summaryrefslogtreecommitdiff
path: root/basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter1_UaQSIvn.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter1_UaQSIvn.ipynb')
-rw-r--r--basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter1_UaQSIvn.ipynb785
1 files changed, 0 insertions, 785 deletions
diff --git a/basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter1_UaQSIvn.ipynb b/basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter1_UaQSIvn.ipynb
deleted file mode 100644
index e394c7f6..00000000
--- a/basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter1_UaQSIvn.ipynb
+++ /dev/null
@@ -1,785 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 1:Introduction to electrical engineering"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.1:Page number-6"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "E= 90065423.52 N\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "q1=q2=0.1\n",
- "r=1\n",
- "e=8.84*(10**-12)\n",
- "\n",
- "E=(q1*q2)/float(4*3.14*e*(r**2))\n",
- "\n",
- "print \"E=\",format(E,'.2f'),\"N\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.2:Page number-7"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "5.52146091786 J\n",
- "Vab=-vba=5.4V\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "q1=2*(10**-9)\n",
- "q2=3*(10**-9)\n",
- "\n",
- "#q1 and q2 are 6m apart in air\n",
- "#on substituting the values in the formula for calculating force between q and q1 and q and q2 we get 9[(3/(6-x**2)-(2/(x**2)))]\n",
- "\n",
- "import sympy as sp\n",
- "x=sp.Symbol('x')\n",
- "sp.integrate(((3/(6-x)**2)-(2/x**2)),x)\n",
- "\n",
- "from scipy.integrate import quad\n",
- "import scipy.integrate\n",
- "\n",
- "def f(x):\n",
- " return -(x+12)/(x**2 - 6*x)\n",
- " \n",
- " \n",
- " \n",
- "\n",
- "i=quad(f,1,4)\n",
- "print (i[0]),\"J\"\n",
- "\n",
- "\n",
- "print \"Vab=-vba=5.4V\"\n",
- "\n",
- "#the value obtained is directly given with print \n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.3:Page number-11"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "iav= 1.6 A\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "charge=1.6*(10**-19)\n",
- "iav=1.6*(10**-19)*(10**19) #total charge movement per second\n",
- "\n",
- "print \"iav=\",format(iav,'.1f'),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.4:Page number-14"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of each coulomb of charge= 3.0 J\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "p=30\n",
- "i=10\n",
- "\n",
- "v=p/i\n",
- "dt=1\n",
- "dq=i*dt\n",
- "\n",
- "dw=v*dq\n",
- "energy=dw/i\n",
- "\n",
- "print \"energy of each coulomb of charge=\",format(energy,'.1f'),\"J\"\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.5"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "torque= 95.54 Nm\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "p=15000\n",
- "n=1500\n",
- "\n",
- "t=(60*p)/float(1500*2*3.14)\n",
- "\n",
- "print \"torque=\",format(t,'.2f'),\"Nm\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "## Example 1.6:Page number-16"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " R= 0.1376 ohm\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "res=1.72*(10**-8)\n",
- "l=200\n",
- "a=25*(10**-6)\n",
- "\n",
- "R=(res*l)/float(a)\n",
- "\n",
- "print \"R=\",format(R,'.4f'),\"ohm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.7 "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "R= 0.00000270 ohm\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given and derived\n",
- "meanrad=0.08\n",
- "meanlen=3.14*meanrad\n",
- "a=0.04*0.04\n",
- "res=1.72*(10**-8)\n",
- "\n",
- "R=(res*meanlen)/float(a)\n",
- "\n",
- "print \"R=\",format(R,'.8f'),\"ohm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.8:Page number-17 "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "R= 80.0000 ohm\n",
- "power= 661.25 W\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "res=0.02*(10**-6)\n",
- "l=4000*80*(10**-2)\n",
- "a=0.8*(10**-6)\n",
- "\n",
- "R=(res*l)/float(a)\n",
- "\n",
- "print \"R=\",format(R,'.4f'),\"ohm\"\n",
- "\n",
- "power=(230*230)/float(80)\n",
- "\n",
- "print \"power=\",format(power,'.2f'),\"W\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.9"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "R= 0.2675 ohm\n",
- "0.40127388535\n",
- "dcu= 0.000569 nm\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "lal=7.5\n",
- "lcu=6\n",
- "rcu=0.017*(10**-6)\n",
- "ral=0.028*(10**-6)\n",
- "d=(10**-6)\n",
- "a=((3.14*d))/float(4)\n",
- "Ral=(lal*ral)/float(a)\n",
- "\n",
- "print \"R=\",format(Ral,'.4f'),\"ohm\"\n",
- "\n",
- "ial=3\n",
- "\n",
- "pv=Ral*ial\n",
- "\n",
- "\n",
- "Rcu=pv/float(2)\n",
- "print Rcu\n",
- "\n",
- "a=(rcu*lcu)/float(Rcu)\n",
- "\n",
- "dcu=(((a*4)/3.14)**0.5)\n",
- "\n",
- "print \"dcu=\",format(dcu,'.6f'),\"nm\"\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.10"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "l= 2706.896552 cm\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given and derived\n",
- "\n",
- "a=100/0.32 #area required to dissipate 100W power\n",
- "d=5\n",
- "#length of cyclinder L,length of wire if l,diameter of the wire is d\n",
- "L=a/float(3.14*d)\n",
- "\n",
- "r=100/1**2\n",
- "\n",
- "#spacing is d cm\n",
- "#distance along the axis of the cylinder is 2d cm\n",
- "\n",
- "#no of turns is 10/d\n",
- "#length of one turn of the wire is 3.14*5 cm\n",
- "#length of the wire is 50*3.14/d\n",
- "res=10**-4\n",
- "\n",
- "#d=(((2*10**-4))**(0.6))\n",
- "d=0.058\n",
- "\n",
- "l=(50*3.14)/d\n",
- "\n",
- "print \"l=\",format(l,'.6f'),\"cm\"\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.11: Page number-20"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "t= 84.62 centigrade\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "v=250\n",
- "i=5\n",
- "i1=3.91\n",
- "\n",
- "t0=0.00426 #temperature coefficient\n",
- "\n",
- "r15=v/i #at 15 degrees\n",
- "\n",
- "rt=v/i1 #at t degrees\n",
- "\n",
- "l=(rt*(1+t0*15))/50 #left hand side\n",
- "\n",
- "t=(l-1)/t0\n",
- "\n",
- "print \"t=\",format(t,'.2f'),\"centigrade\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.12"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "al2=al1/(1+al1*(t1-t2))\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#this is a derivation by substitution problem\n",
- "\n",
- "#al1=al0/(1+al0*t1)\n",
- "#al2=al0/(1+al0*t2)\n",
- "#where t1 and t2 are different temperatures al0,al1 and al2 are temperature coefficients\n",
- "\n",
- "#substitute al0 in al2\n",
- "\n",
- "#on deriving and solving for al2 we get,\n",
- "print \"al2=al1/(1+al1*(t1-t2))\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.13:Page number-22"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "v= 20.0 v\n",
- "v= -10.0 v\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#values are obtained from the graph\n",
- "\n",
- "i=10 #10t A for 0 to 1 second\n",
- "\n",
- "d=10 #where di/dt is 10\n",
- "L=2\n",
- "# at one second\n",
- "\n",
- "v=L*d\n",
- "\n",
- "print \"v=\",format(v,'.1f'),\"v\"\n",
- "\n",
- "#for 1 to 5 seconds\n",
- "\n",
- "d=-5\n",
- "\n",
- "#at t=3 seconds voltage across the inductor is\n",
- "\n",
- "v=L*d\n",
- "print \"v=\",format(v,'.1f'),\"v\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.16:Page number-27"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " i= 0.0005 A\n",
- "q= 0.0005 C\n",
- "p= 0.0100 W\n",
- "wc= 0.0050 J\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#given\n",
- "\n",
- "dv=20 #dv/dt\n",
- "c=25*(10**-6)\n",
- "\n",
- "#case a\n",
- "\n",
- "i=c*dv\n",
- "\n",
- "print \"i=\",format(i,'.4f'),\"A\"\n",
- "\n",
- "#case b\n",
- "q=c*dv\n",
- "\n",
- "print \"q=\",format(q,'.4f'),\"C\"\n",
- "\n",
- "#case c\n",
- "\n",
- "p=dv*i\n",
- "\n",
- "print \"p=\",format(p,'.4f'),\"W\"\n",
- "\n",
- "#case d\n",
- "v=dv**2\n",
- "wc=(c*v)/2\n",
- "\n",
- "print \"wc=\",format(wc,'.4f'),\"J\"\n",
- " "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "## Example 1.18:Page number-34"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "f= 75.0 N\n",
- "p= 375.0 W\n",
- "e= 7.5 V\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "l=1\n",
- "b=1.5\n",
- "i=50\n",
- "u=5\n",
- "\n",
- "#case a\n",
- "\n",
- "f=b*i*l\n",
- "\n",
- "print \"f=\",format(f,'.1f'),\"N\"\n",
- "\n",
- "#case b\n",
- "\n",
- "p=f*u\n",
- "\n",
- "print \"p=\",format(p,'.1f'),\"W\"\n",
- "\n",
- "#case c\n",
- "\n",
- "e=b*l*u\n",
- "\n",
- "print \"e=\",format(e,'.1f'),\"V\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.19:Page number-35"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "e= 30.0 V\n",
- "e= 15.0 V\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#e=b*l*u*sin(angle)\n",
- "\n",
- "b=0.5\n",
- "l=40\n",
- "u=1.5\n",
- "\n",
- "#when angle=90 sin(90)=1=s\n",
- "s=1\n",
- "e=b*l*u*s\n",
- "\n",
- "print \"e=\",format(e,'.1f'),\"V\"\n",
- "\n",
- "#when angle=30 sin(angle)=s=0.5\n",
- "s=0.5\n",
- "e=b*l*u*s\n",
- "\n",
- "print \"e=\",format(e,'.1f'),\"V\"\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 1.22:Page number-37"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vse= 8.0 V\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#applying kcl to circuit at node b i3+i4=6-4=2\n",
- "i3=i4=1 #potential of node b with respect to node c\n",
- "vb=8\n",
- "vba=2 #voltage drop across nodes b and a\n",
- "va=6 #potential of node a w.r.t note c\n",
- "i2=3\n",
- "#applying kcl to node a\n",
- "\n",
- "isa=1\n",
- "\n",
- "vs=va+2*isa\n",
- "\n",
- "print \"vse=\",format(vs,'.1f'),\"V\"\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}