summaryrefslogtreecommitdiff
path: root/sample_notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks')
-rw-r--r--sample_notebooks/PraveenKumar/chapter1.ipynb1600
-rw-r--r--sample_notebooks/PreetiRani/ch4.ipynb387
-rw-r--r--sample_notebooks/SPANDANAARROJU/Chapter5.ipynb480
-rw-r--r--sample_notebooks/SundeepKatta/Chapter7.ipynb489
4 files changed, 2956 insertions, 0 deletions
diff --git a/sample_notebooks/PraveenKumar/chapter1.ipynb b/sample_notebooks/PraveenKumar/chapter1.ipynb
new file mode 100644
index 00000000..0d151d06
--- /dev/null
+++ b/sample_notebooks/PraveenKumar/chapter1.ipynb
@@ -0,0 +1,1600 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1 - Semiconductor Material & Junction Diode"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.1 Page No 51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electron drift velocity = 40.00 m/s\n",
+ "The time required for an electron to move across the thickness = 12.50 micro seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "miu = 0.2# m**2/V-s\n",
+ "V = 100# mV\n",
+ "V = V * 10**-3# V\n",
+ "d = 0.5# mm\n",
+ "d = d * 10**-3# m\n",
+ "# mobility, miu = Vd/E and\n",
+ "E = V/d\n",
+ "# Drift velocity,\n",
+ "Vd = miu*E# m/s\n",
+ "print \"The electron drift velocity = %.2f m/s\"%Vd\n",
+ "# Time required,\n",
+ "T = d/Vd# sec\n",
+ "T=T*10**6# µs\n",
+ "print \"The time required for an electron to move across the thickness = %.2f micro seconds\"%T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.2 Page No 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic conductivity = 2.24 (ohm-m)**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "q = 1.6*10**-19# C\n",
+ "n_i = 2.5*10**19# /m**3\n",
+ "miu_n = 0.38# m**2/V-s\n",
+ "miu_p = 0.18# m**2/V-s\n",
+ "# The intrinsic conductivity for germanium,\n",
+ "sigma_i = q*n_i*(miu_n+miu_p)# (ohm-m)**-1\n",
+ "print \"The intrinsic conductivity = %.2f (ohm-m)**-1\"%sigma_i"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.3 Page No 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic carrier concentration = 2.16e+19 per m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "rho = 0.50# ohm-m\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 0.39# m**2/V-s\n",
+ "miu_p = 0.19# m**2/V-s\n",
+ "sigma = 1/rho# (ohm-m)**-1\n",
+ "#conductivity of a semiconductor, sigma = q*n_i*(miu_p+miu_n) or\n",
+ "n_i = sigma/(q*(miu_n+miu_p))# /m**3\n",
+ "print \"The intrinsic carrier concentration = %.2e per m**3\"%n_i"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.4 Page No 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity of Si sample = 14.40 (ohm-m)**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "N_D = 10**21# /m**3\n",
+ "N_A = 5*10**20# /m**3\n",
+ "NdasD = N_D-N_A# /m**3\n",
+ "n = NdasD# /m**3\n",
+ "miu_n = 0.18# m**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "# The conductivity of silicon,\n",
+ "sigma = q*n*miu_n# (ohm-m)**-1\n",
+ "print \"The conductivity of Si sample = %.2f (ohm-m)**-1\"%sigma"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.5 Page No 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity of copper = 4.79e+05 mho/cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "At = 63.54## atomic weight of copper\n",
+ "d = 8.9## density = %.2f gm/cm**3\n",
+ "n = 6.023*10**23/At*d# electron/cm**3\n",
+ "q = 1.63*10**-19# C\n",
+ "miu = 34.8# m**2/V-s\n",
+ "# The conductivity of copper,\n",
+ "sigma = n*q*miu# mho/cm\n",
+ "print \"The conductivity of copper = %.2e mho/cm\"%sigma"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.6 Page No 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Concentration of holes in a p-type Ge = 3.47e+17 /cm**3\n",
+ "The concentration of electrons in a p-type Ge = 1.80e+09 /cm**3\n",
+ "The concentration of electrons in n-type Si = 4.81e+14 /cm**3\n",
+ "The concentration of holes in n-type Si = 4.68e+05 /cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "sigma = 100# (ohm-m)**-1\n",
+ "n_i = 2.5*10**13# /cm**3\n",
+ "miu_n = 3800# cm**2/V-s\n",
+ "miu_p = 1800# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "# Conductivity of a p-type germanium, sigma = q*p*miu_p or\n",
+ "p = sigma/(q*miu_p)# /cm**3\n",
+ "print \"Concentration of holes in a p-type Ge = %.2e /cm**3\"%p\n",
+ "# The concentration of electrons = %.2f a p-type Ge\n",
+ "n = (n_i**2)/p# /cm**3\n",
+ "print \"The concentration of electrons in a p-type Ge = %.2e /cm**3\"%n\n",
+ "#Given for Si\n",
+ "sigma= 0.1# (ohm m)**-1\n",
+ "miu_n= 1300# cm**2/V-sec\n",
+ "n_i= 1.5*10**10# /cm**3\n",
+ "#sigma = q*n*miu_n\n",
+ "n = sigma/(q*miu_n)# /cm**3\n",
+ "print \"The concentration of electrons in n-type Si = %.2e /cm**3\"%n\n",
+ "# The concentration of holes = %.2f n-type Si\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "print \"The concentration of holes in n-type Si = %.2e /cm**3\"%p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.7 Page No 54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity of a dopped Ge = 3.72 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "miu_n = 3800## cm**2/V-s\n",
+ "miu_p = 1800## cm**2/V-s\n",
+ "n_i = 2.5*10**13# /cm**3\n",
+ "Nge = 4.41*10**22# /cm**3\n",
+ "q = 1.602*10**-19# C\n",
+ "impurity = 10**8\n",
+ "# The number of donor atoms,\n",
+ "N_D = Nge/impurity##in /cm**3\n",
+ "# The number of holes\n",
+ "p = (n_i**2)/N_D# /cm**3\n",
+ "# Conductivity of an N-type Ge,\n",
+ "sigma = q*N_D*miu_n# (ohm-cm)**-1\n",
+ "# The resistivity of the Ge\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity of a dopped Ge = %.2f ohm-cm\"% rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.8 Page No 54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity of intrinsic silicon = 2.25e+05 ohm-cm\n",
+ "The resistivity of doped silicon = 4.67 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Nsi = 4.96*10**22# /cm**3\n",
+ "n_i = 1.52*10**10# /cm**2\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 0.135# m**2/V-s\n",
+ "miu_n = miu_n * 10**4# cm**2/V-s\n",
+ "miu_p = 0.048# m**2/V-s\n",
+ "miu_p = miu_p * 10**4# cm**2/V-s\n",
+ "# The conductivity of an intrinsic silicon,\n",
+ "sigma = q*n_i*(miu_n+miu_p)# (ohm-cm)**-1\n",
+ "# The resistivity of intrinsic silicon \n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity of intrinsic silicon = %.2e ohm-cm\"%rho\n",
+ "\n",
+ "impurity = 50*10**6\n",
+ "# The number of donor atoms,\n",
+ "N_D = Nsi/impurity# /cm**3\n",
+ "# Total free electrons,\n",
+ "n = N_D# /cm**3\n",
+ "# Total holes = %.2f a doped Si,\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "# Conductivity of a doped Si,\n",
+ "sigma = q*n*miu_n# (ohm-m)**-1\n",
+ "# The resistivity of doped silicon\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity of doped silicon = %.2f ohm-cm\"%rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.9 Page No 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of temperature = 0.14 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "N_D= 5.0*10**28/(2.0*10**8)\n",
+ "# The Fermi level, E_F= E_C if,\n",
+ "N_C= N_D\n",
+ "# Formula N_C= 4.82*10**21*T**(3/2)\n",
+ "T= (N_C/(4.82*10**21.0))**(2.0/3)# K\n",
+ "print \"The value of temperature = %.2f K\"%T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.10 Page No 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The miniority carrier concentration = 0.10 m**2/V-s\n",
+ "The resistivity = 0.60 ohm-m\n",
+ "The position of Fermi level = 0.23 eV\n",
+ "Minority carrier concentration = 9.00e+12 atoms/cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "n_i = 1.5*10**16##m**3\n",
+ "impurity = 10**20\n",
+ "minority = (n_i**2)/impurity# atoms/m**3\n",
+ "q = 1.6*10**-19# C\n",
+ "rho = 2*10**3# ohm-m\n",
+ "# The miniority carrier concentration \n",
+ "miu_n = 1/(q*rho*n_i*2)##in m**2/V-s\n",
+ "print \"The miniority carrier concentration = %.2f m**2/V-s\"%miu_n\n",
+ "n = impurity\n",
+ "# The conductivity,\n",
+ "sigma = q*impurity*miu_n# (ohm-m)**-1\n",
+ "# The resistivity \n",
+ "rho = 1/sigma# ohm-m\n",
+ "print \"The resistivity = %.2f ohm-m\"%rho\n",
+ "kT = 0.026# eV\n",
+ "n_o = n\n",
+ "# The position of Fermi level \n",
+ "E_FdividedEi = kT*math.log(n_o/n_i)# eV\n",
+ "print \"The position of Fermi level = %.2f eV\"%E_FdividedEi\n",
+ "# Minority carrier concentration \n",
+ "M = ((n_i*2)**2)/n_o# atoms/cm**3\n",
+ "print \"Minority carrier concentration = %.2e atoms/cm**3\"%M"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.11 Page No 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity = 9.62 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "d = 5.0*10**22# atoms/cm**3\n",
+ "impurity = 10**8# atoms\n",
+ "N_D = d/impurity\n",
+ "n_i = 1.45*10**10\n",
+ "n = N_D\n",
+ "#Low of mass action, n*p = (n_i**2)\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 1300# cm/V-s\n",
+ "n_i = n\n",
+ "#The Conductivity\n",
+ "sigma = q*miu_n*n_i# (ohm-cm)**-1\n",
+ "# The resistivity\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity = %.2f ohm-cm\"%rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.12 Page No 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity = 9.62 ohm-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "d = 5.0*10**22# atoms/cm**3\n",
+ "impurity = 10**8# atoms\n",
+ "N_D = d/impurity\n",
+ "n_i = 1.45*10**10\n",
+ "n = N_D\n",
+ "#Low of mass action, n*p = (n_i**2)\n",
+ "p = (n_i**2)/n# /cm**3\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_n = 1300# cm/V-s\n",
+ "n_i = n\n",
+ "#The Conductivity\n",
+ "sigma = q*miu_n*n_i# (ohm-cm)**-1\n",
+ "# The resistivity\n",
+ "rho = 1/sigma# ohm-cm\n",
+ "print \"The resistivity = %.2f ohm-cm\"%rho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.14 Page No 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The minority carrier concentration = 2.25e+03 holes/cm**3\n",
+ "The location of Fermi level = 0.409 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "n_i = 1.5*10**10# electrons/cm**3\n",
+ "N_D = 10**17# electrons/cm**3\n",
+ "n = N_D# electrons/cm**3\n",
+ "# The minority carrier concentration\n",
+ "p = (n_i**2)/n# holes/cm**3\n",
+ "print \"The minority carrier concentration = %.2e holes/cm**3\"%p\n",
+ "kT = 0.026\n",
+ "# The location of Fermi level \n",
+ "E_FminusEi = kT*math.log(N_D/n_i)# eV\n",
+ "print \"The location of Fermi level = %.3f eV\"%E_FminusEi"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.15 Page No 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The doping level = 1.92e+15 /cm**3\n",
+ "The drift velocity = 650.00 cm/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V = 1# V\n",
+ "I = 8# mA\n",
+ "I = I * 10**-3# A\n",
+ "R = V/I# ohm\n",
+ "l = 2# mm\n",
+ "l = l * 10**-1# cm\n",
+ "b = 2# mm\n",
+ "b = b * 10**-1# cm\n",
+ "A = l*b# cm**2\n",
+ "L = 2# cm\n",
+ "# R = (rho*L)/A\n",
+ "sigma = L/(R*A)# (ohm-cm)**-1\n",
+ "# n = N_D\n",
+ "miu_n = 1300# cm**2/V-s\n",
+ "q = 1.6 * 10**-19# C\n",
+ "# sigma = n*q*miu_n\n",
+ "N_D = sigma/( miu_n*q )# /cm**3\n",
+ "print \"The doping level = %.2e /cm**3\"%N_D\n",
+ "d = 2.0\n",
+ "E = V/d\n",
+ "# The drift velocity \n",
+ "Vd = miu_n * E# cm/s\n",
+ "print \"The drift velocity = %.2f cm/sec\"%Vd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.17 Page No 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity = 4.68e+05 mho/m\n",
+ "The mobility = 3.48e-05 m**2/V-s\n",
+ "The drift velocity = 1.79e-04 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "l = 1000# ft\n",
+ "l = l * 12*2.54# cm\n",
+ "R = 6.51# ohm\n",
+ "rho = R/l# ohm/cm\n",
+ "# The conductivity \n",
+ "sigma = 1/rho# mho/cm\n",
+ "sigma = sigma * 10**2# mho/m\n",
+ "D= 1.03*10**-3# m\n",
+ "A= math.pi*D**2/4# m**2\n",
+ "print \"The conductivity = %.2e mho/m\"%sigma\n",
+ "q = 1.6*10**-19# C\n",
+ "n = 8.4*10**28# electrons/m**3\n",
+ "# sigma = n*q*miu\n",
+ "miu = sigma/(n*q)# m**2/V-s\n",
+ "print \"The mobility = %.2e m**2/V-s\"%miu\n",
+ "T = 2\n",
+ "# The drift velocity \n",
+ "V = T/(n*q*A)# m/s\n",
+ "print \"The drift velocity = %.2e m/s\"%V"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.18 Page No 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The concentration of holes = 1.50e+16 /cm**3\n",
+ "The concentartion of electrons = 6.67e+07 /cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "N_D = 2*10**16# /cm**3\n",
+ "N_A = 5*10**15# /cm**3\n",
+ "# The concentration of holes \n",
+ "Pp = N_D-N_A# /cm**3\n",
+ "print \"The concentration of holes = %.2e /cm**3\"%Pp\n",
+ "n_i = 10**12\n",
+ "# The concentartion of electrons \n",
+ "n_p = (n_i**2)/Pp# /cm**3\n",
+ "print \"The concentartion of electrons = %.2e /cm**3\"%n_p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.19 Page No 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The hall angle = 1.95 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "rho = 0.005# ohm-m\n",
+ "Bz = 0.48# Wb/m**2\n",
+ "R_H = 3.55*10**-4# m**3/C\n",
+ "ExByJx= rho\n",
+ "# R_H = Ey/(Bz*Jx)\n",
+ "EyByJx= R_H*Bz\n",
+ "# The hall angle \n",
+ "theta_H = math.degrees(math.atan(EyByJx/ExByJx))# °\n",
+ "print \"The hall angle = %.2f degree\"%theta_H"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.20 Page No 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage between contacts = 0.0026 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R_H = 3.55 * 10**-4# m**3/C\n",
+ "Ix = 15# mA\n",
+ "Ix = Ix * 10**-3# A\n",
+ "A = 15*1# mm\n",
+ "A = A * 10**-6# m**2\n",
+ "Bz = 0.48# Wb/m**2\n",
+ "Jx = Ix/A# A/m**2\n",
+ "# R_H = Ey/(Bz*Jx)\n",
+ "Ey = R_H*Bz*Jx# V/m\n",
+ "# voltage between contacts \n",
+ "Voltage = Ey*Ix# V\n",
+ "print \"The voltage between contacts = %.4f V\"%Voltage"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.21 Page No 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The concentration of donor atoms = 4.630e+13 cm**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "A = 0.001# cm**2\n",
+ "l = 20# µm\n",
+ "l = l * 10**-4# cm\n",
+ "V = 20# V\n",
+ "I = 100# mA\n",
+ "I = I * 10**-3# A\n",
+ "R = V/I# ohm\n",
+ "# R = l/(sigma*A)\n",
+ "sigma = l/(R*A)# (ohm-cm)**-1\n",
+ "miu_n = 1350# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "# sigma = n*q*miu_n or\n",
+ "# The concentration of donor atoms \n",
+ "n = sigma/(q*miu_n)# cm**-3\n",
+ "print \"The concentration of donor atoms = %.3e cm**-3\"%n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.22 Page No 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The doping needed = 8.681e+15 cm**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R = 2# k ohm\n",
+ "R = R * 10**3# ohm\n",
+ "L = 200# µm\n",
+ "L = L * 10**-4# cm\n",
+ "A = 10**-6# cm**2\n",
+ "miu_n = 8000# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "n = '0.9*N_D'\n",
+ "# R = (rho*l)/A= (1/(n*q*miu_n))*(l/A)\n",
+ "# rho = L/(R*q*miu_n*A)\n",
+ "n = L/(R*q*miu_n*A)# /cm**-3\n",
+ "# The doping needed \n",
+ "Nd= n/0.9\n",
+ "print \"The doping needed = %.3e cm**-3\"%Nd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.23 Page No 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of the Fermi level = 0.29 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "KT = 26*10**-3\n",
+ "Nd = 10**15\n",
+ "n_i = 1.5*10**10\n",
+ "# The position of the Fermi level \n",
+ "E_FminusE_Fi = KT*math.log(abs( Nd/n_i ))# eV\n",
+ "print \"The position of the Fermi level = %.2f eV\"%E_FminusE_Fi"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.24 Page No 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The concentration of donors atoms = 1.2176e+16 cm**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Na = 5 * 10**15# cm**-3\n",
+ "Nc = 2.8 * 10**19# cm**-3\n",
+ "E_CminusE_F = 0.215# eV\n",
+ "KT = 26* 10**-3# eV\n",
+ "# The concentration of donors atoms \n",
+ "Nd = Na + Nc * (math.exp( -E_CminusE_F/KT ))# cm**-3\n",
+ "print \"The concentration of donors atoms = %.4e cm**-3\"%Nd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.25 Page No 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The percentage doping efficiency = 78.12 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Nd = 10**18\n",
+ "R = 10# ohm\n",
+ "A =10**-6# cm**2\n",
+ "L = 10# mm\n",
+ "L = L * 10**-4# cm\n",
+ "miu_n = 800# cm**2/V-s\n",
+ "q = 1.6*10**-19# C\n",
+ "#Formula used, n = L/(q*miu_n*A*R)\n",
+ "n = L/(q*miu_n*A*R)# cm**-3\n",
+ "# The percentage doping efficiency \n",
+ "doping = (n/Nd)*100## % doping efficiency in %\n",
+ "print \"The percentage doping efficiency = %.2f %%\"%doping"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.26 Page No 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current through the diode under forward bias = 10.72 µA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Io = 2*10**-7# A\n",
+ "V = 0.1# V\n",
+ "# Current through the diode under forward bias,\n",
+ "I = Io*( (math.exp(40*V))-1 )# A\n",
+ "I = I * 10**6# µA\n",
+ "print \"The current through the diode under forward bias = %.2f µA\"%I\n",
+ "\n",
+ "# Note: Calculated value of I in the book is wrong."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.28 Page No 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The dynamic resistance in forward direction = 3.36 ohm\n",
+ "The dynamic resistance in reverse direction = 0.39 Mohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "T = 125.0# degree C\n",
+ "T = T + 273.0# K\n",
+ "V_T = T/11600.0\n",
+ "Io = 30# µA\n",
+ "Io = Io * 10**-6# A\n",
+ "V = 0.2# V\n",
+ "# The dynamic resistance = %.2f forward direction,\n",
+ "r_f = V_T/( Io * (math.exp(V/V_T)) )# ohm\n",
+ "print \"The dynamic resistance in forward direction = %.2f ohm\"%r_f\n",
+ "r_f = V_T/( Io * (math.exp(-V/V_T)) )# ohm\n",
+ "# The dynamic resistance = %.2f reverse direction \n",
+ "r_f = r_f * 10**-6# Mohm\n",
+ "print \"The dynamic resistance in reverse direction = %.2f Mohm\"%r_f"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.29 Page No 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage = -59.87 mV\n",
+ "The ratio of diode current with a forward bias to current with a reverse bias = -6.842\n",
+ "The value of I1 = 458.13 µA\n",
+ "The value of I2 = 21.90 mA\n",
+ "The value of I3 = 1.03 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Eta = 1\n",
+ "V_T = 0.026\n",
+ "# I = Io*( (exp(V/(Eta*V_T))) - 1 ) and I = -Io\n",
+ "# I = -0.9*Io\n",
+ "# -0.9*Io = Io*( (exp(V/(Eta*V_T))) - 1 )\n",
+ "V = Eta*V_T*math.log(0.1)# V\n",
+ "V = V * 10**3# mV\n",
+ "print \"The voltage = %.2f mV\"%V\n",
+ "V = 0.05# V\n",
+ "# The ratio of diode current with a forward bias to current with a reverse bias \n",
+ "If_by_Ir= ( (math.exp(V/V_T))-1 )/( (math.exp(-V/V_T))-1 )\n",
+ "print \"The ratio of diode current with a forward bias to current with a reverse bias = %.3f\"%If_by_Ir\n",
+ "Io = 10# µA\n",
+ "V = 0.1# V\n",
+ "# The value of I1 \n",
+ "I1 = Io*( (math.exp(V/V_T))-1 )# µA\n",
+ "print \"The value of I1 = %.2f µA\"%I1\n",
+ "V = 0.2# V\n",
+ "# The value of I2\n",
+ "I2 = Io*( (math.exp(V/V_T))-1 )# µA \n",
+ "I2 = I2 * 10**-3# mA\n",
+ "print \"The value of I2 = %.2f mA\"%I2\n",
+ "V = 0.3# V\n",
+ "# The value of I3\n",
+ "I3 = Io*( (math.exp(V/V_T))-1 )# µA\n",
+ "I3 = I3 * 10**-6# A\n",
+ "print \"The value of I3 = %.2f A\"%I3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.30 Page No 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which current will get multiplied = 638.025\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "# Io150 = Io25 * 2**((150-25)/10)\n",
+ "#Io150 = 5800*Io25\n",
+ "T = 150# degree C\n",
+ "T = T + 273# K\n",
+ "V_T = 8.62*10**-5 * T# V\n",
+ "V = 0.4# V\n",
+ "Eta = 2\n",
+ "Vt = 0.026# V \n",
+ "# The factor by which current will get multiplied \n",
+ "I150byI25= 5800*math.exp(V/(Eta*V_T))/math.exp(V/(Eta*Vt))\n",
+ "print \"The factor by which current will get multiplied = %.3f\"%I150byI25"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.31 Page No 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The operating point of the diode is : (0.50V,4.50mA)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R = 1# ohm\n",
+ "V = 5# V\n",
+ "V1 = 0.5# V\n",
+ "R1 = 1# k ohm\n",
+ "R1 = R1 * 10**3# ohm\n",
+ "# V-(I_D*R1)-(I_D*R) - V1 = 0\n",
+ "I_D = (V-V1)/(R1+R)# A\n",
+ "I_D = I_D * 10**3# mA\n",
+ "V_D = (I_D*10**-3*R) + V1# V\n",
+ "print \"The operating point of the diode is : (%.2fV,%.2fmA)\"%(V_D,I_D)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.32 Page No 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage drop across the forward biased diode, = 0.0180 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "Eta = 1\n",
+ "kT = 26# meV\n",
+ "# (%e**((e*V1)/kT)) = 2 or\n",
+ "#The voltage drop across the forward biased diode\n",
+ "V1 = math.log(2)*kT# mV\n",
+ "V1= V1*10**-3# V\n",
+ "print \"The voltage drop across the forward biased diode, = %.4f V\"%V1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.33 Page No 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The space charge capacitance = 70.74 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "epsilon_Ge = 16/(36*math.pi*10**11)# F/cm\n",
+ "d = 2*10**-4# cm\n",
+ "A = 1# mm**2\n",
+ "A = A * 10**-2# cm**2\n",
+ "epsilon_o = epsilon_Ge# F/cm\n",
+ "# The space charge capacitance \n",
+ "C_T = (epsilon_o*A)/d# F\n",
+ "C_T = C_T * 10**12# pF\n",
+ "print \"The space charge capacitance = %.2f pF\"%C_T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.34 Page No 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of C_T = 61.68 pf/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "# Given data\n",
+ "D = 0.102# cm \n",
+ "A = (math.pi*(D**2))/4# cm**2\n",
+ "sigma_p = 0.286# (ohm-cm)**-1\n",
+ "q = 1.6*10**-19# C\n",
+ "miu_p = 500\n",
+ "# Formula used, sigma_p = q*miu_p*N_A\n",
+ "N_A = sigma_p/(q*miu_p)# atoms/cm**3\n",
+ "V1 = 5# V\n",
+ "V2 = 0.35# V\n",
+ "Vb = V1+V2# V\n",
+ "# The transition capacitance,\n",
+ "C_T = 2.92*10**-4*((N_A/Vb)**(1./2))*A# pF/cm**2\n",
+ "print \"The value of C_T = %.2f pf/cm**2\"%C_T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.35 Page No 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of C_T for reverse bias = 15.00 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "C_T1 = 15# pF\n",
+ "Vb1 = 8# V\n",
+ "Vb2 = 12# V\n",
+ "# C_T1/C_T2 = (Vb2/Vb1)**(1/2)\n",
+ "C_T2 = C_T1 * ((Vb1/Vb2)**(1/2))# pF\n",
+ "print \"The value of C_T for reverse bias = %.2f pF\"%C_T2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.36 Page No 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage = -59.87 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given data\n",
+ "V_T = 0.026# V\n",
+ "Eta = 1\n",
+ "I = '-0.9*Io'\n",
+ "# T = Io*((%e**(V/(Eta*V_T)))-1 )\n",
+ "# I = Io*((%e**(V/(Eta*V_T)))-1 )\n",
+ "V = math.log(0.1)*V_T# V \n",
+ "V = V * 10**3# mV\n",
+ "print \"The voltage = %.2f mV\"%V"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.37 Page No 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Part (a) : The value of I_D for first circuit = 0.97 mA\n",
+ "Part (b) : The value of I_D for second circuit = 0.10 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Vin = 20# V\n",
+ "Vgamma = 0.7# V\n",
+ "R = 20# k ohm\n",
+ "R = R * 10**3# ohm\n",
+ "# Vin-(I_D*Vin) - Vgamma = 0 or\n",
+ "# The value of I_D,\n",
+ "I_D = (Vin-Vgamma)/R# A\n",
+ "I_D = I_D * 10**3# mA\n",
+ "print \"Part (a) : The value of I_D for first circuit = %.2f mA\"%I_D\n",
+ "\n",
+ "# Part (b)\n",
+ "Vin= 10.# V\n",
+ "Vgamma = 0.7# V\n",
+ "R = 100# k ohm\n",
+ "# Drain current,\n",
+ "I_D= Vin/R# mV\n",
+ "print \"Part (b) : The value of I_D for second circuit = %.2f mA\"%I_D"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.38 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of I_D = 3.10 mA\n",
+ "The value of Vo = 6.90 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "R1 = 1# k ohm\n",
+ "R1 = R1 * 10**3# ohm\n",
+ "R2 = 2# k ohm\n",
+ "R2 = R2 * 10**3# ohm\n",
+ "V = 10# V\n",
+ "V1 = 0.7# V \n",
+ "# V * (I_D*R1) - (R2*I_D) - V1 = 0\n",
+ "I_D = (V-V1)/(R1+R2)# A\n",
+ "I_D = I_D * 10**3# mA\n",
+ "print \"The value of I_D = %.2f mA\"%I_D\n",
+ "# The output voltage,\n",
+ "Vo = (I_D*10**-3 * R2) +V1# V\n",
+ "print \"The value of Vo = %.2f V\"%Vo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.39 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Part (a): The current through resistance = 1.00 A\n",
+ "Part (b) : Current through 10 ohm resistance will be Zero\n",
+ "Part (c): Current will be zero\n",
+ "Part (d): The diode will be ON and current = 1.00 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V = 10.# V\n",
+ "R = 10# ohm\n",
+ "# Current through resistance,\n",
+ "I = V/R# A\n",
+ "print \"Part (a): The current through resistance = %.2f A\"%I\n",
+ "print \"Part (b) : Current through 10 ohm resistance will be Zero\"\n",
+ "print \"Part (c): Current will be zero\"\n",
+ "print \"Part (d): The diode will be ON and current = %.2f A\"%I"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.40 Page No 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The operating point is : (0.50V,4.50mA)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Vth= 0.5# V\n",
+ "R_F= 1*10**3# ohm\n",
+ "V= 5# V\n",
+ "# Applying KVL for loop, V-Vd-R_F*Ii= 0 (i)\n",
+ "# When Ii=0\n",
+ "Vd= V# V\n",
+ "# When Vd= 0\n",
+ "Ii= V/R_F# A\n",
+ "# From eq(i)\n",
+ "Ii= (V-Vth)/R_F# A\n",
+ "Vd= V-R_F*Ii# V\n",
+ "print \"The operating point is : (%.2fV,%.2fmA)\"%(Vd,Ii*1000)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.43 Page No 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage at V1 = 6.00 volts\n",
+ "The voltage at V2 = 5.40 volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V_CC = 6# V\n",
+ "Vr = 0.6# V\n",
+ "V1= V_CC##in V\n",
+ "V2 = V1-Vr# V\n",
+ "print \"The voltage at V1 = %.2f volts\"%V1\n",
+ "print \"The voltage at V2 = %.2f volts\"%V2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.44 Page No 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of I1 = 1.80 mA\n",
+ "The value of I2 = 1.80 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "V_T = 0.7# V\n",
+ "V = 5# V\n",
+ "R = 2# k ohm\n",
+ "R = R * 10**3# ohm\n",
+ "Vs = 0.7\n",
+ "Vx = Vs+V_T# V\n",
+ "# The value of I1 \n",
+ "I1 = (V-Vx)/R# A\n",
+ "I1 = I1 * 10**3# mA\n",
+ "print \"The value of I1 = %.2f mA\"%I1\n",
+ "# The value of I2 \n",
+ "I2 = I1# mA\n",
+ "print \"The value of I2 = %.2f mA\"%I2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 1.45 Page No 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of Vo = 1.00 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Given data\n",
+ "Rf = 300.# ohm\n",
+ "V = 0.5# V\n",
+ "R = 600.# ohm\n",
+ "Vi = 2.# V\n",
+ "# The output voltage \n",
+ "Vo = (Vi-V)*( R/(R+Rf) )# V\n",
+ "print \"The value of Vo = %.2f V\"%Vo"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/PreetiRani/ch4.ipynb b/sample_notebooks/PreetiRani/ch4.ipynb
new file mode 100644
index 00000000..75f81a8f
--- /dev/null
+++ b/sample_notebooks/PreetiRani/ch4.ipynb
@@ -0,0 +1,387 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter4 - Three phase transformers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.1 Pg No: 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of line currents = 276.74 Amperes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Caption:Find the value of line current\n",
+ "\n",
+ "a=2200./200##transformation ratio\n",
+ "P=450*1000. # watts\n",
+ "pf=0.85\n",
+ "V_s=200. # volts\n",
+ "I_2=P/(pf*V_s) # amperes\n",
+ "I_1=1.15*I_2/a\n",
+ "print 'Value of line currents = %.2f Amperes'%I_1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.2 Pg No: 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of line current = 312.71 Amperes\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Find the value of line current\n",
+ "\n",
+ "a=2200./200##transformation ratio\n",
+ "P_1=400.*1000 # watts\n",
+ "P_2=500.*1000 # watts\n",
+ "pf=0.8\n",
+ "V_s=200. # volts\n",
+ "I_2=P_1/(pf*V_s) # amperes\n",
+ "I_1=1.15*I_2/a\n",
+ "I_1T=I_1/2\n",
+ "I_2M=P_2/(pf*V_s*a)\n",
+ "I_p=np.sqrt((I_1T**2)+(I_2M**2))\n",
+ "print 'Value of line current = %.2f Amperes'%I_p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.3 Pg No: 330"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Efficiency at full load and 0.85pf = 95.67 %\n",
+ "(b)Efficiency at 75 percent of full load and unity pf = 95.84 %\n",
+ "(c)max efficieny at unity pf = 97.09 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Caption:Determine the efficiency of transformer at (a)full load and 0.85pf (b)75 percent of full load and unity pf (c)max efficieny at unity pf\n",
+ "\n",
+ "P=100*1000 # watts\n",
+ "P_iron=1500 # watts\n",
+ "x=0.8\n",
+ "P_cu=1500/x**2 # watts\n",
+ "pf=0.8\n",
+ "a=5000/400##transformation ratio\n",
+ "P_t=P_iron+P_cu\n",
+ "P_o=0.85*P # watts\n",
+ "Eff=P_o/(P_o+P_t)\n",
+ "print '(a)Efficiency at full load and 0.85pf = %.2f %%'%(Eff*100)\n",
+ "P_cu_1=0.75*P_cu # watts\n",
+ "P_t_1=P_cu_1+P_iron # watts\n",
+ "P_o_1=0.75*P\n",
+ "Eff_1=P_o_1/(P_o_1+P_t_1)\n",
+ "print '(b)Efficiency at 75 percent of full load and unity pf = %.2f %%'%(Eff_1*100)\n",
+ "P_t_2=2.*P_iron\n",
+ "P_o_2=P\n",
+ "Eff_2=P_o_2/(P_o_2+P_t_2)\n",
+ "print '(c)max efficieny at unity pf = %.2f %%'%(Eff_2*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.4 Pg No: 331"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For Star-Delta Configruation\n",
+ "Line voltage = 190.53 volts\n",
+ "Line current = 173.21 amperes\n",
+ "Output = 57157.68 watts\n",
+ "For Delta-Star Configruation\n",
+ "Line voltage = 571.58 volts\n",
+ "Line current = 57.74 amperes\n",
+ "Output = 57157.68 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Find the value of line voltage,line current,and output when the transformer winding is connected as (a) Star-delta (b)delta-star\n",
+ "\n",
+ "a=10. ##transformation ratio\n",
+ "V_s=3300. # volts\n",
+ "I_1=10. # amperes\n",
+ "V_1=V_s/np.sqrt(3)\n",
+ "V_2=V_1/a\n",
+ "I_2=np.sqrt(3)*a*I_1\n",
+ "P_o=np.sqrt(3)*V_2*I_2\n",
+ "print \"For Star-Delta Configruation\"\n",
+ "print 'Line voltage = %.2f volts'%V_2\n",
+ "print 'Line current = %.2f amperes'%I_2\n",
+ "print 'Output = %.2f watts'%P_o\n",
+ "V_2p=V_s/a\n",
+ "V_2L=np.sqrt(3)*V_2p\n",
+ "I_2L=I_1*a/np.sqrt(3)\n",
+ "P_o2=np.sqrt(3)*V_2*I_2\n",
+ "print \"For Delta-Star Configruation\"\n",
+ "print 'Line voltage = %.2f volts'%V_2L\n",
+ "print 'Line current = %.2f amperes'%I_2L\n",
+ "print 'Output = %.2f watts'%P_o2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.5 Pg No: 332"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency = 93.29 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Find the Efficiency\n",
+ "\n",
+ "P=1200.*1000 # watts\n",
+ "R_1=2.# ohms\n",
+ "R_2=0.03 # ohms\n",
+ "P_iron=20000. # watts\n",
+ "V_1p=6600. # volts\n",
+ "V_2p=1100./np.sqrt(3) # volts\n",
+ "a=V_1p/V_2p\n",
+ "R_o2=R_2+(R_1/a**2) # ohms\n",
+ "I_2p=P/(np.sqrt(3)*1100) # amperes\n",
+ "P_cu=3*R_o2*I_2p**2\n",
+ "P_t=P_iron+P_cu\n",
+ "P_o=0.9*P # watts\n",
+ "Eff=P_o/(P_o+P_t)\n",
+ "print 'Efficiency = %.2f %%'%(Eff*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.6 Pg No: 332"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "% Resistance drop = 2.00 %\n",
+ "% Reactance drop = 4.08 %\n",
+ "Voltage regulation = 4.43 %\n",
+ "Efficiency = 95.62 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math as mt\n",
+ "#Caption:Find the percentage resistance,reactance drop,efficiency and voltage regulation\n",
+ "\n",
+ "P=1500.*1000 # watts\n",
+ "phy=mt.acos(0.8)*180/mt.pi\n",
+ "V_1P=300 # volts\n",
+ "V_1L=6600 # volts\n",
+ "I_1P=131.21/mt.sqrt(3)\n",
+ "Z_1=V_1P/I_1P # ohms\n",
+ "R_1=30*1000/(3*I_1P**2)\n",
+ "X_1=mt.sqrt((Z_1**2)-(R_1**2))\n",
+ "R=I_1P*R_1*100/V_1L\n",
+ "X=I_1P*X_1*100/V_1L\n",
+ "print '%% Resistance drop = %.2f %%'%R\n",
+ "print '%% Reactance drop = %.2f %%'%X\n",
+ "VR=(R*mt.cos(phy*180/mt.pi))+(X*mt.sin(phy*180/mt.pi))\n",
+ "print 'Voltage regulation = %.2f %%'%VR\n",
+ "I_1_FL=P/(mt.sqrt(3)*V_1L)\n",
+ "P_t=(30+25)*1000 # watts\n",
+ "P_o=P*0.8 # watts\n",
+ "Eff=P_o/(P_o+P_t)\n",
+ "print 'Efficiency = %.2f %%'%(Eff*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.7 Pg No: 334"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)KVA Load supplied by each transformer = 28.87 KVA\n",
+ "(b)Percent of rated load = 1.15 %\n",
+ "(c)Total KVA rating = 43.30 KVA\n",
+ "(d)Ratio=0.577\n",
+ "(e)Increase in load = 173.21 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Determine the (a)KVA Load (b)Percentage rated load (c)Total KVA Rating (d)Ratio of star-star bank to delta-delta bank transformer rating (e)% increase in load\n",
+ "\n",
+ "KVA=25.\n",
+ "KVA_s=50./np.sqrt(3)\n",
+ "print '(a)KVA Load supplied by each transformer = %.2f KVA'%KVA_s\n",
+ "r=KVA_s/KVA\n",
+ "print '(b)Percent of rated load = %.2f %%'%r\n",
+ "KVA_t=2*25*0.866\n",
+ "print '(c)Total KVA rating = %.2f KVA'%KVA_t\n",
+ "ratio=KVA_t/75\n",
+ "print '(d)Ratio=%.3f'%ratio\n",
+ "KVA_s2=50./3\n",
+ "Inc=KVA_s/KVA_s2\n",
+ "print '(e)Increase in load = %.2f %%'%(Inc*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa:4.8 Pg No: 335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Currents in sections Oa,Ob and Oc = 131.22 amperes\n",
+ " Currents in sections Aa,Bb and Cc = 524.86 amperes\n",
+ "(b)Power transformed by transformer action = 80.00 Kw\n",
+ "(c)Power Conducted directly = 320.00 Kw\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "#Caption:Determine the (a)Current flowing in various sections (b)Power transformed (c)Power conducted directly\n",
+ "\n",
+ "P=400.*1000 # watts\n",
+ "pf=0.8\n",
+ "V_1=550. # volts\n",
+ "V_2=440. # volts\n",
+ "I_2=P/(np.sqrt(3)*V_2*pf)## in amperes\n",
+ "I_1=I_2*V_2/V_1 # amperes\n",
+ "I=I_2-I_1\n",
+ "print '(a)Currents in sections Oa,Ob and Oc = %.2f amperes'%I\n",
+ "print ' Currents in sections Aa,Bb and Cc = %.2f amperes'%I_1\n",
+ "P_trans=P*(1-(V_2/V_1))\n",
+ "print '(b)Power transformed by transformer action = %.2f Kw'%(P_trans/1000)\n",
+ "P_cond=P-P_trans\n",
+ "print '(c)Power Conducted directly = %.2f Kw'%(P_cond/1000)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb b/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb
new file mode 100644
index 00000000..67fc73ce
--- /dev/null
+++ b/sample_notebooks/SPANDANAARROJU/Chapter5.ipynb
@@ -0,0 +1,480 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 5: Uncertainity Principle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 1.65e-24 kg m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "deltax=4*10**-10; #uncertainity(m)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_px=h/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",delta_px,\"kg m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 0.02418 m\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "v=600; #speed(m/s)\n",
+ "deltapx=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/deltapx; #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax,5),\"m\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 6.63e-23 kg m/sec\n",
+ "uncertainity in velocity is 7.286 *10**7 m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #plancks constant(J s)\n",
+ "deltax=0.1*10**-10; #uncertainity(m)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "deltav=deltap/m0; #uncertainity in velocity(m/sec) \n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",deltap,\"kg m/sec\"\n",
+ "print \"uncertainity in velocity is\",round(deltav/10**7,3),\"*10**7 m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in velocity is 1835\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltavebydeltavp=mp/me; #uncertainity in velocity\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in velocity is\",int(deltavebydeltavp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "smallest possible uncertainity in position is 0.0388 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #plancks constant(J s)\n",
+ "v=3*10**7; #velocity(m/sec)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m0=9*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltaxmin=h*math.sqrt(1-(v**2/c**2))/(2*math.pi*m0*v); #smallest possible uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"smallest possible uncertainity in position is\",round(deltaxmin*10**10,4),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in velocity is 7.3 *10**5 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #plancks constant(J s)\n",
+ "deltapmax=10**-9; #uncertainity in momentum(kg m/sec)\n",
+ "m=9*10**-31; #mass(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "deltapmin=h/deltapmax; #smallest possible uncertainity in momentum(kg m/sec)\n",
+ "deltavxmin=deltapmin/m; #minimum uncertainity in velocity(m/s) \n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in velocity is\",round(deltavxmin/10**5,1),\"*10**5 m/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time required is 1.9 *10**-8 second\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=6000*10**-10; #wavelength(m)\n",
+ "dlamda=10**-4*10**-10; #width(m)\n",
+ "\n",
+ "#Calculations\n",
+ "deltat=lamda**2/(2*math.pi*c*dlamda); #time required(second)\n",
+ "\n",
+ "#Result\n",
+ "print \"time required is\",round(deltat*10**8,1),\"*10**-8 second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position is 3.381 *10**-6 m\n",
+ "answer given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #plancks constant(J s)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "v=3.5*10**5; #speed(m/s)\n",
+ "deltap=(0.0098/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position is\",round(deltax*10**6,3),\"*10**-6 m\"\n",
+ "print \"answer given in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 5.276 *10**-20 kg m/sec\n",
+ "kinetic energy of electron is 9559.1 MeV\n",
+ "answer for kinetic energy given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #plancks constant(J s)\n",
+ "m0=9.1*10**-31; #mass(kg)\n",
+ "deltax=2*10**-15; #uncertainity in position(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
+ "K=deltap**2/(2*m0*e); #kinetic energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",round(deltap*10**20,3),\"*10**-20 kg m/sec\"\n",
+ "print \"kinetic energy of electron is\",round(K/10**6,1),\"MeV\"\n",
+ "print \"answer for kinetic energy given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in momentum is 1.05e-20 kg m/sec\n",
+ "minimum kinetic energy is 2.06 *10**5 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "chi=1.05*10**-34; #plancks constant(J s)\n",
+ "deltaxmax=2*5*10**-15; #uncertainity in momentum(kg m/sec)\n",
+ "m=1.67*10**-27; #mass(kg)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltapmin=chi/deltaxmax; #minimum uncertainity in momentum(kg m/sec)\n",
+ "Emin=deltapmin**2/(2*m*e); #minimum kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in momentum is\",deltapmin,\"kg m/sec\"\n",
+ "print \"minimum kinetic energy is\",round(Emin/10**5,2),\"*10**5 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angular orbital position is 10 radian\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=5/100; #error\n",
+ "h=1; #assume\n",
+ "\n",
+ "#Calculations\n",
+ "deltaJ=e*2*h; #uncertainity in angular momentum\n",
+ "delta_theta=h/deltaJ; #angular orbital position(radian)\n",
+ "\n",
+ "#Result\n",
+ "print \"angular orbital position is\",int(delta_theta),\"radian\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/SundeepKatta/Chapter7.ipynb b/sample_notebooks/SundeepKatta/Chapter7.ipynb
new file mode 100644
index 00000000..fad1281c
--- /dev/null
+++ b/sample_notebooks/SundeepKatta/Chapter7.ipynb
@@ -0,0 +1,489 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 7: Nuclear Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total mass is 11.7167 *10**-27 kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.6725*10**-27; #mass of proton(kg)\n",
+ "mn=1.6748*10**-27; #mass of neutron(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "m=(3*mp)+(4*mn); #total mass(kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"total mass is\",m*10**27,\"*10**-27 kg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons is 36 *10**23\n",
+ "number of protons is 36 *10**23\n",
+ "number of neutrons is 48 *10**23\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "N=6*10**23; #avagadro number\n",
+ "\n",
+ "#Calculations\n",
+ "e=6*N; #number of electrons\n",
+ "p=6*N; #number of protons\n",
+ "n=8*N; #number of neutrons\n",
+ "\n",
+ "#Result\n",
+ "print \"number of electrons is\",int(e/10**23),\"*10**23\"\n",
+ "print \"number of protons is\",int(p/10**23),\"*10**23\"\n",
+ "print \"number of neutrons is\",int(n/10**23),\"*10**23\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mass number of nucleus is 9\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r=2.71*10**-15; #radius(m)\n",
+ "r0=1.3*10**-15; \n",
+ "\n",
+ "#Calculations\n",
+ "A=(r/r0)**3; #mass number of nucleus\n",
+ "\n",
+ "#Result\n",
+ "print \"mass number of nucleus is\",int(A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of He is 2.2375 fermi\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r1=7.731; #radius(fermi)\n",
+ "A1=165; #mass number of Ho\n",
+ "A2=4; #mass number of He \n",
+ "\n",
+ "#Calculations\n",
+ "r2=r1*(A2/A1)**(1/3); #radius of He(fermi)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of He is\",round(r2,4),\"fermi\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of nucleus is 4.8 fermi\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r1=6; #radius(fermi)\n",
+ "A1=125; #mass number of nucleus\n",
+ "A2=64; #mass number of nucleus \n",
+ "\n",
+ "#Calculations\n",
+ "r2=r1*(A2/A1)**(1/3); #radius of nucleus(fermi)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of nucleus is\",r2,\"fermi\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of nuclear matter is 1.8 *10**17 kg/m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "A=1; #assume\n",
+ "r=1.3*A**(1/3)*10**-15; #radius(m) \n",
+ "amu=1.66*10**-27; #amu(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "V=4*math.pi*r**3/3; #volume(m**3)\n",
+ "M=A*amu;\n",
+ "rho=M/V; #density of nuclear matter(kg/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of nuclear matter is\",round(rho/10**17,1),\"*10**17 kg/m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrostatic potential energy is 3.91 *10**-11 eV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "A=235/2; #mass number\n",
+ "r=1.3*A**(1/3)*10**-15; #radius(m) \n",
+ "Z=46; #atomic number\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "epsilon0=8.65*10**-12; \n",
+ "\n",
+ "#Calculations\n",
+ "U=(Z*e)**2/(4*math.pi*epsilon0*2*r); #electrostatic potential energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"electrostatic potential energy is\",round(U*10**11,2),\"*10**-11 eV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy of alpha particle is 28.5229 MeV\n",
+ "binding energy per nucleon is 7.1307 MeV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.007277; #mass of proton(amu)\n",
+ "mhn=4.001265; #mass of helium nucleus(amu)\n",
+ "mn=1.008666; #mass of neutron(amu)\n",
+ "amu=931.4812; #amu(MeV)\n",
+ "\n",
+ "#Calculations\n",
+ "m=(2*mp)+(2*mn); #total initial mass(amu)\n",
+ "deltam=m-mhn; #mass defect(amu)\n",
+ "BEalpha=deltam*amu; #binding energy of alpha particle(MeV)\n",
+ "BEn=BEalpha/4; #binding energy per nucleon(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy of alpha particle is\",round(BEalpha,4),\"MeV\"\n",
+ "print \"binding energy per nucleon is\",round(BEn,4),\"MeV\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy released is 63.0 *10**10 J\n",
+ "electrical energy is 8.75 *10**3 kilowatt hour\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mh=1*10**-3; #mass of hydrogen(kg)\n",
+ "mhe=0.993*10**-3; #mass of helium(kg)\n",
+ "e=5/100; #efficiency\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "x=36*10**5; \n",
+ "\n",
+ "#Calculations\n",
+ "deltam=mh-mhe; #mass defect(kg)\n",
+ "E=deltam*c**2; #energy released(J)\n",
+ "EE=e*E/x; #electrical energy(kilowatt hour)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy released is\",E/10**10,\"*10**10 J\"\n",
+ "print \"electrical energy is\",round(EE/10**3,2),\"*10**3 kilowatt hour\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy released is 0.73 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.6725*10**-27; #mass of proton(kg)\n",
+ "me=9*10**-31; #mass of electron(kg)\n",
+ "mn=1.6747*10**-27; #mass of neutron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "deltam=mn-(mp+me); #mass defect(kg)\n",
+ "E=deltam*c**2/(e*10**6); #energy released(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy released is\",round(E,2),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "atomic mass is 34.96908 amu\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "mp=1.007825; #mass of proton(amu)\n",
+ "mn=1.008665; #mass of neutron(amu)\n",
+ "BE=298; #binding energy(MeV)\n",
+ "amu=931.5; #amu(MeV)\n",
+ "\n",
+ "#Calculations\n",
+ "m=(17*mp)+(18*mn); #total initial mass(amu)\n",
+ "deltam=BE/amu; #mass defect(amu)\n",
+ "Am=m-deltam; #atomic mass(amu)\n",
+ "\n",
+ "#Result\n",
+ "print \"atomic mass is\",round(Am,5),\"amu\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}