summaryrefslogtreecommitdiff
path: root/sample_notebooks/DurgasriInnamuri
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/DurgasriInnamuri')
-rwxr-xr-xsample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices_Fundamentals.ipynb223
1 files changed, 223 insertions, 0 deletions
diff --git a/sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices_Fundamentals.ipynb b/sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices_Fundamentals.ipynb
new file mode 100755
index 00000000..ade5b7fd
--- /dev/null
+++ b/sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices_Fundamentals.ipynb
@@ -0,0 +1,223 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3 Semoconductor Devices Fundamentals"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.2 page no:35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of the si doped with n−dopant is : \n",
+ "0.089 ohm−cm \n"
+ ]
+ }
+ ],
+ "source": [
+ "def resistivity(u,n): #n:doped concentration =10**17 atoms/cubic cm, u: mobility of electrons =700square cm/v−sec .\n",
+ " q=1.6*10**-19 #q: charge\n",
+ " Res=1/(q*u*n)# since P is neglegible . \n",
+ " print \"resistivity of the si doped with n−dopant is : \"\n",
+ " print \"%0.3f ohm−cm \"%Res \n",
+ "resistivity(10**17,700)\n",
+ "# after executing calling resitivity ( u=700 and n =10ˆ17)i .e. , resistivity (10ˆ17 ,700) ;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.3 page no:35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of intrinsic Ge is : \n",
+ "2595245510.225 ohm−cm \n"
+ ]
+ }
+ ],
+ "source": [
+ "def resistivity(un,np): # un: electron concentration , up: hole concentration\n",
+ " q=1.6*10**-19 #in coulumb \n",
+ " ni=2.5*10*13 # concentration in cmˆ−3 \n",
+ " Res=1/(q*ni*un*np) # since n=p=ni \n",
+ " print \"resistivity of intrinsic Ge is : \"\n",
+ " print \"%0.3f ohm−cm \"%Res \n",
+ "resistivity(3900,1900)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.4 page no:37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hole concentrartion at 300K is : \n",
+ "2250.000000 per cubic cm \n"
+ ]
+ }
+ ],
+ "source": [
+ "def holeconcentration(ni,Nd): # Nd: donar concentration ; since , Nd>>ni , so Nd=n=10ˆ17 atoms/cmˆ3.\n",
+ " p=ni**2/Nd\n",
+ " print \"hole concentrartion at 300K is : \"\n",
+ " print \"%f per cubic cm \"%p\n",
+ "holeconcentration(1.5*10**10,10**17);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.5 page no:39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of the copper is : \n",
+ "2.29779411765e-08 ohm−meter\n"
+ ]
+ }
+ ],
+ "source": [
+ "q=1.6*10**-19;\n",
+ "n=8.5*10**28;\n",
+ "u=3.2*10**-3;\n",
+ "p=1/(n*q*u);\n",
+ "print \"resistivity of the copper is : \"\n",
+ "print p,\" ohm−meter\"\n",
+ "# 2.298D−08 means 2.298∗10ˆ −8"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.6 page no:41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cu is: 0.0570814666846 pF\n",
+ "Ccs is: 0.282102806737 pF\n",
+ "gm is : 7.7519379845 mA/V\n",
+ "C1 is: 3.32558139535 pF\n",
+ "R1 is: 25.8 kilo ohm\n",
+ "R0 is 645.0 kilo Ohm \n",
+ "Ru is: 1290.0 Mega Ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "\n",
+ "Cuo=0.25; # collector −base depletion region capacitance in pico Farad(pF) for zero bias\n",
+ "Ccso=1.5 ; # collector −substrate junction capacitance in pico Farad(pF) for zero bias\n",
+ "q=1.6*10**-19 ; # electron charge in coulomb\n",
+ "Ic=0.2 ; #collector current in ampere(A)\n",
+ "k=8.6*10**-5; #in eV/K, where 1eV=1.6∗10ˆ−19\n",
+ "T=300; # absolute temperature in kelvin (K)\n",
+ "Vcb=10 ; #forward bias on the junction in volt(v)\n",
+ "Vcs=15 ; # collector −substrate bias in volt (V)\n",
+ "Cje=1 ; #depletion region capacitance in pico Farad(pF)\n",
+ "Bo=200; #small signal current gain\n",
+ "Tf=0.3; #transit time in forward direction in nano seconds (nS)\n",
+ "n=2*10**-4; # proportionality constant for Ro and gm\n",
+ "Vo=0.55; # bias voltage in volt (V)\n",
+ "Cu=Cuo/sqrt(1+(Vcb/Vo));# collector −base capacitance\n",
+ "print \"Cu is: \",Cu,\" pF\"\n",
+ "Ccs=Ccso/sqrt(1+(Vcs/Vo)); # capacitance collector −substrate\n",
+ "print \"Ccs is: \",Ccs,\"pF\"\n",
+ "gm=q*Ic/(k*T*1.6*10**-19);# since k is in eV so converting it in Coulomb/Kelvin\n",
+ "print \"gm is :\",gm,\"mA/V\"# transconductance of the bipolar transistor here\n",
+ "Cb=Tf*gm;# diffusion capacitance in pico Farad(pF)\n",
+ "C1=Cb+Cje;#small signal capacitance of bipolar transistor\n",
+ "print \"C1 is: \",C1,\"pF\"\n",
+ "R1=Bo/gm;# small signal input resistance of bipolar transistor\n",
+ "print \"R1 is: \",R1,\" kilo ohm\"\n",
+ "Ro=1/(n*gm);#small signal output resistance\n",
+ "print \"R0 is \",Ro,\" kilo Ohm \"\n",
+ "Ru=10*Bo*Ro/10**3;# collector −base resistance\n",
+ "print \"Ru is: \",Ru,\"Mega Ohm \""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}