summaryrefslogtreecommitdiff
path: root/sample_notebooks/LalitKumar/chapter2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/LalitKumar/chapter2.ipynb')
-rwxr-xr-xsample_notebooks/LalitKumar/chapter2.ipynb347
1 files changed, 347 insertions, 0 deletions
diff --git a/sample_notebooks/LalitKumar/chapter2.ipynb b/sample_notebooks/LalitKumar/chapter2.ipynb
new file mode 100755
index 00000000..57657aa7
--- /dev/null
+++ b/sample_notebooks/LalitKumar/chapter2.ipynb
@@ -0,0 +1,347 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2 : Atomic model & bonding in solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.1, page no-28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#given\n",
+ "#atomic no. of gold\n",
+ "Z=79\n",
+ "#kinetic energy of alpha particle\n",
+ "E=7.68*1.6*(10)**(-13) #J because [1MeV=1.6*(10)**(-13)]\n",
+ "e=1.6*10**(-19) #C\n",
+ "E0=8.854*10**(-12) #F/m\n",
+ "#the distance of closest approach is given by:\n",
+ "d0=2*e*Z*e/(4*(math.pi)*E0*E) #m\n",
+ "print \"The closest approach of alpha particle is %.2ef m\" %d0"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The closest approach of alpha particle is 2.96e-14f m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.2, page no-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "from numpy import *\n",
+ "#given\n",
+ "#IN THE RUTHERFORD SCATTERING EXPERIMENT\n",
+ "#the no of particles scattered at\n",
+ "theta1=(pi)/2 #radians\n",
+ "#is\n",
+ "N90=44 #per minute\n",
+ "#the number of particles scattered particales N is given by\n",
+ "#N=C*(1/(sin(theta/2))**4) where C is propotionality constant\n",
+ "#solving above equation for C\n",
+ "C=N90*(sin(theta1/2))**4 \n",
+ "# now to find the no of particles scatering at 75 and 135 degrees\n",
+ "theta2=75*(pi)/180 #radians\n",
+ "N75=C*(1/(sin(theta2/2))**4) #per minute\n",
+ "theta3=135*(pi)/180 #radians\n",
+ "N135=C*(1/(sin(theta3/2))**4) #per minute\n",
+ "print \"The no of particles scattered at 75 and 135 degrees are %d per minute and %d per minutes\" %(N75,N135)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The no of particles scattered at 75 and 135 degrees are 80 per minute and 15 per minutes\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.3, page no-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#mass of electron\n",
+ "m=9.11*10**(-31) #kg\n",
+ "#charge on an electron\n",
+ "e=1.6*10**(-19) #C\n",
+ "#plank's constant\n",
+ "h=6.62*10**(-34)\n",
+ "E0=8.85*10**(-12) \n",
+ "#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n",
+ "n=1\n",
+ "#atomic number of hydrogen\n",
+ "Z=1\n",
+ "#radius of first orbit of hydrogen is given by\n",
+ "r1=n**2*E0*h**2/((pi)*m*Z*e**2) #m\n",
+ "print \"The radius of the first orbit of the electron in the hydrogen atom %.2e\"%(r1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The radius of the first orbit of the electron in the hydrogen atom 5.29e-11\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.4, page no-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#mass of electron\n",
+ "m=9.11*10**(-31) #kg\n",
+ "#charge on an electron\n",
+ "e=1.6*10**(-19) #C\n",
+ "#plank's constant\n",
+ "h=6.62*10**(-34)\n",
+ "E0=8.85*10**(-12) \n",
+ "#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n",
+ "n=1\n",
+ "#atomic number of hydrogen\n",
+ "Z=1\n",
+ "#ionization potential energy of hydrogen atom is given by\n",
+ "E=m*Z**2*e**4/(8*(E0)**2*h**2*n**2) #J\n",
+ "#energy in eV\n",
+ "EV=E/e #eV\n",
+ "print \"The ionization potential for hydrogen atom is %0.2f V\" %(EV)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ionization potential for hydrogen atom is 13.59 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.5, page no-34"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.6, page no-36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#uncertainity in the momentum\n",
+ "deltap=10**-27 #kg ms**-1\n",
+ "#according to uncertainity principle\n",
+ "#deltap* deltax >=h/(2*(pi))\n",
+ "#we know that \n",
+ "h=6.626*10**-34 #Js\n",
+ "#here instead of inequality we are using only equality just for notation otherwise it is greater than equal to as mentioned above\n",
+ "#now deltax is given by\n",
+ "deltax=h/(2*(pi)*deltap) #m\n",
+ "print \"The minimum uncertainity is %.2e m\"%(deltax)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum uncertainity is 1.05e-07 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.10, page no- 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#ionization potential of hydrogen\n",
+ "E1=13.6 #eV\n",
+ "#when \n",
+ "n=3\n",
+ "E3=-E1/n**2 #eV\n",
+ "#when \n",
+ "n=5\n",
+ "E5=-E1/n**2 #eV\n",
+ "print \"Energy of 3rd and 5th orbits are %0.2f eV and %0.2f eV\"%(E3,E5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of 3rd and 5th orbits are -1.51 eV and -0.54 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.11, page no-59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#dipole moment og HF is\n",
+ "DM=6.375*10**(-30) #Cm\n",
+ "#intermolecular distance\n",
+ "r=0.9178*10**(-10) #m\n",
+ "#charge on an electron\n",
+ "e=1.67*10**(-19) #C\n",
+ "#since the HF posses ionic characters\n",
+ "#so\n",
+ "#Hf in fully ionic state has dipole moment as\n",
+ "DM2=r*e #Cm\n",
+ "#percentage ionic characters\n",
+ "percentage=DM/DM2*100 #%\n",
+ "print \"The percentage ionic character is %0.2f approx.\"%(percentage)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage ionic character is 41.59 approx.\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example-2.12, page no-60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#elctronegativity of In\n",
+ "EnIn=1.5\n",
+ "#elctronegativity of As\n",
+ "EnAs=2.2\n",
+ "#elctronegativity of Ga\n",
+ "EnGa=1.8\n",
+ "#for InAs\n",
+ "ionic_charater1=(1-exp((-0.25)*(EnAs-EnIn)**2))*100 #in %\n",
+ "#for GaAs\n",
+ "ionic_charater2=(1-exp((-0.25)*(EnAs-EnGa)**2))*100 # in %\n",
+ "print \"Ionic character in InAs and GaAs are %0.1f %% and %0.1f %%\"%(ionic_charater1,ionic_charater2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ionic character in InAs and GaAs are 11.5 % and 3.9 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}