summaryrefslogtreecommitdiff
path: root/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup')
-rwxr-xr-xsample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/Untitled3.ipynb105
-rwxr-xr-xsample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/chapter2.ipynb240
2 files changed, 345 insertions, 0 deletions
diff --git a/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/Untitled3.ipynb b/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/Untitled3.ipynb
new file mode 100755
index 00000000..c9360e01
--- /dev/null
+++ b/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/Untitled3.ipynb
@@ -0,0 +1,105 @@
+{
+ "metadata": {
+ "celltoolbar": "Raw Cell Format",
+ "name": "",
+ "signature": "sha256:1b9250434a66c555344f74813ca967ce998b1c86d33424d56ca71d7c748c63ce"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Interference"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7, Page number 1-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Given Data:\n",
+ "i=30 #angle of incidence\n",
+ "u=1.43 #Refractive index of a soap film\n",
+ "lamda=6*10**-7 #wavelength of light\n",
+ "n=1 #For minimum thickness\n",
+ "\n",
+ "#Calculations:\n",
+ "#u=sin i/sin r #Snell's law .So,\n",
+ "r=math.degrees(math.asin(math.sin(i)/u)) #angle of reflection\n",
+ "\n",
+ "#Now, condition of minima in transmitted system is\n",
+ "#2ut*cos(r)=(2n-1)lam/2\n",
+ "t=lamda/(2*2*u*math.cos(r)) #minimum thickness of film\n",
+ "print\"Minimum thickness of film is \",t,\"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum thickness of film is 1.09096619878e-07 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.8, Page number 1-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Given Data:\n",
+ "\n",
+ "lamda = 5893*10**-10 #Wavelength of light\n",
+ "theta = 1 #assuming value of theta\n",
+ "\n",
+ "#We know, B=lam/(2*u*theta). Here u=1\n",
+ "B = lamda/(2*theta) #fringe spacing\n",
+ "n=20 #interference fringes\n",
+ "\n",
+ "#Calculations:\n",
+ "#t=n*B*tan(theta)\n",
+ "t = 20*B*theta #Thickness of wire\n",
+ "print\"Thickness of wire is =\",t,\"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of wire is = 5.893e-06 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/chapter2.ipynb b/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/chapter2.ipynb
new file mode 100755
index 00000000..8b221e49
--- /dev/null
+++ b/sample_notebooks/ajinkyakhair/ajinkyakhair_version_backup/chapter2.ipynb
@@ -0,0 +1,240 @@
+{
+ "metadata": {
+ "celltoolbar": "Raw Cell Format",
+ "name": "",
+ "signature": "sha256:4fe36e3e0da1a77ee9793bbcdad9ed8d44455b05327e70b42ad389ca8fb3e239"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2: Semiconductor Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.21.1,Page number 2-47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "\n",
+ "ro=1.72*10**-8 #resistivity of Cu\n",
+ "s=1/ro #conductivity of Cu\n",
+ "n=10.41*10**28 #no of electron per unit volume\n",
+ "e=1.6*10**-19 #charge on electron\n",
+ "\n",
+ "u=s/(n*e)\n",
+ "print\"mobility of electron in Cu =\",round(u,4),\"m**2/volt-sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mobility of electron in Cu = 0.0035 m**2/volt-sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.21.2,Page number 2-47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "\n",
+ "m=63.5 #atomic weight\n",
+ "u=43.3 #mobility of electron\n",
+ "e=1.6*10**-19 #charge on electron\n",
+ "N=6.02*10**23 #Avogadro's number\n",
+ "d=8.96 #density\n",
+ "\n",
+ "Ad=N*d/m #Atomic density\n",
+ "n=1*Ad\n",
+ "\n",
+ "ro=1/(n*e*u)\n",
+ "\n",
+ "print\"Resistivity of Cu =\",\"{0:.3e}\".format(ro),\"ohm-cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity of Cu = 1.699e-06 ohm-cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.21.3,Page number 2-47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "\n",
+ "e=1.6*10**-19 #charge on electron\n",
+ "ne=2.5*10**19 #density of carriers\n",
+ "nh=ne #for intrinsic semiconductor\n",
+ "ue=0.39 #mobility of electron\n",
+ "uh=0.19 #mobility of hole\n",
+ "\n",
+ "s=ne*e*ue+nh*e*uh #conductivity of Ge\n",
+ "ro=1/s #resistivity of Ge\n",
+ "\n",
+ "print\"Resistivity of Ge =\",round(ro,4),\"ohm-m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistivity of Ge = 0.431 ohm-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.21.6,Page number 2-49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "\n",
+ "c=5*10**28 #concentration of Si atoms\n",
+ "e=1.6*10**-19 #charge on electron\n",
+ "u=0.048 #mobility of hole\n",
+ "s=4.4*10**-4 #conductivity of Si\n",
+ "\n",
+ "#since millionth Si atom is replaced by an indium atom\n",
+ "\n",
+ "n=c*10**-6\n",
+ "sp=u*e*n #conductivity of resultant\n",
+ "\n",
+ "print\"conductivity =\",sp,\"mho/m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity = 384.0 mho/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.21.7,Page number 2-49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "\n",
+ "m=28.1 #atomic weight of Si\n",
+ "e=1.6*10**-19 #charge on electron\n",
+ "N=6.02*10**26 #Avogadro's number\n",
+ "d=2.4*10**3 #density of Si\n",
+ "p=0.25 #resistivity\n",
+ "\n",
+ "#no. of Si atom/m**3\n",
+ "Ad=N*d/m #Atomic density\n",
+ "\n",
+ "#impurity level is 0.01 ppm i.e. 1 atom in every 10**8 atoms of Si\n",
+ "n=Ad/10**8 #no of impurity atoms\n",
+ "\n",
+ "#since each impurity produce 1 hole\n",
+ "nh=n\n",
+ "print\"1) hole concentration =\",\"{0:.3e}\".format(n),\"holes/m**3\"\n",
+ "up=1/(e*p*nh)\n",
+ "print\"2) mobility =\",round(up,4),\"m**2/volt.sec\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1) hole concentration = 5.142e+20 holes/m**3\n",
+ "2) mobility = 0.0486 m**2/volt.sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file