diff options
Diffstat (limited to 'sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb')
-rw-r--r-- | sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb | 370 |
1 files changed, 370 insertions, 0 deletions
diff --git a/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb b/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb new file mode 100644 index 00000000..916e874c --- /dev/null +++ b/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb @@ -0,0 +1,370 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 Passive Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.2, Pg.no.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance R is 16.61 ohm\n", + "The value of resistance R3 is 66.82 ohm\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "Ro=50.0\n", + "ILdB=6.0 #T−type attenuator provide 6−dB insertion loss \n", + "#calculation\n", + "IL=10**-(ILdB/20) #Determination of R\n", + "R=Ro*(1-IL)/(1+IL)\n", + "R=round(R,2)\n", + "print 'The value of resistance R is',R,'ohm' \n", + "#Determination of R3\n", + "R3=(2*Ro*IL)/(1-(0.5)**2)\n", + "R3=round(R3,2)\n", + "print 'The value of resistance R3 is',R3,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.3,Pg.no.7" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance RA and RB is 150.5 ohm\n", + "The value of resistance RC is 37.35 ohm\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "Ro=50.0\n", + "ILdB=6.0\n", + "IL=10**-(ILdB/20) #Determination of RA and RB\n", + "RA=Ro*(1+IL)/(1-IL)\n", + "RA=round(RA,1)\n", + "print 'The value of resistance RA and RB is',RA,'ohm'\n", + "#Determination of RC\n", + "RC=Ro*(1-(IL)**2)/(2*IL)\n", + "RC=round(RC,2)\n", + "print 'The value of resistance RC is',RC,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.4,Pg.no.9" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance R1 is 1.0 ohm\n", + "The value of resistance R3 is 5624.0 ohm\n", + "The value of insertion loss is 0.12 decibels\n" + ] + } + ], + "source": [ + "import math\n", + "from math import log10\n", + "#given\n", + "Rs=75.0 #resistance\n", + "Rl=50.0 \n", + "#Determination of R1\n", + "R1=(Rs*(Rs-Rl))**(1/2)\n", + "R1=round(R1,2)\n", + "print 'The value of resistance R1 is',R1,'ohm'\n", + "#Determination of R3\n", + "R3=((Rs**2)-(R1**2))/R1\n", + "R3=round(R3,2)\n", + "print 'The value of resistance R3 is',R3,'ohm'\n", + "#Determination of insertion loss\n", + "IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)**2)\n", + "ILdB=-20*log10(IL) #convertion of power in decibels\n", + "ILdB=round(ILdB,2)\n", + "print 'The value of insertion loss is',ILdB,'decibels'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.5,Pg.no.10" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance R2 is 1.0 ohm\n", + "The value of resistance R3 is 2499.0 ohm\n", + "The value of insertion loss is 0.2 decibels\n" + ] + } + ], + "source": [ + "from math import log10\n", + "Rs=10.0\n", + "Rl=50.0 #Determination of R2\n", + "R2=(Rl*(Rl-Rs))**(1/2)\n", + "R2=round(R2,2)\n", + "print 'The value of resistance R2 is',R2,'ohm'\n", + "#Determination of R3\n", + "R3=((Rl**2)-(R2**2))/R2\n", + "R3=round(R3,2)\n", + "print 'The value of resistance R3 is',R3,'ohm'\n", + "#Determination of insertion loss\n", + "IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)**2)\n", + "ILdB=-20*log10(IL) #convertion of power in decibels\n", + "ILdB=round(ILdB,1)\n", + "print 'The value of insertion loss is',ILdB,'decibels'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5.1,Pg.no.21" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of self resonant freq is 60.2 MHz\n", + "The value of Q−factor is 31.4\n", + "The value of effective inductance is -5.79846400003e-12 uH\n", + "The value of effective Q−factor is -5.41522720497e+12\n" + ] + } + ], + "source": [ + "import math\n", + "C=7*10**-12\n", + "R=5.0\n", + "L=10**-6\n", + "f=25*10**6 \n", + "#Determination of self resonant freq of coil denoted as Fsr\n", + "Fsr=1/(2*3.14*(L*C)**0.5)\n", + "Fsr=Fsr/(10**6)\n", + "Fsr=round(Fsr,1)\n", + "print 'The value of self resonant freq is',Fsr,'MHz'\n", + "#Determination of Q−factor of coil , excluding self − capacitive effects\n", + "Q=(2*3.14*f*L)/R\n", + "print 'The value of Q−factor is',Q\n", + "#Determination of effective inductance\n", + "Leff=L/(1-(f/Fsr)**2)\n", + "Leff=Leff*(10**6)\n", + "#Leff=round(Leff,0)\n", + "print 'The value of effective inductance is',Leff,'uH'\n", + "#Determination of effective Q−factor\n", + "Qeff=Q*(1-(f/Fsr)**2)\n", + "Qeff=round(Qeff,0)\n", + "print 'The value of effective Q−factor is',Qeff" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8.1,Pg.no.26" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of common resonant freq is 1e-06 Mrad/sec\n", + "The transfer impedance is -6.83732235918e-05 ohm\n" + ] + } + ], + "source": [ + "import cmath\n", + "#given\n", + "Lp=150*10**-6 #inductance\n", + "Ls=150*10**-6\n", + "Cp=470*10**-12 #capacitance\n", + "Cs=470*10**-12 #Lp=Ls=150 uH,Cp=Cs=470 pF\n", + "Q=85.0 #Q−factor for each ckt is 85\n", + "c=0.01 #Coeff of coupling is 0.01\n", + "Rl=5000.0 #Load resistance Rl=5000 ohm\n", + "r=75000.0 #Constant current source with internal resistance r=75 kohm\n", + "#calculations\n", + "#Determination of common resonant frequency\n", + "wo=1/((Lp*Cp)**(1/2))\n", + "wo=wo/(10**6)\n", + "print 'The value of common resonant freq is',wo,'Mrad/sec'\n", + "p=3.77*10**6\n", + "Z2=complex(62.9004,557.266) #Formula=Rl/(1+(p*j*Cs*Rl))\n", + "Z1=complex(4.2465,564.33) #Formula=r/(1+(p*j*Cp*r)) ;At resonance Zs=Zp=Z\n", + "z=complex(0,1)\n", + "Z=wo*Ls*(1/Q +z)\n", + "Zm=complex(0,p*c*Lp) #Determination of denominator\n", + "Dr=((Z+Z1)*(Z+Z2))-(Zm**2) \n", + "#Hence transfer impedance is given as\n", + "Zr= (Z1*Z2*Zm)/Dr\n", + "Z=Zr.real\n", + "#Z=round(Z,2)\n", + "#Zr.imag=round(Zr.imag,2)\n", + "print 'The transfer impedance is',Z,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10.1,Pg.no.34" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of common resonant freq is 169.56 Mrad/ sec\n", + "The value of Gl is 5.0 mSec\n", + "The value of alpha is 3.14\n", + "The value of effective load is 1.97 kohm\n", + "The value of tuning capacitance is 47.73 pF\n", + "The value of Rd is 1.85343097504e-05 kohm\n", + "The value of −3dB BW is 1.69 MHz\n" + ] + } + ], + "source": [ + "import math\n", + "C1=70*10**-12\n", + "C2=150*10**-12\n", + "Rl=200.0\n", + "Q=150.0\n", + "f=27*10**6\n", + "r=40000.0\n", + "#Determination of common resonant freq\n", + "wo=2*3.14*f\n", + "wo=wo/(10**6)\n", + "print 'The value of common resonant freq is',wo,'Mrad/ sec'\n", + "#Determination of Gl\n", + "Gl=1/Rl\n", + "G1=Gl*(10**3) \n", + "print'The value of Gl is',G1,'mSec'\n", + "#Checking the approxiamtion in denominator\n", + "ap=((wo*(C1+C2))/(Gl))**2\n", + "alpha=(C1+C2)/C1\n", + "alpha=round(alpha,2)\n", + "print 'The value of alpha is',alpha\n", + "#Determination of effective load\n", + "Reff=((alpha)**2)*Rl\n", + "Reff=Reff/(10**3)\n", + "Reff=round(Reff,2)\n", + "print 'The value of effective load is',Reff,'kohm' \n", + "#If effective load is much less than internal resistance hence tuning capacitance then\n", + "Cs=C1*C2/(C1+C2)\n", + "Cs=Cs*(10**12)\n", + "Cs=round(Cs,2)\n", + "print 'The value of tuning capacitance is',Cs,'pF'\n", + "#Determination of Rd\n", + "Rd=Q/(wo*Cs)\n", + "Rd=Rd/(10**3)\n", + "print 'The value of Rd is',Rd,'kohm'\n", + "#If Rd is much greater than Reff then −3dB bandwidth is given by\n", + "B=1/(2*3.14*C2*alpha*Rl)\n", + "B=B/(10**6)\n", + "B=round(B,2)\n", + "print 'The value of −3dB BW is',B,'MHz'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |