summaryrefslogtreecommitdiff
path: root/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb
diff options
context:
space:
mode:
Diffstat (limited to '_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb')
-rwxr-xr-x_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb319
1 files changed, 0 insertions, 319 deletions
diff --git a/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb b/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb
deleted file mode 100755
index d80a182f..00000000
--- a/_A_Textbook_Of_Engineering_Physics/Chapter18.ipynb
+++ /dev/null
@@ -1,319 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:265535ddaffc0266824860d662b8052593e36ca515dd70e32c070b51cf842e7d"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter18-Semiconductors"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2-pg539"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 18.2\n",
- "##calculation of probability\n",
- "\n",
- "##given values\n",
- "T=300.;##temp in K\n",
- "kT=.026;##temperture equivalent at room temp in eV\n",
- "Eg=5.6;##forbidden gap in eV\n",
- "\n",
- "##calculation\n",
- "f=1./(1.+math.e**(Eg/(2.*kT)));\n",
- "\n",
- "print'%s %.3e %s'%('probability of an e being thermally promoted to conduction band is',f,'');\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "probability of an e being thermally promoted to conduction band is 1.698e-47 \n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex3-pg540"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 18.3\n",
- "##calculation of fraction of e in CB\n",
- "\n",
- "##given values\n",
- "T=300.;##temp in K\n",
- "kT=.026;##temperture equivalent at room temp in eV\n",
- "Eg1=.72;##forbidden gap of germanium in eV\n",
- "Eg2=1.1;##forbidden gap of silicon in eV\n",
- "Eg3=5.6;##forbidden gap of diamond in eV\n",
- "\n",
- "##calculation\n",
- "f1=math.e**(-Eg1/(2.*kT));\n",
- "print'%s %.6f %s'%('fraction of e in conduction band of germanium is',f1,'');\n",
- "f2=math.e**(-Eg2/(2.*kT));\n",
- "print'%s %.3e %s'%('fraction of e in conduction band of silicon is',f2,'');\n",
- "f3=math.e**(-Eg3/(2*kT));\n",
- "print'%s %.3e %s'%('fraction of e in conduction band of diamond is',f3,'');\n",
- "print'abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction of e in conduction band of germanium is 0.000001 \n",
- "fraction of e in conduction band of silicon is 6.501e-10 \n",
- "fraction of e in conduction band of diamond is 1.698e-47 \n",
- "abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4-pg540"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 18.4\n",
- "##calculation of fractionional change in no of e\n",
- "\n",
- "##given values\n",
- "T1=300.;##temp in K\n",
- "T2=310.;##temp in K\n",
- "Eg=1.1;##forbidden gap of silicon in eV\n",
- "k=8.6*10**-5.;##boltzmann's constant in eV/K\n",
- "\n",
- "##calculation\n",
- "n1=(10**21.7)*(T1**(3/2.))*10**(-2500.*Eg/T1);##no of conduction e at T1\n",
- "n2=(10**21.7)*(T2**(3/2.))*10**(-2500.*Eg/T2);##no of conduction e at T2\n",
- "x=n2/n1;\n",
- "print'%s %.1f %s'%('fractional change in no of e is',x,'');\n",
- "print 'in book he just worte ans but he didnt calculated final ans but here is i calculated'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fractional change in no of e is 2.1 \n",
- "in book he just worte ans but he didnt calculated final ans but here is i calculated\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex5-pg541"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "##Example 18.5\n",
- "##calculation of resistivity\n",
- "\n",
- "##given values\n",
- "e=1.6*10**-19;\n",
- "ni=2.5*10**19;##intrinsic density of carriers per m**3\n",
- "ue=.39;##mobility of e \n",
- "uh=.19;##mobility of hole\n",
- "\n",
- "\n",
- "##calculation\n",
- "c=e*ni*(ue+uh);##conductivity\n",
- "r=1/c;##resistivity\n",
- "print'%s %.2f %s'%('resistivity in ohm m is',r,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistivity in ohm m is 0.43 \n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex6-pg548"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 18.6\n",
- "##calculation of conductivity of intrinsic and doped semiconductors\n",
- "\n",
- "##given values\n",
- "h=4.52*10**24;##no of holes per m**3\n",
- "e=1.25*10**14;##no of electrons per m**3\n",
- "ue=.38;##e mobility\n",
- "uh=.18;##hole mobility\n",
- "q=1.6*10**-19;##charge of e in C\n",
- "##calculation\n",
- "ni=math.sqrt(h*e);##intrinsic concentration\n",
- "ci=q*ni*(ue+uh);\n",
- "print'%s %.2f %s'%('conductivity of semiconductor(in S/m) is',ci,'');\n",
- "cp=q*h*uh;\n",
- "print'%s %.2f %s'%('conductivity of doped semiconductor (in S/m) is',cp,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "conductivity of semiconductor(in S/m) is 2.13 \n",
- "conductivity of doped semiconductor (in S/m) is 130176.00 \n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7-pg548"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 18.7\n",
- "##calculation of hole concentration\n",
- "\n",
- "##given values\n",
- "ni=2.4*10**19.;##carrier concentration per m**3\n",
- "N=4*10**28.;##concentration of ge atoms per m**3\n",
- "\n",
- "##calculation\n",
- "ND=N/10**6.;##donor cocntrtn\n",
- "n=ND;##no of electrones\n",
- "\n",
- "p=ni**2./n;\n",
- "print'%s %.3e %s'%('concentartion of holes per m^3 is',p,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "concentartion of holes per m^3 is 1.440e+16 \n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex8-pg558"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "##Example 18.8\n",
- "##calculation of Hall voltage\n",
- "\n",
- "##given values\n",
- "ND=10**21.;##donor density per m**3\n",
- "B=.5;##magnetic field in T\n",
- "J=500.;##current density in A/m**2\n",
- "w=3*10**-3.;##width in m\n",
- "e=1.6*10**-19.;##charge in C\n",
- "\n",
- "##calculation\n",
- "\n",
- "\n",
- "V=B*J*w/(ND*e);##in volts\n",
- "print'%s %.2f %s'%('Hall voltage in mv is',V*10**3,'');"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Hall voltage in mv is 4.69 \n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file