summaryrefslogtreecommitdiff
path: root/sample_notebooks/vijayadurga
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/vijayadurga')
-rwxr-xr-xsample_notebooks/vijayadurga/Chapter_5_Force_Torque_and_Shaft_power_Measurement.ipynb265
1 files changed, 265 insertions, 0 deletions
diff --git a/sample_notebooks/vijayadurga/Chapter_5_Force_Torque_and_Shaft_power_Measurement.ipynb b/sample_notebooks/vijayadurga/Chapter_5_Force_Torque_and_Shaft_power_Measurement.ipynb
new file mode 100755
index 00000000..379da0ca
--- /dev/null
+++ b/sample_notebooks/vijayadurga/Chapter_5_Force_Torque_and_Shaft_power_Measurement.ipynb
@@ -0,0 +1,265 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5 Force Torque and Shaft power Measurement"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_1 pgno:204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=(Sg*sig_f*(1+v))/(2*E)\n",
+ "('a voltmeter with a maximum range of mV is suitable for measurement', 94.9385766342288)\n",
+ "Round it off to get the suitable range voltmeter\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
+ "#Caption : Load cell\n",
+ "# Example 1# Page 294\n",
+ "from math import sqrt\n",
+ "\n",
+ "Sg=2.; # Strain gage factor\n",
+ "Rg=120.; # Gage resistance\n",
+ "v=0.3 # poissons ratio\n",
+ "E=210*10**9; # for steel\n",
+ "Pd=1. #('enter the power dissipation capacity=:')\n",
+ "# Looking for a suitable voltage measuring system\n",
+ "sig_f=700*10**6 #('enter the fatigue strength=:')\n",
+ "P_max=10000. #('enter the maximum load=:')\n",
+ "# For a load cell of square cross-section d,\n",
+ "d=sqrt(P_max/sig_f);\n",
+ "Ei=sqrt(4*Rg*Pd) #input excitation to the bridge circuit\n",
+ "x=(Sg*sig_f*(1+v))/(2*E);\n",
+ "dEo_max=x*Ei*10**3;\n",
+ "print (\"x=(Sg*sig_f*(1+v))/(2*E)\")\n",
+ "print ('a voltmeter with a maximum range of mV is suitable for measurement',dEo_max)\n",
+ "print (\"Round it off to get the suitable range voltmeter\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_2 pgno:295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('(dE/V)_max= d\\n ', 4285714.285714285)\n",
+ "Sensitivity of this load cell is nV/N/per unit excitation 42.8571428571\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
+ "#Caption : Load cell\n",
+ "# Example 2# Page 295\n",
+ "\n",
+ "b=.2 #('enter the width of load cell=:')\n",
+ "h=.05 #('enter the thickness of load cell=:')\n",
+ "Sg=2.;\n",
+ "Rg=120.;\n",
+ "sig_f=150*10**6 #('enter the fatigue strength=:')\n",
+ "E=70.; #(in GPa) for aluminium\n",
+ "v=0.33; #poissons ratio\n",
+ "# Let dE/V_max be represented by W\n",
+ "W=Sg*sig_f/E;\n",
+ "print('(dE/V)_max= d\\n ',W)\n",
+ "P_max=100000. #('enter the value of maximum load=:')\n",
+ "l=sig_f*b*h**2/(6*P_max);\n",
+ "\n",
+ "S=(6*Sg*l)/(E*b*h**2);\n",
+ "print'Sensitivity of this load cell is nV/N/per unit excitation',S\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_3 pgno:296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sensitivity of this load cell is micro V/N\n",
+ "0.13\n",
+ "The maximum density that can be achieved without endangering the strain gage sensors is micro V/N\n",
+ "0.284815729903\n",
+ "The voltage ratio is mV/V 3.9\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
+ "#Caption : Load cell\n",
+ "# Example 3# Page 296\n",
+ "from math import sqrt\n",
+ "Sg=2;\n",
+ "v=0.3; #poissons ratio\n",
+ "Ei=10. #('enter the excitation voltage=:')\n",
+ "A=5*10**-4 #('enter the area of load cell=:')\n",
+ "E=200.; #(in Gpa) Youngs modulus\n",
+ "# Let sensitivity Eo/P be represented by Se\n",
+ "Se=Sg*(1+v)*Ei/(2*A*E)*.001;\n",
+ "print'Sensitivity of this load cell is micro V/N\\n',Se\n",
+ "Rg=120. #given\n",
+ "Pd=1. #('enter the power dissipated in each gage=:')\n",
+ "Ei_max=sqrt(4*Rg*Pd)\n",
+ "Se_max=Sg*(1+v)*Ei_max/(2*A*E)*.001\n",
+ "print'The maximum density that can be achieved without endangering the strain gage sensors is micro V/N\\n',Se_max\n",
+ "# Let (Eo/Ei)_max be represented by Em\n",
+ "sig_f=600*10**6 #('enter the fatigue strength=:')\n",
+ "Em=Sg*sig_f*(1+v)/(2*E)*10**-6\n",
+ "print'The voltage ratio is mV/V',Em\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_4 pgno:302"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Relative displacement is d', 1.9999999999999997e-08)\n",
+ "wnc**2 is approx. 10**9. So,\n",
+ "Z is approx. 20nm(rms)\n",
+ "Actual force transmitted to the plate is d N 18.0260791198\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
+ "#Caption : Piezoelectric Transducers\n",
+ "# Example 4# Page 302\n",
+ "from math import sqrt,pi\n",
+ "mc=0.04 #('enter the connector mass=:')\n",
+ "m=0.01 #('enter the seismic mass=:')\n",
+ "k=10**9 #('enter the stiffness of the sensing element=:')\n",
+ "Sf=.005 #('enter the sensitivity of the transducer=:')\n",
+ "Xi=100*10**-6 # ('enter the displacement amplitude of the shaker vibration=:')\n",
+ "Eo=.1 #('enter the reading of voltage recorder connected to the transducer=:')\n",
+ "wnc=sqrt(k/(m+mc));\n",
+ "R=20; #20N (rms)\n",
+ "Z=(1/(m+mc))*(1/wnc**2)*R;\n",
+ "print('Relative displacement is d',Z)\n",
+ "print(\"wnc**2 is approx. 10**9. So,\")\n",
+ "print(\"Z is approx. 20nm(rms)\")\n",
+ "f=100.; # given\n",
+ "\n",
+ "F=R-((2*pi*f)**2*(m+mc)*Xi);\n",
+ "print'Actual force transmitted to the plate is d N',F\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5_5 pgno:308"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The load torque is d N-m 1636.24617374\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
+ "#Caption : Torque measurement on rotating shaft\n",
+ "# Example 5# Page 308\n",
+ "Sg=2.;\n",
+ "Rg=120.;\n",
+ "G=80*10**9 #('enter the sheer modulus of elasticity=:')\n",
+ "D=0.05 #('enter the shaft diameter=:')\n",
+ "dR=0.1 # given\n",
+ "# we have to find the load torque\n",
+ "from math import pi\n",
+ "\n",
+ "y=2*dR/(Rg*Sg);\n",
+ "tou_xy=y*G;\n",
+ "j=pi*D**4;\n",
+ "T=tou_xy*2*j/(D*32);\n",
+ "print'The load torque is d N-m',T"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}