diff options
Diffstat (limited to 'sample_notebooks/PraveenKumar/PraveenKumar_version_backup/chapter2.ipynb')
-rwxr-xr-x | sample_notebooks/PraveenKumar/PraveenKumar_version_backup/chapter2.ipynb | 429 |
1 files changed, 429 insertions, 0 deletions
diff --git a/sample_notebooks/PraveenKumar/PraveenKumar_version_backup/chapter2.ipynb b/sample_notebooks/PraveenKumar/PraveenKumar_version_backup/chapter2.ipynb new file mode 100755 index 00000000..3d7aab33 --- /dev/null +++ b/sample_notebooks/PraveenKumar/PraveenKumar_version_backup/chapter2.ipynb @@ -0,0 +1,429 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "chapter-2, Economics of generation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex1, Page 73" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "#To Determine the Demand and Supply Parameters for 15 bulbs\n", + "\n", + "W=60 #Wattage of the bulb\n", + "N=15 #No. of bulbs\n", + "CL=W*N #Connected Load \n", + "Wih=2*(10**3) #Wattage of immersion heater\n", + "Wh=2*(10**3) #Wattage of heater\n", + "\n", + "#Usage of Bulbs at different time periods\n", + "N1=5 \n", + "N2=10 \n", + "N3=6\n", + "\n", + "#Time periods for bulbs\n", + "T1=2 #6pm - 8pm\n", + "T2=2 #8pm - 10pm\n", + "T3=2 #10pm - 12pm\n", + "#Time Periods for heaters\n", + "T4=4 #1pm - 5pm\n", + "T5=3 #8pm - 11pm\n", + "\n", + "#CASE 1\n", + "MD1=W*N2 #Maximum Demand\n", + "DF=MD1*100/CL #Demand Factor\n", + "EC1=(N1*W*T1)+(N2*W*T2)+(N3*W*T3) #Energy Consumed\n", + "DLF1=EC1*100/(24*MD1) #Daily Load Factor\n", + "\n", + "#CASE 2\n", + "MD2=(W*N2)+Wh #From 8pm - 10pm\n", + "EC2=(T4*Wih)+(T5*Wh)+EC1 #Energy Consumed\n", + "DLF2=EC2*100/(24*MD2) #Daily Load Factor\n", + "\n", + "print '''i)a) Connected Load is %0.2f W\\nb) The Maximum Demand is %0.2f W\n", + "c) The Demand Factor is %0.2f percent\\nd) The Daily Load Factor is %0.2f percent''' %(CL,MD1,DF,DLF1)\n", + "print 'ii) The Improved Daily Load Factor is %0.2f percent' %DLF2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)a) Connected Load is 900.00 W\n", + "b) The Maximum Demand is 600.00 W\n", + "c) The Demand Factor is 66.67 percent\n", + "d) The Daily Load Factor is 17.50 percent\n", + "ii) The Improved Daily Load Factor is 26.47 percent\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex2, Page 74" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#To determine the Demand and supply parameter of four consumers\n", + "\n", + "\n", + "#Maximum Demands of various users\n", + "MD1=2*(10**3) #9pm\n", + "MD2=2*(10**3) #12 noon\n", + "MD3=8*(10**3) #5pm\n", + "MD4=4*(10**3) #8pm\n", + "MDT=MD1+MD2+MD3+MD4 #Sum of all Maximum Demands\n", + "\n", + "#Demands of various users\n", + "D1=1.6*(10**3) #8pm\n", + "D2=1*(10**3) #8pm\n", + "D3=5*(10**3) #8pm\n", + "\n", + "#The Number after the Alphabets represents the Consumer\n", + "\n", + "#Maximum Demand of the System arises at 8.00 PM\n", + "MDS = D1+D2+D3+MD4 \n", + "\n", + "TDF=MDT/MDS #Diversity Factor\n", + "#Given Values\n", + "#Average Loads\n", + "AL2=500 \n", + "AL4=1000 \n", + "#Load Factors\n", + "LF1=15/100 \n", + "LF3=25/100 \n", + "#Calculated Values\n", + "#Average Loads\n", + "AL1=LF1*MD1 \n", + "AL3=LF3*MD3 \n", + "#Load Factors\n", + "LF2=AL2*100/MD2 \n", + "LF4=AL4*100/MD4 \n", + "\n", + "ALS=AL1+AL2+AL3+AL4 #Combined Average Loads\n", + "LFS=ALS*100/MDS #Combined Load Factor\n", + "\n", + "#Load Percent\n", + "LF1*=100 # %\n", + "LF3*=100 # %\n", + "\n", + "print 'i) The Diversity Factor is %0.2f' %TDF\n", + "print 'ii) The Average load and Load factor of:'\n", + "print ' Consumer 1 : %0.2f W and %0.2f percent' %(AL1,LF1)\n", + "print ' Consumer 2 : %0.2f W and %0.2f percent' %(AL2,LF2)\n", + "print ' Consumer 3 : %0.2f W and %0.2f percent' %(AL3,LF3)\n", + "print ' Consumer 4 : %0.2f W and %0.2f percent' %(AL4,LF4)\n", + "print 'iii) The Combined Load Factor and the Combined Average Load is %0.2f percent and %0.2f W respectively\\n' %(LFS,ALS)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i) The Diversity Factor is 1.38\n", + "ii) The Average load and Load factor of:\n", + " Consumer 1 : 300.00 W and 15.00 percent\n", + " Consumer 2 : 500.00 W and 25.00 percent\n", + " Consumer 3 : 2000.00 W and 25.00 percent\n", + " Consumer 4 : 1000.00 W and 25.00 percent\n", + "iii) The Combined Load Factor and the Combined Average Load is 32.76 percent and 3800.00 W respectively\n", + "\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex3, Page 75" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#To Determine the Yearly Cost of the substation\n", + "\n", + "Teff=95/100 #Transmission Efficiency\n", + "Deff=85/100 #Distribution Efficiency\n", + "DFT=1.2 #Diversity Factor For Transmission\n", + "DFD=1.3 #Diversity Factor For Distribution\n", + "MDGS=100*(10**6) #Maximum Demand of Generating Station\n", + "ALF=40/100 #Annual Load Factor\n", + "ACCT=2.5*(10**6) #Annual Capital Charge for Transmission\n", + "ACCD=2*(10**6) #Annual Capital Charge for Distribution\n", + "GCC=100 #Generating Cost per kW demand\n", + "GCCU=5/100 # Per Unit Cost\n", + "#Fixed Charges from Supply to Substation Annually\n", + "GFC=GCC*MDGS/1000 #Generating\n", + "TFC=ACCT #Transmission\n", + "TotFCS=GFC+TFC #Total\n", + "#Fixed Charges for supply upto Consumer Annually\n", + "DFC=ACCD #Distribution\n", + "TotFCC=TotFCS+DFC #Total\n", + "\n", + "AMDS= DFT*MDGS/1000 #Aggregate of Maximum Demand at Supply\n", + "AMDC= DFD*AMDS #Aggregate of Maximum Demand for Consumers\n", + "\n", + "FCS=TotFCS/AMDS #Fixed Charges Per KW at substation\n", + "CES=GCCU/Teff #Cost of energy at the substation\n", + "\n", + "FCC=TotFCC/AMDC #Fixed Charges per KW at the consumer premises\n", + "CEC=CES/Deff #Cost of Energy at the consumer premises\n", + "\n", + "CEC*=100 # converting from rupee to paise\n", + "\n", + "print 'The Yealy Cost per KW demand and the cost per KWhr at:'\n", + "print 'a) The substation is %0.2f rupees per KW and %0.2f paise per kWhr'%(FCS,CES)\n", + "print 'b) The consumer premises is %g rupees per KW and %g paise per kWhr' %(FCC,CEC)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Yealy Cost per KW demand and the cost per KWhr at:\n", + "a) The substation is 104.17 rupees per KW and 0.05 paise per kWhr\n", + "b) The consumer premises is 92.9487 rupees per KW and 6.19195 paise per kWhr\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex4, Page 78" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#To determine the Load factor and suitable units for 24 hr operation of the plant\n", + "\n", + "\n", + "#Demands at Various Time Periods starting from 12PM to 12PM\n", + "D1=500*(10**3) \n", + "D2=800*(10**3) \n", + "D3=2000*(10**3) \n", + "D4=1000*(10**3) \n", + "D5=2500*(10**3) \n", + "D6=2000*(10**3) \n", + "D7=1500*(10**3) \n", + "D8=1000*(10**3) \n", + "\n", + "MD=D5 #Maximum Demand\n", + "#Time Periods of demands from 12PM\n", + "T1=5 \n", + "T2=5 \n", + "T3=2 \n", + "T4=2 \n", + "T5=3 \n", + "T6=3 \n", + "T7=2 \n", + "T8=2 \n", + "\n", + "#Total Energy Demand in 24hrs\n", + "TED=(T1*D1)+(T2*D2)+(T3*D3)+(D4*T4)+(T5*D5)+(D6*T6)+(D7*T7)+(T8*D8) \n", + "\n", + "LF=TED*100/(24*MD) \n", + "\n", + "C1000=3*1000*(10**3) #1000 unit \n", + "C500=1*500*(10**3) #500 Unit\n", + "\n", + "TCP=C1000+C500 #Total capacity of the plant\n", + "PCF=TED*100/(24*TCP) #Plant Capacity Factor\n", + "\n", + "#Operating Schedule, Units operated can be seen in the textbook\n", + "G1=500*(10**3) \n", + "G2=1000*(10**3) \n", + "G3=2000*(10**3) \n", + "G4=1000*(10**3) \n", + "G5=2500*(10**3) \n", + "G6=2000*(10**3) \n", + "G7=1500*(10**3) \n", + "G8=1000*(10**3) \n", + "\n", + "TEG=(T1*G1)+(T2*G2)+(T3*G3)+(G4*T4)+(T5*G5)+(G6*T6)+(G7*T7)+(T8*G8) #Total Energy Generated\n", + "PUF=TED*100/(TEG) #Plant Use Factor\n", + "\n", + "print 'a) The Reserve Capacity is a 1000kW Unit and Load Factor is %0.2f percent' %LF\n", + "print 'b) The Plant Capacity Factor is %0.2f percent' %PCF\n", + "print 'c) The Plant Use Factor is %0.2f percent' %PUF" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a) The Reserve Capacity is a 1000kW Unit and Load Factor is 51.67 percent\n", + "b) The Plant Capacity Factor is 36.90 percent\n", + "c) The Plant Use Factor is 96.88 percent\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex5, Page 80" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#To determine the Plant use factore of each unit\n", + "\n", + "\n", + "MDS=25*(10**6) #Maximum Demand on the System\n", + "U1=15*(10**6) #Load Supplied By Unit 1\n", + "U2=12.5*(10**6) #Load Supplied By Unit 2\n", + "#Running Time Factor of the Unit\n", + "T1=1 \n", + "T2=40/100 \n", + "\n", + "#Energy generated by each unit\n", + "E1=1*(10**8) \n", + "E2=1*(10**7) \n", + "Et=E1+E2 #Total Energy\n", + "\n", + "#Maximum Demands on Each Units\n", + "MD1=U1 \n", + "MD2=MDS-U1 \n", + "\n", + "#Annual Load Factor for the Units\n", + "ALF1=E1*1000*100/(MD1*8760) \n", + "ALF2=E2*1000*100/(MD2*8760) \n", + "\n", + "LF2=E2*1000*100/(MD2*0.4*8760) #Load Factor for the it is loaded\n", + "\n", + "\n", + "PUF1=ALF1 #Plant Use Factor\n", + "PCF1=ALF1 # Plant Capacity Factor\n", + "\n", + "PCF2=E2*1000*100/(U2*8760) #Plant Capacity Factor for Unit 2\n", + "PUF2=E2*1000*100/(U2*0.4*8760) #Plant Use Factor for Unit 2\n", + "\n", + "LFP=Et*100*1000/(MDS*8760) #Annual Load Factor of the Complete Plant\n", + "\n", + "print 'The Load Factor, Plant Capacity Factor, Plant Use Factor of:'\n", + "print 'Unit 1 : %0.2f percent, %0.2f percent, %0.2f percent' %(ALF1,PCF1,PUF1)\n", + "print 'Unit 2 : %0.2f percent, %0.2f percent, %0.2f percent' %(ALF2,PCF2,PUF2)\n", + "print 'The Annual Load Factor of the Entire Plant is %0.2f percent' %LFP" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Load Factor, Plant Capacity Factor, Plant Use Factor of:\n", + "Unit 1 : 76.10 percent, 76.10 percent, 76.10 percent\n", + "Unit 2 : 11.42 percent, 9.13 percent, 22.83 percent\n", + "The Annual Load Factor of the Entire Plant is 50.23 percent\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex6, Page 91" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#To determine the most economic power factor\n", + "\n", + "from numpy import sqrt\n", + "\n", + "P=200*(10**3) #Maximum Demand\n", + "pf=0.707 #Power Factor Lagging\n", + "\n", + "a=100 #Tariff per kVA per year\n", + "\n", + "b=200 #Power factor improvement cost Per kVA.\n", + "r=20 #Interest Depriciation, maintenance and cost of losses amount to 20% of capital cost per year\n", + "\n", + "# Economic PF = sqrt(1-((b1/a)**2))\n", + "\n", + "b1=r*b/100 # b' term accrding to the equation above\n", + "\n", + "pfeco=sqrt(1-((b1/a)**2)) #Economic Power Factor\n", + "\n", + "print 'The Economic Power Factor is %0.2f ' %pfeco\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Economic Power Factor is 0.92 \n" + ] + } + ], + "prompt_number": 22 + } + ], + "metadata": {} + } + ] +} |