diff options
Diffstat (limited to 'sample_notebooks/AnaySonawane/Solid_State_electronics_Ch1.ipynb')
-rwxr-xr-x | sample_notebooks/AnaySonawane/Solid_State_electronics_Ch1.ipynb | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/sample_notebooks/AnaySonawane/Solid_State_electronics_Ch1.ipynb b/sample_notebooks/AnaySonawane/Solid_State_electronics_Ch1.ipynb new file mode 100755 index 00000000..1839cfe8 --- /dev/null +++ b/sample_notebooks/AnaySonawane/Solid_State_electronics_Ch1.ipynb @@ -0,0 +1,971 @@ +{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1 : Introduction to Solid State Electronics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1, Page No. 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# ne in the doped silicon\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "ni=1.5*10**16 # in m^-3\n",
+ "nh=4.5*10**22 # in m^-3\n",
+ "\n",
+ "#Calculations\n",
+ "ne=ni**2/nh\n",
+ "\n",
+ "#Result\n",
+ "print(\" ne in the doped silicon is,(m^-3) = %.f * 10^9\"%(ne/10**9))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " ne in the doped silicon is,(m^-3) = 5 * 10^9\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2, Page No. 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# resistivity\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "\n",
+ "ne=8.0*10**19 # in m^-3\n",
+ "nh=5.0*10**18 # in m^-3\n",
+ "mu_e=2.3 # in m^2/V-s\n",
+ "mu_h=.01 # in m^2/V-s\n",
+ "e=1.6*10**-19 # in V\n",
+ "\n",
+ "#Calculations\n",
+ "p=1/(e*((ne*mu_e)+(nh*mu_h)));\n",
+ "\n",
+ "#Result\n",
+ "print(\"(b) the resistivity,p(ohm-m)= %.1f * 10^-2\"%(p*10**2))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(b) the resistivity,p(ohm-m)= 3.4 * 10^-2\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3, Page No. 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Density\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "\n",
+ "sigma=500.0 # in ohm^-1 m^-1\n",
+ "mu_e=0.39 # m^2/V-s\n",
+ "e=1.6*10**-19 # in V\n",
+ "\n",
+ "#Calculations\n",
+ "ne=sigma/(e*mu_e);\n",
+ "\n",
+ "#Result\n",
+ "print(\"number density of donor,ne(m^-3) = %.2f * 10^21\"%(ne*10**-21))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "number density of donor,ne(m^-3) = 8.01 * 10^21\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4, Page No. 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Density\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "\n",
+ "e=1.6*10**-19 # in V\n",
+ "Pp=10**-2 # p-type silicon in ohm-m\n",
+ "Pn=10**-2 # n-type silicon in ohm-m\n",
+ "mu_p=0.048 # holes mobilities in m^2/V-s\n",
+ "mu_n=0.135 # electrons mobilities in m^2/V-s\n",
+ "\n",
+ "#Calculations\n",
+ "Na=1/(e*mu_p*Pp);\n",
+ "Nd=1/(e*mu_n*Pn);\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i). the density of impurity,Na (m^-3) = %.1f * 10^22\"%(Na*10**-22))\n",
+ "print(\"(ii). the density of impurity,Nd (m^-3) = %.2f * 10^21\"%(Nd*10**-21))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i). the density of impurity,Na (m^-3) = 1.3 * 10^22\n",
+ "(ii). the density of impurity,Nd (m^-3) = 4.63 * 10^21\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.5, Page No. 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Resistivity\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19 # in V\n",
+ "n=2.5*10**19 # m^3\n",
+ "p=n\n",
+ "ni=n\n",
+ "mu_p=0.17 # holes mobilities in m^2/V-s\n",
+ "mu_n=0.36 # electrons mobilities in m^2/V-s\n",
+ "\n",
+ "#Calculations\n",
+ "sgint=e*(ni*(mu_p+mu_n)) #electrical conductivity in mho/metre\n",
+ "pint=1/sgint #resistivity in ohm-meter\n",
+ "print(\"electrical conductivity is ,(mho/metre)= %.2f\"%sgint)\n",
+ "print(\"resistivity is ,(ohm-metre)= %.2f\"%pint)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electrical conductivity is ,(mho/metre)= 2.12\n",
+ "resistivity is ,(ohm-metre)= 0.47\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.6, Page No. 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Conductivity\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "\n",
+ "e=1.6*10**-19 # in V\n",
+ "ni=1.5*10**16 # in m^3\n",
+ "mu_p=0.13 # holes mobilities in m^2/V-s\n",
+ "mu_n=0.05 # electrons mobilities in m^2/V-s\n",
+ "siat=10.0**8 # number of silicon atoms\n",
+ "ta=5.0*10**28 # silicon atoms in atoms/m^3\n",
+ "mu_n2=0.13 # electrons mobilities in m^2/V-s\n",
+ "siat2=10.0**8 # number of silicon atoms\n",
+ "ta2=5.0*10**28 # silicon atoms in atoms/m^3\n",
+ "mu_p2=0.05 # holes mobilities in m^2/V-s\n",
+ "\n",
+ "#Calculations\n",
+ "sgint=e*(ni*(mu_p+mu_n)) # electrical conductivity in mho/m\n",
+ "Nd=ta/siat # in atoms/m^3\n",
+ "p= ni**2/Nd # holes concentration in holes/m^3\n",
+ "n=Nd\n",
+ "sntype=e*n*mu_n2 # in mho/m\n",
+ "Na=ta2/siat2 # in atoms/m^3\n",
+ "n= ni**2/Na # holes concentration in holes/m^3\n",
+ "sptype=e*Na*mu_p2 # in mho/m\n",
+ "\n",
+ "#Calculations\n",
+ "print(\"(i) electrical conductivity is ,(mhos/m) = %.2f * 10^-4\"%(sgint*10**4))\n",
+ "print(\"(ii) holes concentration is, (holes/m^3) = %.1f *10^11\"%(p*10**-11))\n",
+ "print(\"(ii) conductivity is ,(mho/m) = %.1f\"%sntype)\n",
+ "print(\"(iii) electron concentration is, (holes/m^3)= %.1f * 10^11\"%(n/10**11))\n",
+ "print(\"(iii) conductivity is ,(mho/m) = %.1f\"%sptype)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) electrical conductivity is ,(mhos/m) = 4.32 * 10^-4\n",
+ "(ii) holes concentration is, (holes/m^3) = 4.5 *10^11\n",
+ "(ii) conductivity is ,(mho/m) = 10.4\n",
+ "(iii) electron concentration is, (holes/m^3)= 4.5 * 10^11\n",
+ "(iii) conductivity is ,(mho/m) = 4.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7, Page No. 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Fermi Level\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "#Nd1=Nc*exp^-(Ec-Ef1)/kT ...Formula Used\n",
+ "Nc=1.0 #assume\n",
+ "kT=0.03 #eV\n",
+ "EcEf1=0.5 #position of Fermi level in V\n",
+ "Nd=1.0 #assume\n",
+ "Nd1=3*Nd #After tripling the donor concentration\n",
+ "\n",
+ "#Calculation\n",
+ "EcEf2=(EcEf1-(kT*(math.log(Nd1/Nd))))\n",
+ "print(\"new position of Fermi-level is %.3f eV below conduction band\"%(math.ceil(EcEf2*1000)/1000))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "new position of Fermi-level is 0.468 eV below conduction band\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.8, Page No. 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# density\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19 # in V\n",
+ "Pp=10**-1 # p-type silicon in ohm-m\n",
+ "Pn=10**-1 # n-type silicon in ohm-m\n",
+ "mu_h=0.05 # holes mobilities in m^2/V-s\n",
+ "mu_e=0.13 # electrons mobilities in m^2/V-s\n",
+ "\n",
+ "#Calculations\n",
+ "Na=1/(e*mu_h*Pp);\n",
+ "Nd=1/(e*mu_e*Pn);\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i). the density of impurity,Na (m^-3) = %.2f * 10^21\"%(Na/10**21))\n",
+ "print(\"(ii). the density of impurity,Nd (m^-3) = %.1f * 10^20\"%(Nd/10**20))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i). the density of impurity,Na (m^-3) = 1.25 * 10^21\n",
+ "(ii). the density of impurity,Nd (m^-3) = 4.8 * 10^20\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.9, Page No. 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# current\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19 # in V\n",
+ "Pp=10**-1 # p-type silicon in ohm-m\n",
+ "Pn=10**-1 # n-type silicon in ohm-m\n",
+ "mu_hsi=0.048 # holes mobilities in m^2/V-s\n",
+ "mu_esi=0.135 # electrons mobilities in m^2/V-s\n",
+ "nisi=1.5*10**16 # in m^-3\n",
+ "nesi=nisi\n",
+ "nhsi=nisi\n",
+ "mu_hge=0.19 # holes mobilities in m^2/V-s\n",
+ "mu_ege=0.39 # electrons mobilities in m^2/V-s\n",
+ "A=1*10**-4 # area in m^2\n",
+ "nige=2.4*10**19 # in m^-3\n",
+ "V=2.0 # in V\n",
+ "l=0.1 # in m\n",
+ "\n",
+ "#Calculations\n",
+ "Isi= e*A*(V/l)*((nesi*mu_esi)+(nhsi*mu_hsi))\n",
+ "#Current for silicon is calculated wrong in the textbook\n",
+ "nege=nige\n",
+ "nhge=nige\n",
+ "Ige= e*A*(V/l)*((nege*mu_ege)+(nhge*mu_hge))\n",
+ "\n",
+ "#Result\n",
+ "print(\"Total current for silicon is,(A) = %f\"%Isi)\n",
+ "print(\"Total current for germanium is,(A)= %.2f * 10^-3\"%(math.ceil(Ige*10**5)/100))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total current for silicon is,(A) = 0.000001\n",
+ "Total current for germanium is,(A)= 4.46 * 10^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.10, Page No. 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# hole concentration and conductivity\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "nh=2*10**21 # acceptor atoms in atoms/m^3\n",
+ "mu_h=0.17 # mobility of holes in m^2/V-s\n",
+ "e=1.6*10**-19 # in C\n",
+ "\n",
+ "#Calculations\n",
+ "Na=nh\n",
+ "sigma=nh*mu_h*e;\n",
+ "\n",
+ "#Result\n",
+ "print(\"hole concentration,Na(atoms/m^3) = %.1f * 10^21\"%(Na/10**21))\n",
+ "print(\"conductivity,(ohm^-1-m^-1) = %.1f\"%sigma)\n",
+ "#conductivity is calculated wrong in the book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hole concentration,Na(atoms/m^3) = 2.0 * 10^21\n",
+ "conductivity,(ohm^-1-m^-1) = 54.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.11, Page No. 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# donor concentration\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "p=0.15 # in ohm-m\n",
+ "mu_e=0.39 # mobility of electron in m^2/V-s\n",
+ "e=1.6*10**-19 # in C\n",
+ "\n",
+ "#Calculations\n",
+ "Na=1/(e*mu_e*p);\n",
+ "\n",
+ "#Result\n",
+ "print(\"The value of donor concentration,Na(m^-3) = %.2f * 10^20\"%(Na/10**20))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of donor concentration,Na(m^-3) = 1.07 * 10^20\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.12, Page No. 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# resistivity\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "mu_n=0.13 # in m^2/V-s\n",
+ "mu_p=0.05 # in m^2/V-s\n",
+ "ni=1.5*10**16 # in m^-3\n",
+ "e=1.6*10**-19 # in C\n",
+ "\n",
+ "#Calculations\n",
+ "p=1/((e*ni)*(mu_n+mu_p));\n",
+ "\n",
+ "#Result\n",
+ "print(\"The resistivity,p(ohm-m) = %.1f\"%p)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The resistivity,p(ohm-m) = 2314.8\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.13, Page No. 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# current\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19 # electron charge in coulombs\n",
+ "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n",
+ "T=300.0 # in Kelvin\n",
+ "I=240.0 # in mA\n",
+ "eta=2.0\n",
+ "Ve=0.8 # in V\n",
+ "V=0.7 # in V\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "Vt=(k*T)/e # in V\n",
+ "Id=I*math.e**((V-Ve)/(eta*Vt)) #in mA\n",
+ "Ir=(I/((math.e**(Ve/(eta*Vt)))-1))*10**6\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"(i) Current is ,(mA) = %.f\"%(round(Id)))\n",
+ "print(\"(ii) reverse saturation current is ,(nA) = %.f\"%(round(Ir)))\n",
+ "#reverse saturation current is calculated wrong in the textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Current is ,(mA) = 35\n",
+ "(ii) reverse saturation current is ,(nA) = 46\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.14, Page No. 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# diode current and voltage\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19 # electron charge in coulombs\n",
+ "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n",
+ "T=300.0 # in Kelvin\n",
+ "Ir1=10**-10 # in A\n",
+ "Ir2=10**-12 # in A \n",
+ "V211=0.5 # in V\n",
+ "\n",
+ "#Calculations\n",
+ "Vt=(k*T)/e\n",
+ "Vt = math.ceil(Vt*1000)/1000\n",
+ "V21=((Vt)*math.log10(Ir1/Ir2))*2.3026\n",
+ "V21 = math.floor(V21*10000)/10000\n",
+ "V2=(1.0/2)*(V21+V211)\n",
+ "V1=(1.0/2)*(V211-V21)\n",
+ "I1=Ir2*math.e**(V2/Vt)*10**6\n",
+ "I2=I1\n",
+ "\n",
+ "#Result\n",
+ "print(\"diode voltage V2 is ,(V) = %.5f\"%V2)\n",
+ "print(\"diode voltage V1 is ,(V) = %.5f\"%V1)\n",
+ "print(\"diode current is,(micro-A) = %.4f\"%I1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "diode voltage V2 is ,(V) = 0.30985\n",
+ "diode voltage V1 is ,(V) = 0.19015\n",
+ "diode current is,(micro-A) = 0.1498\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.15, Page No. 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# voltage\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19 # electron charge in coulombs\n",
+ "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n",
+ "T=300.0 # in Kelvin\n",
+ "Ir1=10**-12 # in A\n",
+ "Ir2=10**-10 # in A\n",
+ "It=2.0 # mA\n",
+ "\n",
+ "#Calculations\n",
+ "I21=Ir2/Ir1\n",
+ "Vt=(k*T)/e # in V\n",
+ "Vt = math.ceil(Vt*1000)/1000\n",
+ "I1=It/(1+I21)*10**3 # in micro-A\n",
+ "I2=It*10**3-I1 # in micro-A\n",
+ "I1=I2/I21 # in micro-A\n",
+ "x=((I1*10**-6)/Ir1)\n",
+ "V=Vt*math.log10(x)*2.3026\n",
+ "\n",
+ "#Result\n",
+ "print(\"diode voltage is ,(V) = %.3f\"%V)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "diode voltage is ,(V) = 0.437\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.16, Page No. 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# voltage\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "T=27.0 # degree Celsius\n",
+ "Tk=273+T # in Kelvin\n",
+ "e=1.6*10**-19 # electron charge in coulombs\n",
+ "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n",
+ "J=10**4 # in Amp/m^2\n",
+ "Jo=200.0 #in mA/m^2\n",
+ "\n",
+ "#Calculations\n",
+ "x=(J/(Jo*10**-3))\n",
+ "Ve=((math.log(x))*k*Tk)/e\n",
+ "\n",
+ "#Result\n",
+ "print(\"voltage to be applied is ,(V) = %.2f\"%Ve)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "voltage to be applied is ,(V) = 0.28\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.17, Page No. 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# resistance\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "V=3.0 # in V\n",
+ "I=55.0 # in mA\n",
+ "V2=26.0 # in mV\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "Rdc=V/(I*10**-3) # in ohm\n",
+ "Rac=V2/I # in ohm\n",
+ "\n",
+ "#Result\n",
+ "print(\"static resistance is ,(ohm) = %.1f\"%Rdc)\n",
+ "print(\"dynamic resistance is ,(ohm) = %.2f\"%Rac)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "static resistance is ,(ohm) = 54.5\n",
+ "dynamic resistance is ,(ohm) = 0.47\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.18, Page No. 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# resistance\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23 # constant\n",
+ "T=27+273.0 # in K\n",
+ "eta=2.0\n",
+ "e=1.6*10**-19 # in C\n",
+ "Vt=(k*T/e) # in V\n",
+ "V=0.5 # in V\n",
+ "Ir=10**-6 # in A\n",
+ "\n",
+ "#Calculations\n",
+ "I=(Ir*10**3*(math.e**(V/(eta*Vt))-1))\n",
+ "R_dc=V*10**3/I;\n",
+ "R_ac=(eta*k*T)/(e*I*10**-3);\n",
+ "\n",
+ "#Result\n",
+ "print(\"static resistance,R_dc(ohm) = %.1f\"%R_dc)\n",
+ "print(\"Dynamic resistance,R_ac(ohm) = %.1f\"%R_ac)\n",
+ "#answer is wrong in textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "static resistance,R_dc(ohm) = 31.8\n",
+ "Dynamic resistance,R_ac(ohm) = 3.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.19, Page No. 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# resistance\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "V=1.2 # in V\n",
+ "Vk=0.7 # in V\n",
+ "I_F=100.0 # in mA\n",
+ "V_R=10.0 # in V\n",
+ "I_R=1.0 # in micro-A\n",
+ "I=5.0 # in mA\n",
+ "eta=2\n",
+ "\n",
+ "#Calculations\n",
+ "R_B=(V-Vk)/(I_F*10**-3)\n",
+ "R_R=V_R/I_R\n",
+ "R_ac=eta*26/I\n",
+ "\n",
+ "#Result\n",
+ "print(\"the bulk resistance,R_B(ohm) = %.f\"%R_B)\n",
+ "print(\"the reverse resistance,R_R(M-ohm) = %.f\"%R_R)\n",
+ "print(\"ac resistance,R_ac(ohm) = %.1f\"%R_ac)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the bulk resistance,R_B(ohm) = 5\n",
+ "the reverse resistance,R_R(M-ohm) = 10\n",
+ "ac resistance,R_ac(ohm) = 10.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.20, Page No. 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# capacitance\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "epsilon_0=8.85*10**-12 # in farada/m\n",
+ "K=12.0 # constant for silicon\n",
+ "A=1*10**-8 # in m^2\n",
+ "W=5*10**-7 # in m\n",
+ "\n",
+ "#Calculations\n",
+ "epsilon=epsilon_0*K\n",
+ "Ct=epsilon*A*10**14/W;\n",
+ "\n",
+ "#Result\n",
+ "print(\"the transition capacitance,Ct(PF) = %.1f\"%Ct)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the transition capacitance,Ct(PF) = 212.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.21, Page No. 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# resistance\n",
+ "\n",
+ "import math\n",
+ "#Variable declaration\n",
+ "V=0.2 # in V\n",
+ "I=1.0 # in micro-A\n",
+ "\n",
+ "#Calculations\n",
+ "R_dc=V*10**3/I\n",
+ "R_ac=26/(I*10**3);\n",
+ "\n",
+ "#Result\n",
+ "print(\"The static resistance,R_ac(k-ohm) = %.f\"%R_dc)\n",
+ "print(\"the dynamic resistance,R_ac(ohm) = %.3f\"%R_ac)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The static resistance,R_ac(k-ohm) = 200\n",
+ "the dynamic resistance,R_ac(ohm) = 0.026\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |