diff options
Diffstat (limited to 'sample_notebooks/Sai KumarMadem/Chapter2.ipynb')
-rw-r--r-- | sample_notebooks/Sai KumarMadem/Chapter2.ipynb | 768 |
1 files changed, 768 insertions, 0 deletions
diff --git a/sample_notebooks/Sai KumarMadem/Chapter2.ipynb b/sample_notebooks/Sai KumarMadem/Chapter2.ipynb new file mode 100644 index 00000000..dd9dead5 --- /dev/null +++ b/sample_notebooks/Sai KumarMadem/Chapter2.ipynb @@ -0,0 +1,768 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 : Electric Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1 : pg 6" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current in resistance Ra=1.0 ohm is ,(A)= 0.105\n" + ] + } + ], + "source": [ + "# Example 2.1 :current\n", + "#calculate the current \n", + "# given :\n", + "import numpy\n", + "#15*I1-5*I2=10 loop 1 equation\n", + "#20*I2-5*I1-5*I3=0 loop 2 equation\n", + "#10*I3-5*I2=0 loop 3 equation\n", + "vs=10.;#voltage in volts\n", + "R1=10.;#resistance in ohm\n", + "R2=5.;#resistance in ohm\n", + "R3=10.;#resistance in ohm\n", + "R4=5.;#resistance in ohm\n", + "R5=4.;#resistance in ohm\n", + "Ra=1.;#resistance in ohm\n", + "#calculations\n", + "A=([[R1+R2, R2-R1, 0],[R2-R1, R2+R3+R4, -R4],[R4-(R5+Ra), -R4, R4+R5+Ra]]);#making equations\n", + "nb=7.;#number of branches\n", + "nn=5.;#number of nodes\n", + "nl=nb-(nn-1);#number of loops\n", + "nvs=1.;#number of voltage sources\n", + "nivs=nn-1-nvs;#number of independent voltage variables\n", + "B=([[vs],[0],[0]]);#making equations\n", + "X=numpy.dot(numpy.linalg.inv(A),B);#solving equations\n", + "I3=X[2,0];#calculating currrent\n", + "#results\n", + "print \"current in resistance Ra=1.0 ohm is ,(A)=\",round(I3,3)\n", + "#directions of the current are 2 to 3 and 3 to 4 respectively\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2 : pg 6" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current through Rx is(by node voltage method), (A)= 3.956\n", + "current through Rx is (by loop current method),(A) = 3.956\n" + ] + } + ], + "source": [ + "# Example 2.2 :current\n", + "#calculate the current in both cases\n", + "import numpy\n", + "# given :\n", + "vs1=72.;#voltage in volts\n", + "vs2=40.;#voltage in volts\n", + "R1=36.;#resistance in ohm\n", + "R2=10.;#resistance in ohm\n", + "ig=2.;#current in amperes\n", + "Rx=8.;#resistance in ohm\n", + "#calculations\n", + "#(va-72)/36+(va-40)/10 -2 +va/8=0 node equation at 1\n", + "va=((R2*Rx*vs1)+(R1*Rx*vs2)+(R1*R2*Rx*ig))/((R2*Rx)+(R1*Rx)+(R1*R2));#voltage in volts\n", + "ix1=va/Rx;#current in amperes\n", + "#(R1+R2)*I1-R2*I2+vs2=vs1 loop equation 1\n", + "#R2*I2-R2*I1+Ix*Rx=vs2 loop equation 2\n", + "#Ix=I2+2\n", + "A=([[R1+R2, -R2],[-R2, R2+Rx]]);#making equations\n", + "B=([[vs1-vs2],[vs2-2*Rx]]);#making equations\n", + "X=numpy.dot(numpy.linalg.inv(A),B);#solving equations\n", + "ix2=X[1,0]+ig;#current in amperes\n", + "print \"current through Rx is(by node voltage method), (A)=\",round(ix1,3)\n", + "print \"current through Rx is (by loop current method),(A) =\",round(ix2,3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3 : pg 7" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current through Rl is (from b to a),(A)= 0.359\n" + ] + } + ], + "source": [ + "# Example 2.3 :current\n", + "#calculate the current\n", + "import numpy\n", + "# given :\n", + "vs1=10;#voltage in volts\n", + "i5=2;#current in amperes\n", + "i2=i5;#current\n", + "r1=1;#resistance in ohms\n", + "r2=5;#resistance in ohms\n", + "r3=5;#resistance in ohms\n", + "rl=10;#resistance in ohms\n", + "r4=5;#resistance ohms\n", + "#calculations\n", + "#(r1+r2+r3)*i1-r2*i2-r3*i3=vs1 loop equaion 1\n", + "#-r2*i1-(r1+r2)*i2+(rl+r2+r3)*i3=0 loop equation 2\n", + "A=([[4*(r1+r2+r3), -r2*4],[-r2, (rl+r2+r3)]]);#making equations\n", + "B=([[4*(vs1+r2*i2)],[i2*(r2+r3)]]);#making equations\n", + "X=numpy.dot(numpy.linalg.inv(A),B);#solving equations\n", + "il=i2-X[1,0];#calculating current\n", + "#results\n", + "print \"current through Rl is (from b to a),(A)=\",round(il,3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4 : pg 8" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Applying Thevenins Theorem \n", + "current through Rx is, (A) 3.956\n", + "Applying Nortons Theorem \n", + "current through Rx is, (A) = 3.956\n" + ] + } + ], + "source": [ + "# Example 2.4 :current\n", + "#calculate the current\n", + "# given :\n", + "vs1=72.;#voltage in volts\n", + "vs2=40.;#voltage in volts\n", + "R1=36.;#resistance in ohms\n", + "R2=10.;#resistance in ohms\n", + "ig=2.;#current in amperes\n", + "Rx=8.;#resistance in ohms\n", + "#calculations and results\n", + "print \"Applying Thevenins Theorem \"\n", + "#(vs1-voc)/R1+(v40-voc)/R2 +2 =0 node equation at 1\n", + "voc=(R2*vs1+R1*vs2+R1*R2*ig)/(R1+R2);#voltage in volts\n", + "req=(R1*R2)/(R1+R2);#resistance in ohms\n", + "ix1=(voc)/(req+Rx);#resistance in ohms\n", + "print \"current through Rx is, (A)\",round(ix1,3)\n", + "print \"Applying Nortons Theorem \"\n", + "Is=(vs1/R1)+(vs2/R2)+ig;#current in amperes\n", + "ix2=(req*(Is/(Rx+req)));#current in amperes\n", + "print \"current through Rx is, (A) =\",round(ix2,3)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5 : pg 8" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Applying Thevenins Theorem \n", + "Thevenin equivalent open circuit voltage is, (V)= 5.0\n", + "Thevenin equivalent resistance is,(Ohm)= 50.0\n", + "(b) Applying Nortons Theorem \n", + "Norton short circuit current is,(A)= 0.1\n", + "Norton equivalent resistance is,(Ohm)= 50.0\n" + ] + } + ], + "source": [ + "# Example 2.5 :Thevenin's and Norton's Equivalent\n", + "#calculate the current in all cases\n", + "# given :\n", + "vs1=10.;#voltage in volts\n", + "R1=50.;#resistance in ohms\n", + "R2=50.;#resistance in ohms\n", + "R3=25.;#resistance in ohms\n", + "#calculations and results\n", + "print \"(a) Applying Thevenins Theorem \"\n", + "voc=(R1/(R1+R2))*vs1;#voltage in volts\n", + "req=((R1*R2)/(R1+R2))+R3;#resistance in ohms\n", + "print \"Thevenin equivalent open circuit voltage is, (V)=\",voc\n", + "print \"Thevenin equivalent resistance is,(Ohm)=\",req\n", + "print \"(b) Applying Nortons Theorem \"\n", + "Isc=((vs1)/(R1+(R1*R3)/(R1+R3)))*(R1/(R1+R3));#\n", + "req=((R1*R2)/(R1+R2))+R3;#resistance in ohms\n", + "print \"Norton short circuit current is,(A)=\",Isc\n", + "print \"Norton equivalent resistance is,(Ohm)=\",req\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6 : pg 10" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current through Rx is (from A to B),(mA)= 0.299\n" + ] + } + ], + "source": [ + "# Example 2.6 :current\n", + "#calculate the current \n", + "# given :\n", + "vs1=10.;#voltage volts\n", + "r1=100.;#resistance in ohms\n", + "r2=600.;#resistance in ohms\n", + "r3=150.;#resistance in ohms\n", + "r4=850.;#resistance in ohms\n", + "rx=50.;#resistance in ohms\n", + "#calculations\n", + "voc=vs1*((r3/(r1+r3))-(r4/(r2+r4)));#open circuit voltage in volts\n", + "req=((r1*r3)/(r1+r3))+((r2*r4)/(r2+r4));#equivalent resistance in ohms\n", + "ix=voc/(req+rx)*10**3;#current in amperes\n", + "#results\n", + "print \"current through Rx is (from A to B),(mA)=\",round(ix,3)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7 : pg 11" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current is,(A) -1.429\n", + "equivalent resistance is,(ohm)= 1.273\n" + ] + } + ], + "source": [ + "# Example 2.7 :\n", + "#calculate the Norton's Equivalent\n", + "# given :\n", + "vs1=40.;#volts\n", + "vs2=20.;#volts\n", + "r1=2.;#resistance in ohms\n", + "r2=6.;#resistance in ohms\n", + "r3=2.;#resistance in ohms\n", + "r4=2.;#resistance in ohms\n", + "#calculations\n", + "iab=((r1*vs1)/(r2+(r1/2))*((r1+(r3/2))/(r1+r3)));#current in amperes\n", + "iab1=-vs2/r1;#current amperes\n", + "it=iab+iab1;#current amperes\n", + "req1=r1+((r1*r2)/(r1+r2));#equivalent resistance in ohms\n", + "req=(req1*r3)/(req1+r3);#equivalent resistance in ohms\n", + "#results\n", + "print \"current is,(A)\",round(it,3)\n", + "print \"equivalent resistance is,(ohm)=\",round(req,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8 : pg 12" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current is (when t=500 micro seconds),(A)= 0.221\n", + "time at which current will be zero is,(micro-seconds)= 1222.0\n" + ] + } + ], + "source": [ + "# Example 2.8:equation of current and time\n", + "#calculate the current \n", + "from math import exp,ceil\n", + "# given :\n", + "v=100.;#voltage in volts\n", + "r=100.;#resistance in ohms\n", + "l=0.2;#inductance in henrty\n", + "#calculations and results\n", + "T=1/(l/r);#calculating time in seconds\n", + "t=500.;#time in micro seconds\n", + "i1=1-exp(-T*t*10**-6);#current in amperes\n", + "print \"current is (when t=500 micro seconds),(A)=\",round(i1,3)\n", + "v2=50.;#voltage in volts\n", + "x=v2/r;#variable\n", + "x1=x*((v2/r)+i1);#variable \n", + "t1=t+(10**6*(x1/500.));#time in seconds\n", + "print \"time at which current will be zero is,(micro-seconds)=\",ceil(t1)\n", + "#time is caluclated wrong in the textbook as they had not added the values\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9 : pg 15" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time is ,(seconds)= 0.025\n" + ] + } + ], + "source": [ + "# Example 2.9 :time\n", + "#calculate the time required\n", + "from math import log\n", + "# given :\n", + "v=10.;#voltage in volts\n", + "r1=500.;#resistance in ohms\n", + "ix=0.;#current in amperes\n", + "r=700;#resistance in ohms\n", + "c=100;#capacitance in micro farads\n", + "#calculations\n", + "x=1/(r*c*10**-6);#variable\n", + "i=30;#current in mA\n", + "y=(i*10**-3)-(v/r1);#variable\n", + "t=-((log(y*(r/v))));#time in seconds\n", + "t1=t/x;#time in seconds\n", + "#results\n", + "print \"time is ,(seconds)=\",round(t1,3)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10 : pg 18" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "it= 2.697 *e^ -250.0 t*sin 370.81 t A\n" + ] + } + ], + "source": [ + "# Example 2.10 :current equation\n", + "#calculate the current equation\n", + "# given :\n", + "from numpy import roots\n", + "v=100.;#volts\n", + "r=50.;#in ohms\n", + "l=0.1;#henry\n", + "c=50.;#mf\n", + "#calculations\n", + "p = ([1,500.0,2*10**5])\n", + "#p=2*10**5+500*d+d**2;\n", + "x=roots(p)\n", + "c1=0;#at t=0 i=0\n", + "c2=1000/x[0].imag;#\n", + "#results\n", + "print \"it= \",round(c2,3),\"*e^\",x[0].real,\"t*sin\",round(x[0].imag,3),\"t A\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11 : pg 19" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "parts (a) saw tooth wave\n", + "rms value of e is ,(V)= 0.886\n", + "average value of e is ,(V)= 5\n", + "parts (b) half wave rectified sine wave form\n", + "rms value of e is ,(V)= 5.0\n", + "average value of e is ,(V)= 3.183\n" + ] + } + ], + "source": [ + "# Example 2.11 :\n", + "#calculate the average & rms value\n", + "# given :\n", + "from numpy import linspace\n", + "from math import sin,pi,sqrt\n", + "from scipy import integrate\n", + "vm=10;#voltage in volts\n", + "e=vm/2;#voltage in volts\n", + "t=linspace(0,2, num=3);#time range\n", + "#x=intsplin(t,(5*t)**2);#variable\n", + "x=1.571;\n", + "#calculations and results\n", + "rms=sqrt(x/2);#rms value of voltage in volts\n", + "av=vm/2;#average value of voltage in volts\n", + "print \"parts (a) saw tooth wave\"\n", + "print \"rms value of e is ,(V)=\",round(rms,3)\n", + "print \"average value of e is ,(V)=\",av\n", + "t1=0;#initial time in seconds\n", + "t2=pi;#final time in seconds\n", + "t3=2*pi;#time interval\n", + "def function(t):\n", + " return sin(t) *sin(t);\n", + "\n", + "def function2(t):\n", + " return sin(t)\n", + " \n", + "x=integrate.quad(function,t1,t2)[0];#variable\n", + "rms=sqrt((1/(2*pi))*x*vm**2);#rms value of voltage in volts\n", + "av=(10/(2*pi))*integrate.quad(function2,t1,t2)[0];#average value of voltage in volts\n", + "print \"parts (b) half wave rectified sine wave form\"\n", + "print \"rms value of e is ,(V)=\",rms\n", + "print \"average value of e is ,(V)=\",round(av,3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12 : pg 20" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "part (a)\n", + "Impedance is ,(Ohm)= (16.4700606969+2.90411607477j)\n", + "part (b)\n", + "Impedance is ,(Ohm)= (3.53553390593+3.53553390593j)\n" + ] + } + ], + "source": [ + "# Example 2.12 :\n", + "#calculate the Circuit constants\n", + "# given :\n", + "from math import sqrt, cos, sin,pi\n", + "#v=194*cos(800*t+150)V Voltage equation\n", + "#I=11.6*cos(800*t+140)A Current equation\n", + "vm=194/sqrt(2);#voltage in volts\n", + "va=150;#angle in degree\n", + "im=11.6/sqrt(2);#current in amperes\n", + "ia=140;#angle in degree\n", + "#calculations and results\n", + "zm=vm/im;#resistance in ohms\n", + "za=va-ia;#resistance in ohms\n", + "z1=zm*cos(za*pi/180.);#reactance in ohms\n", + "z2=zm*sin(za*pi/180.);#reactance in ohms\n", + "z=z1+1j*z2;#resistance in ohms\n", + "print \"part (a)\"\n", + "print \"Impedance is ,(Ohm)=\",z\n", + "print \"part (b)\"\n", + "#v=6*sin(1000*t+45)V Voltage equation\n", + "#I=12*cos(1000t-90)A current equation\n", + "vm1=60/sqrt(2);#voltage in volts\n", + "va1=45;#angle in degree\n", + "im1=12/sqrt(2);#current in amperes\n", + "ia1=0;#angle in degree\n", + "zm1=vm1/im1;#resistance in ohms\n", + "za1=va1-ia1;#resistance in ohms\n", + "z11=zm1*cos(za1*pi/180.);#reactance in ohms\n", + "z21=zm1*sin(za1*pi/180.);#reactance in ohms\n", + "z22=z11+1j*z21;#impedance in ohms\n", + "print \"Impedance is ,(Ohm)=\",z22\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13 : pg 22" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "reading V2 is,(V) 207.123\n", + "reading V4 is 507.123 V or 92.877 V\n" + ] + } + ], + "source": [ + "# Example 2.13 :reading\n", + "#calculate the voltage reading\n", + "# given :\n", + "from math import sqrt\n", + "v1=230.;#voltage in volts\n", + "v2=100.;#voltage in volts\n", + "#calculations\n", + "v2=sqrt(v1**2-v2**2);#voltage in volts\n", + "v3=300.;#voltage in volts\n", + "#results\n", + "print \"reading V2 is,(V)\",round(v2,3)\n", + "print \"reading V4 is \",round(v3+v2,3),\" V or \",round(v3-v2,3),\" V\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14 : pg 25" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Impedance is ,(Ohm)= (14.1877554161-14.1877554161j)\n", + "capacitance is ,(micro-farads)= 28.1933250377\n" + ] + } + ], + "source": [ + "# Example 2.14 :circuit elements\n", + "#calculate the circuit elements\n", + "# given :\n", + "from math import sqrt,cos,sin,pi\n", + "#v=311*sin(2500*t+170) V voltage equation\n", + "#I=15.5*sin(2500*t-145)A current equation\n", + "vm=311/sqrt(2);#voltage in volts\n", + "va=170.;#angle in degree\n", + "im=15.5/sqrt(2);#current in amperes\n", + "ia=-145.;#angle in degree\n", + "#calculations\n", + "zm=vm/im;#resistance in ohms\n", + "za=(va-ia)-360.;#resistance ohms\n", + "z1=zm*cos(za*pi/180.);#resistance in ohms\n", + "z2=zm*sin(za*pi/180.);#resistance in ohms\n", + "z=z1+1j*z2;#resistance in ohms\n", + "t=2500;#time in seconds\n", + "c=(1/(z.real*t));#capacitance in farads\n", + "#results\n", + "print \"Impedance is ,(Ohm)=\",z\n", + "print \"capacitance is ,(micro-farads)=\",c*10**6\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15 : pg 26" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "part (a) Star\n", + "phase voltage,(V)= 231.0\n", + "phase current,(A)= 5.0\n", + "line voltage ,(V)= 400\n", + "line current,(A)= 4.619\n", + "power ,(W)= 2560.0\n", + "part (b) Delta\n", + "phase voltage,(V)= 400.0\n", + "phase current,(A)= 8.0\n", + "line voltage ,(V)= 400.0\n", + "line current,(A)= 13.856\n", + "power ,(W)= 7680.0\n" + ] + } + ], + "source": [ + "# Example 2.15 :parameters\n", + "#calculate the parameters of phase, line voltage and current, power\n", + "from math import sqrt\n", + "# given :\n", + "z=40+1j*30;#resistance in ohms\n", + "zph=sqrt(z.real**2+z.imag**2);#resistance in ohms\n", + "pf=z.real/zph;#power factor\n", + "v=400;#voltage in volts\n", + "#calculations and results\n", + "vp=v/(sqrt(3));#voltage in volts\n", + "pc=vp/zph;#current in amperes\n", + "lv=v;#voltage in volts\n", + "lc=pc;#current om amperes\n", + "p=sqrt(3)*v*lc*pf;#power in watts\n", + "print \"part (a) Star\"\n", + "print \"phase voltage,(V)=\",round(vp)\n", + "print \"phase current,(A)=\",round(pc)\n", + "print \"line voltage ,(V)=\",lv\n", + "print \"line current,(A)=\",round(lc,3)\n", + "print \"power ,(W)=\",p\n", + "z1=40+1j*30;#ohms\n", + "zph1=sqrt(z1.real**2+z1.imag**2);#ohms\n", + "pf1=z1.real/zph1;#power factor\n", + "v1=400.;#volts\n", + "vp1=v1;#volts\n", + "pc1=vp1/zph1;#amperes\n", + "lv1=v1;#volts\n", + "lc1=pc1*sqrt(3);#amperes\n", + "p1=sqrt(3)*v1*lc1*pf1;#watts\n", + "print \"part (b) Delta\"\n", + "print \"phase voltage,(V)=\",round(vp1)\n", + "print \"phase current,(A)=\",round(pc1)\n", + "print \"line voltage ,(V)=\",lv1\n", + "print \"line current,(A)=\",round(lc1,3)\n", + "print \"power ,(W)=\",p1\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |