summaryrefslogtreecommitdiff
path: root/sample_notebooks/AbhishekGupta/Chapter02.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'sample_notebooks/AbhishekGupta/Chapter02.ipynb')
-rwxr-xr-xsample_notebooks/AbhishekGupta/Chapter02.ipynb328
1 files changed, 328 insertions, 0 deletions
diff --git a/sample_notebooks/AbhishekGupta/Chapter02.ipynb b/sample_notebooks/AbhishekGupta/Chapter02.ipynb
new file mode 100755
index 00000000..e709048c
--- /dev/null
+++ b/sample_notebooks/AbhishekGupta/Chapter02.ipynb
@@ -0,0 +1,328 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:dd88e5202fe8cb4f62cee212896e4620a6a485517d90fb3c0293ab4baa871eef"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter02: Structure of atoms"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1:pg-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 2.1 : radius of the first bohr\"s orbit \n",
+ " \n",
+ "#given data :\n",
+ "\n",
+ "ep=8.854*10**-12;#\n",
+ "h=6.626*10**-34;#\n",
+ "m=9.1*10**-31;#in Kg\n",
+ "e=1.602*10**-19;#\n",
+ "r1=((ep*(h**2))/((math.pi*m*(e**2))));#\n",
+ "print round(r1*10**10,2),\"is radius,r1(in angstrom) \"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "0.53 is radius,r1(in angstrom) \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.2:pg-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Example 2.2 : radius of the second bohr\"s orbit \n",
+ " \n",
+ "#given data :\n",
+ "\n",
+ "r1_h=0.529; # radius for hydrozen atom in Angstrum\n",
+ "n1=1;# for the first bohr's orbit of electron in hydrozen atom\n",
+ "Z1=1; # for the first bohr's orbit of electron in hydrozen atom\n",
+ "k=(r1_h*Z1)/n1**2; # where k is constant\n",
+ "n2=2; # for the second bohr orbit\n",
+ "Z2=2; #for the second bohr orbit\n",
+ "r2_he=k*(n2**2/Z2);\n",
+ "print r2_he,\" is radius of the second bohr orbit,r2 in (Angstrom) \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.058 is radius of the second bohr orbit,r2 in (Angstrom) \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.3:pg-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Example 2.3: to prove\n",
+ " \n",
+ "Z=1;#assume\n",
+ "n1=1;#orbit 1\n",
+ "n2=2;#orbit 2\n",
+ "n3=3;#orbit 3\n",
+ "e1=((-13.6*Z)/(n1**2));#energy for the first orbit\n",
+ "e2=((-13.6*Z)/(n2**2));#energy for the second orbit\n",
+ "e3=((-13.6*Z)/(n3**2));#energy for the third orbit\n",
+ "e31=e3-e1;#energy emitted by an electron jumping from orbit nuber 3 to orbit nimber 1\n",
+ "e21=e2-e1;#energy emitted by an electron jumping from orbit nuber 2 to orbit nimber 1\n",
+ "re=e31/e21;#ratio of energy\n",
+ "print re,\" is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \\n hence proved\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.18518518519 is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \n",
+ " hence proved\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.4:pg-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 2.4 : velocity\n",
+ " \n",
+ "#given data :\n",
+ "\n",
+ "h=6.626*10**-34;\n",
+ "e=1.6*10**-19;\n",
+ "epsilon_o=8.825*10**-12;\n",
+ "n=1;\n",
+ "Z=1;\n",
+ "vn=(Z*e**2)/(2*epsilon_o*n*h);\n",
+ "print vn,\" is velocity,vn in (m/s) \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2188990.2342 is velocity,vn in (m/s) \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.5:pg-14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 2.5 : velocity\n",
+ " \n",
+ "#given data :\n",
+ "n=1;\n",
+ "Z=1;\n",
+ "k=6.56*10**15; # k is constant\n",
+ "fn=k*(Z**2/n**3);\n",
+ "print fn,\" is orbital frequency,fn in (Hz) \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6.56e+15 is orbital frequency,fn in (Hz) \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6.a:pg-14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 2.6.a : the energy of the photon emitted\n",
+ " \n",
+ "#given data :\n",
+ "Z=1;#for hydrozen\n",
+ "n1=3;\n",
+ "n2=2;\n",
+ "E3=-(13.6*Z**2)/n1**2;\n",
+ "E2=-(13.6*Z**2)/n2**2;\n",
+ "del_E=E3-E2;\n",
+ "print round(del_E,2),\" is the energy of photon emitted, del_E in (eV) \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.89 is the energy of photon emitted, del_E in (eV) \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6.b:pg-14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 2.6.b : frequency\n",
+ " \n",
+ "#given data :\n",
+ "\n",
+ "Z=1;#for hydrozen\n",
+ "n1=3;\n",
+ "n2=2;\n",
+ "m=6.626*10**-34;# mass of electron in kg\n",
+ "E3=-(13.6*Z**2)/n1**2;\n",
+ "E2=-(13.6*Z**2)/n2**2;\n",
+ "del_E=E3-E2;\n",
+ "E=del_E*1.6*10**-19;# in joules\n",
+ "v=(E/m);\n",
+ "print round(v,2),\"frequency of the photon emitted,v(Hz) \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4.5611563873e+14 frequency of the photon emitted,v(Hz) \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6.c:pg-15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 2.6.c : wave length of the photon emitted\n",
+ " \n",
+ "#given data :\n",
+ "\n",
+ "Z=1;#for hydrozen\n",
+ "n1=3;\n",
+ "n2=2;\n",
+ "m=6.626*10**-34;# mass of electron in kg\n",
+ "C=3*10**8;\n",
+ "E3=-(13.6*Z**2)/n1**2;\n",
+ "E2=-(13.6*Z**2)/n2**2;\n",
+ "del_E=E3-E2;\n",
+ "E=del_E*1.6*10**-19;\n",
+ "v=E/m;\n",
+ "lamda=C/v;\n",
+ "print round(lamda,9),\" is wavelength of the photon emitted,(m) \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6.58e-07 is wavelength of the photon emitted,(m) \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file