diff options
Diffstat (limited to 'sample_notebooks')
-rw-r--r-- | sample_notebooks/FameethaAlamBasha/Chapter7.ipynb | 74 | ||||
-rw-r--r-- | sample_notebooks/MohdAnwar/chapter1.ipynb | 443 |
2 files changed, 517 insertions, 0 deletions
diff --git a/sample_notebooks/FameethaAlamBasha/Chapter7.ipynb b/sample_notebooks/FameethaAlamBasha/Chapter7.ipynb new file mode 100644 index 00000000..2981e22a --- /dev/null +++ b/sample_notebooks/FameethaAlamBasha/Chapter7.ipynb @@ -0,0 +1,74 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Starting And Speed Control Of Induction Motor\n", + "\n", + "## Example 7.1, Page 7-6\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "\n", + "print 'starting current at rated voltage = Isc'\n", + "Isc=6 # Isc is 6 times its full load current(IF.L)\n", + "Sf=0.05 # full load slip=5%=5/100\n", + "print 'x = Tapping on autotransformer'\n", + "\n", + "#calculation\n", + "\n", + "#TF.L=Tst\n", + "#Tst/TF.L=x**2 * ([Isc/IF.L]**2) * Sf\n", + "#1=x**2[6/1]**2 * 0.05\n", + "#since TF.L=Tst, Tst/Tst=1\n", + "x=math.sqrt(((1.0/6.0)**2)*(1.0/0.05))\n", + "print 'x=',str (x)[:6]\n", + "print 'Thus',str(x*100)[:5],'% tapping is required'\n", + "#Thus 74.53% tapping is reqiured.\n", + "\n", + "#Now Ist(supply)=x * Ist(motor)\n", + "#Ist(supply)=x**2 * 6\n", + "Ist=(x**2) * 6 # supply starting current(IF.L)\n", + "Ist=round(Ist,2)\n", + "print 'Ist=',Ist,'IF.L'\n", + "\n", + "#result\n", + "\n", + "print 'Thus supply starting current is',Ist,'times the full load current'\n", + "#Thus Supply starting current is 3.33 times the full load current." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/MohdAnwar/chapter1.ipynb b/sample_notebooks/MohdAnwar/chapter1.ipynb new file mode 100644 index 00000000..d644b7e7 --- /dev/null +++ b/sample_notebooks/MohdAnwar/chapter1.ipynb @@ -0,0 +1,443 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 01 : Antenna Principles" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.1 : page 1.42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import pi\n", + "#given data :\n", + "E=4.0 #in V/m\n", + "Eta=120*pi #constant\n", + "#Formula : E/H=Eta\n", + "H=E/Eta #in A/m\n", + "print \"Strength of magnetic field in free space = %0.4f A/m \" %H" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Strength of magnetic field in free space = 0.0106 A/m \n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.2 : page 1.42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "H=5.2 #in mA/m\n", + "Eta=120*pi #constant\n", + "#Formula : E/H=Eta\n", + "E=H*10**-3*Eta #in V/m\n", + "print \"Strength of Electric field in free space =\",round(E),\"V/m\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Strength of Electric field in free space = 2.0 V/m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.3 : page 1.42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data :\n", + "I=20.0 #in A\n", + "Rr=100.0 #in Ohm\n", + "#Formula : Wr=I**2*R\n", + "Wr=I**2*Rr #in W\n", + "print \"Radiated power = %0.f kW \" %(Wr/1000) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radiated power = 40 kW \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.4 : page 1.42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "#given data :\n", + "W=625.0 #in KW\n", + "r=30.0 #in Km\n", + "Erms=sqrt(90*W*1000)/(r*1000) #in V/m\n", + "print \"Strength of Electric field at 30Km away = %0.f mV/m \" %(Erms*1000) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Strength of Electric field at 30Km away = 250 mV/m \n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.6 : page 1.43" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "le=50.0 #in m\n", + "f=100.0 #in MHz\n", + "lamda=300.0/(f) #in m\n", + "Rr=(160*(pi)**2)*(le/lamda)**2 #in Ohm\n", + "print \"Radiation Resistance = %0.2f Mohm \" %(Rr/10**6) \n", + "#Note : Answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radiation Resistance = 0.44 Mohm \n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.7 : page 1.44" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "l=30 #in m\n", + "Irms=20 #in A\n", + "f=1 #in MHz\n", + "r=10 #in Km\n", + "r=r*1000 #in m\n", + "le=2*l/pi #in m\n", + "lamda=300/(f) #in m\n", + "Erms=120*pi*le*Irms/(lamda*r) #in V/m\n", + "print \"Field strength at 10Km distance = %0.2e V/m \" %Erms \n", + "#Note : Answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Field strength at 10Km distance = 4.80e-02 V/m \n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.8 : page 1.44" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "Rl=1.0 #in ohm\n", + "#Formula : Rr=80*pi**2*(l/lamda)**2\n", + "#Given l=lamda/10\n", + "#l/lamda=1/10\n", + "Rr=80*pi**2*(1.0/10)**2 #in Ohm\n", + "print \"Radiation resistance = %0.2f Ohm \" %(Rr) \n", + "Eta=Rr/(Rr+Rl) #Unitless\n", + "print \"Antenna Efficiency = %0.2f %% \" %(Eta*100) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radiation resistance = 7.90 Ohm \n", + "Antenna Efficiency = 88.76 % \n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.9 : page 1.44" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "#given data :\n", + "r=100 #in Km\n", + "W=100 #in KW\n", + "Erms=sqrt(90*W*1000)/(r*1000) #in V/m\n", + "print \"Strength of Electric Field = %0.2f V/m \" %Erms " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Strength of Electric Field = 0.03 V/m \n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.10 : page 1.44" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "le=200.0 #in m\n", + "Irms=200 #in A\n", + "f=300 #in KHz\n", + "r=10 #in Km\n", + "c=3*10**8 #speed of light i m/s\n", + "lamda=c/(f*1000) #in m\n", + "Erms=120*pi*le*Irms/(lamda*r*10**3) #in V/m\n", + "print \"Field strength at 10Km distance = %0.4f V/m\" %(Erms) \n", + "Rr=(160*(pi)**2)*(le/lamda)**2 #in Ohm\n", + "W=Irms**2*Rr #in Watts\n", + "print \"Radiated Power = %0.2f MW \" %(W/10**6) \n", + "#Note : Answer is wrong in the book. Unit of answer in the book is written mW instead of MW by mistake." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Field strength at 10Km distance = 1.5080 V/m\n", + "Radiated Power = 2.53 MW \n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.11 : page 1.45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "#Formula : Rr=80*pi**2*(l/lamda)**2\n", + "#Given l=lamda/60\n", + "#l/lamda=1/60\n", + "Rr=80*pi**2*(1.0/60)**2 #in Ohm\n", + "print \"Radiation resistance = %0.3f Ohm \" %Rr " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Radiation resistance = 0.219 Ohm \n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.12 : page 1.45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data :\n", + "r=10.0 #in Km\n", + "Erms=10.0 #in mV/m\n", + "r1=20.0 #in Km\n", + "#Formula : Erms=sqrt(90*W)/r #in V/m\n", + "#Let swrt(90*W)=a\n", + "a=Erms*r \n", + "Erms1=a/r1 #in mV/m\n", + "print \"Field strength at 20Km distance = %0.f mV/m \" %Erms1 " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Field strength at 20Km distance = 5 mV/m \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 1.13 : page 1.45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "#given data :\n", + "r=1.0 #in Km\n", + "r=1*10**3 #in m\n", + "l=1.0 #in m\n", + "Irms=10.0 #in A\n", + "f=5.0 #in MHz\n", + "c=3*10**8 #speed of light i m/s\n", + "lamda=c/(f*10**6) #in m\n", + "le=2*l/pi #in m\n", + "Erms=120*pi*le*Irms/(lamda*r) #in V/m\n", + "print \"Field strength at 10Km distance = %0.4f V/m \" %Erms\n", + "#Note : Answer in the book is wrong. Mistake during value putting." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Field strength at 10Km distance = 0.0400 V/m \n" + ] + } + ], + "prompt_number": 26 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |