diff options
Diffstat (limited to 'sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices.ipynb')
-rwxr-xr-x | sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices.ipynb | 223 |
1 files changed, 0 insertions, 223 deletions
diff --git a/sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices.ipynb b/sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices.ipynb deleted file mode 100755 index ade5b7fd..00000000 --- a/sample_notebooks/DurgasriInnamuri/Chapter_3_Semoconductor_Devices.ipynb +++ /dev/null @@ -1,223 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 3 Semoconductor Devices Fundamentals" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.2 page no:35" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "resistivity of the si doped with n−dopant is : \n", - "0.089 ohm−cm \n" - ] - } - ], - "source": [ - "def resistivity(u,n): #n:doped concentration =10**17 atoms/cubic cm, u: mobility of electrons =700square cm/v−sec .\n", - " q=1.6*10**-19 #q: charge\n", - " Res=1/(q*u*n)# since P is neglegible . \n", - " print \"resistivity of the si doped with n−dopant is : \"\n", - " print \"%0.3f ohm−cm \"%Res \n", - "resistivity(10**17,700)\n", - "# after executing calling resitivity ( u=700 and n =10ˆ17)i .e. , resistivity (10ˆ17 ,700) ;" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.3 page no:35" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "resistivity of intrinsic Ge is : \n", - "2595245510.225 ohm−cm \n" - ] - } - ], - "source": [ - "def resistivity(un,np): # un: electron concentration , up: hole concentration\n", - " q=1.6*10**-19 #in coulumb \n", - " ni=2.5*10*13 # concentration in cmˆ−3 \n", - " Res=1/(q*ni*un*np) # since n=p=ni \n", - " print \"resistivity of intrinsic Ge is : \"\n", - " print \"%0.3f ohm−cm \"%Res \n", - "resistivity(3900,1900)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.4 page no:37" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hole concentrartion at 300K is : \n", - "2250.000000 per cubic cm \n" - ] - } - ], - "source": [ - "def holeconcentration(ni,Nd): # Nd: donar concentration ; since , Nd>>ni , so Nd=n=10ˆ17 atoms/cmˆ3.\n", - " p=ni**2/Nd\n", - " print \"hole concentrartion at 300K is : \"\n", - " print \"%f per cubic cm \"%p\n", - "holeconcentration(1.5*10**10,10**17);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.5 page no:39" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "resistivity of the copper is : \n", - "2.29779411765e-08 ohm−meter\n" - ] - } - ], - "source": [ - "q=1.6*10**-19;\n", - "n=8.5*10**28;\n", - "u=3.2*10**-3;\n", - "p=1/(n*q*u);\n", - "print \"resistivity of the copper is : \"\n", - "print p,\" ohm−meter\"\n", - "# 2.298D−08 means 2.298∗10ˆ −8" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.6 page no:41" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cu is: 0.0570814666846 pF\n", - "Ccs is: 0.282102806737 pF\n", - "gm is : 7.7519379845 mA/V\n", - "C1 is: 3.32558139535 pF\n", - "R1 is: 25.8 kilo ohm\n", - "R0 is 645.0 kilo Ohm \n", - "Ru is: 1290.0 Mega Ohm \n" - ] - } - ], - "source": [ - "from math import sqrt\n", - "\n", - "Cuo=0.25; # collector −base depletion region capacitance in pico Farad(pF) for zero bias\n", - "Ccso=1.5 ; # collector −substrate junction capacitance in pico Farad(pF) for zero bias\n", - "q=1.6*10**-19 ; # electron charge in coulomb\n", - "Ic=0.2 ; #collector current in ampere(A)\n", - "k=8.6*10**-5; #in eV/K, where 1eV=1.6∗10ˆ−19\n", - "T=300; # absolute temperature in kelvin (K)\n", - "Vcb=10 ; #forward bias on the junction in volt(v)\n", - "Vcs=15 ; # collector −substrate bias in volt (V)\n", - "Cje=1 ; #depletion region capacitance in pico Farad(pF)\n", - "Bo=200; #small signal current gain\n", - "Tf=0.3; #transit time in forward direction in nano seconds (nS)\n", - "n=2*10**-4; # proportionality constant for Ro and gm\n", - "Vo=0.55; # bias voltage in volt (V)\n", - "Cu=Cuo/sqrt(1+(Vcb/Vo));# collector −base capacitance\n", - "print \"Cu is: \",Cu,\" pF\"\n", - "Ccs=Ccso/sqrt(1+(Vcs/Vo)); # capacitance collector −substrate\n", - "print \"Ccs is: \",Ccs,\"pF\"\n", - "gm=q*Ic/(k*T*1.6*10**-19);# since k is in eV so converting it in Coulomb/Kelvin\n", - "print \"gm is :\",gm,\"mA/V\"# transconductance of the bipolar transistor here\n", - "Cb=Tf*gm;# diffusion capacitance in pico Farad(pF)\n", - "C1=Cb+Cje;#small signal capacitance of bipolar transistor\n", - "print \"C1 is: \",C1,\"pF\"\n", - "R1=Bo/gm;# small signal input resistance of bipolar transistor\n", - "print \"R1 is: \",R1,\" kilo ohm\"\n", - "Ro=1/(n*gm);#small signal output resistance\n", - "print \"R0 is \",Ro,\" kilo Ohm \"\n", - "Ru=10*Bo*Ro/10**3;# collector −base resistance\n", - "print \"Ru is: \",Ru,\"Mega Ohm \"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.10" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |