Mpa tension\n", + "b) The minumum stress -0.06 Mpa compression\n", + "b) The principle plane angles are 32.0 , 122.0 degrees\n", + "c) The maximum shear is -2.24 Mpa\n", + "a) [ 4.2 -0.1 0. ] Mpa\n", + "b) [ 2. -2.24 -2.24 2. ] Mpa\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3 page number 421" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "S_x = -2 #Mpa _ the noraml stress in x direction\n", + "S_y = 4 #Mpa _ the noraml stress in Y direction\n", + "c = (S_x + S_y)/2 #Mpa - The centre of the mohr circle \n", + "point_x = -2 #The x coordinate of a point on mohr circle\n", + "point_y = 4 #The y coordinate of a point on mohr circle\n", + "Radius = pow((point_x-c)**2 + point_y**2,0.5) # The radius of the mohr circle\n", + "S_1 = Radius +1#MPa The principle stress\n", + "S_2 = -Radius +1 #Mpa The principle stress\n", + "S_xy_max = Radius #Mpa The maximum shear stress\n", + "print \"The principle stresses are\",S_1 ,\"Mpa\",S_2,\"Mpa\"\n", + "print \"The maximum shear stress\",S_xy_max,\"Mpa\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The principle stresses are 6.0 Mpa -4.0 Mpa\n", + "The maximum shear stress 5.0 Mpa\n" + ] + } + ], + "prompt_number": 61 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4 page number 423" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "import math \n", + "S_x = 3.0 #Mpa _ the noraml stress in x direction\n", + "S_y = 1.0 #Mpa _ the noraml stress in Y direction\n", + "c = (S_x + S_y)/2 #Mpa - The centre of the mohr circle \n", + "point_x = 1 #The x coordinate of a point on mohr circle\n", + "point_y = 3 #The y coordinate of a point on mohr circle\n", + "#Caliculations \n", + "\n", + "Radius = pow((point_x-c)**2 + point_y**2,0.5) # The radius of the mohr circle\n", + "#22.5 degrees line is drawn \n", + "o = 22.5 #degrees \n", + "a = 71.5 - 2*o #Degrees, from diagram \n", + "stress_n = c + Radius*math.sin(math.degrees(o)) #Mpa The normal stress on the plane \n", + "stress_t = Radius*math.cos(math.degrees(o)) #Mpa The tangential stress on the plane\n", + "print \"The normal stress on the 221/2 plane \",round(stress_n,2),\"Mpa\"\n", + "print \"The tangential stress on the 221/2 plane \",round(stress_t,2),\"Mpa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The normal stress on the 221/2 plane 4.82 Mpa\n", + "The tangential stress on the 221/2 plane 1.43 Mpa\n" + ] + } + ], + "prompt_number": 84 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.7 page number 437" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "e_x = -500 #10-6 m/m The contraction in X direction\n", + "e_y = 300 #10-6 m/m The contraction in Y direction\n", + "e_xy = -600 #10-6 m/m discorted angle\n", + "centre = (e_x + e_y)/2 #10-6 m/m \n", + "point_x = -500 #The x coordinate of a point on mohr circle\n", + "point_y = 300 #The y coordinate of a point on mohr circle\n", + "Radius = 500 #10-6 m/m - from mohr circle\n", + "e_1 = Radius +centre #MPa The principle strain\n", + "e_2 = -Radius +centre #Mpa The principle strain\n", + "k = math.atan(300.0/900) # from geometry\n", + "k_1 = math.degrees(k)\n", + "print \"The principle strains are\",e_1,\"um/m\",e_2,\"um/m\"\n", + "print \"The angle of principle plane\",round(k_1,2) ,\"degrees\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The principle strains are 400 um/m -600 um/m\n", + "The angle of principle plane 18.43 degrees\n" + ] + } + ], + "prompt_number": 87 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.8 page number 441" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "e_0 = -500 #10-6 m/m \n", + "e_45 = 200 #10-6 m/m \n", + "e_90 = 300 #10-6 m/m\n", + "E = 200 #Gpa - youngs modulus of steel \n", + "v = 0.3 # poissions ratio \n", + "#Caliculations \n", + "\n", + "e_xy = 2*e_45 - (e_0 +e_90 ) #10-6 m/m from equation 8-40 in text\n", + "# from example 8.7\n", + "e_x = -500 #10-6 m/m The contraction in X direction\n", + "e_y = 300 #10-6 m/m The contraction in Y direction\n", + "e_xy = -600 #10-6 m/m discorted angle\n", + "centre = (e_x + e_y)/2 #10-6 m/m \n", + "point_x = -500 #The x coordinate of a point on mohr circle\n", + "point_y = 300 #The y coordinate of a point on mohr circle\n", + "Radius = 500 #10-6 m/m - from mohr circle\n", + "e_1 = Radius +centre #MPa The principle strain\n", + "e_2 = -Radius +centre #Mpa The principle strain\n", + "\n", + "stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) #Mpa the stress in this direction \n", + "stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) #Mpa the stress in this direction \n", + "print\"The principle stresses are \",round(stress_1,2),\"Mpa\",round(stress_2,2),\"MPa\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The principle stresses are 48.35 Mpa -105.49 MPa\n" + ] + } + ], + "prompt_number": 91 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter9.ipynb b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter9.ipynb new file mode 100644 index 00000000..64ddecc8 --- /dev/null +++ b/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter9.ipynb @@ -0,0 +1,246 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:cfde82eb2eac726301e92e1b27c27d3628db6f9b0e8b5d7b0cd15017ca0006f7" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 9:Elastic stress analysis and design" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.4 pagenumber 465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "b = 40.0 #mm - The width of the beam crossection\n", + "h = 300.0 #mm - The length of the beam crossection \n", + "V = 40.0 #KN - The shear stress in teh crossection\n", + "M = 10.0 #KN-m - The bending moment on K----K crossection \n", + "c = h/2 #mm -The position at which maximum stress occurs on the crossection\n", + "I = b*(h**3)/12 #mmm4 - the moment of inertia \n", + "#Caliculations \n", + "\n", + "stress_max_1 = M*c*(10**6)/I #The maximum stress occurs at the end\n", + "stress_max_2 = -M*c*(10**6)/I #The maximum stress occurs at the end\n", + "y = 140 #mm The point of interest, the distance of element from com\n", + "n = y/(c) # The ratio of the distances from nuetral axis to the elements\n", + "stress_L_1 = n*stress_max_1 #The normal stress on elements L--L\n", + "stress_L_2 = -n*stress_max_1 #The normal stress on elements L--L\n", + "x = 10 #mm The length of the element\n", + "A = b*x #mm3 The area of the element \n", + "y_1 = y+x/2 # the com of element from com of whole system\n", + "stress_xy = V*A*y_1*(10**3)/(I*b) #Mpa - The shear stress on the element \n", + "#stresses acting in plane 30 degrees \n", + "o = 60 #degrees - the plane angle\n", + "stress_theta = stress_L_1/2 + stress_L_1*(math.cos(math.radians(o)))/2 - stress_xy*(math.sin(math.radians(o))) #Mpa by direct application of equations\n", + "stress_shear = -stress_L_1*(math.sin(math.radians(o)))/2 - stress_xy*(math.cos(math.radians(o))) #Mpa Shear stress\n", + " \n", + "print \"a)The principle stresses are \",round(stress_max_1,2),\"MPa,\",round(stress_max_2,2),\"Mpa\"\n", + "print \"b)The stresses on inclines plane \",round(stress_theta,2),\"Mpa noraml, \",round(stress_shear,2),\"Mpa shear \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a)The principle stresses are 16.67 MPa, -16.67 Mpa\n", + "b)The stresses on inclines plane 11.11 Mpa noraml, -7.06 Mpa shear \n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.5 page number 476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "M = 10 #KN-m moment\n", + "v = 8.0 #KN - shear Stress \n", + "stress_allow = 8 #MPa - The maximum allowable stress\n", + "shear_allow_per = 1.4 #Mpa - The allowable stress perpendicular to grain\n", + "stress_allow_shear = 0.7 #MPa - The maximum allowable shear stress\n", + "#Caliculations \n", + "\n", + "S = M*(10**6)/stress_allow #mm3 \n", + "#lets arbitarly assume h = 2b\n", + "#S = b*(h**2)/6\n", + "h = pow(12*S,0.333) #The depth of the beam\n", + "b = h/2 #mm The width of the beam\n", + "A = h*b #mm2 The area of the crossection , assumption\n", + "stress_shear = 3*v*(10**3)/(2*A) #Mpa The strear stress \n", + "if stress_shear1\n", + "ci=(120*pi)/(sqrt(dc)*((w/h)+1.393+0.667*log((w/h)+1.444))) \n", + "print 'Characterstic impedance: %0.3f'%ci, 'ohm'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Dielectric constant: 3.805\n", + "Characterstic impedance: 54.822 ohm\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Page Number: 556 Example 10.4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#Given,\n", + "\n", + "q=2.5 \n", + "dh=1.58 \n", + "er=9 \n", + "f=10 \n", + "c=3e8 \n", + "\n", + "erff=((er+1)/2)+(((er-1)/2)*((1+(12/q))**(-1/2))) \n", + "vp=(c/sqrt(erff))*erff \n", + "fe1=c/(sqrt(vp)*2*dh*q) \n", + "if f