summaryrefslogtreecommitdiff
path: root/Thermodynamics:_From_concepts_to_applications/Chapter6_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Thermodynamics:_From_concepts_to_applications/Chapter6_2.ipynb')
-rwxr-xr-xThermodynamics:_From_concepts_to_applications/Chapter6_2.ipynb308
1 files changed, 0 insertions, 308 deletions
diff --git a/Thermodynamics:_From_concepts_to_applications/Chapter6_2.ipynb b/Thermodynamics:_From_concepts_to_applications/Chapter6_2.ipynb
deleted file mode 100755
index 4db4d31d..00000000
--- a/Thermodynamics:_From_concepts_to_applications/Chapter6_2.ipynb
+++ /dev/null
@@ -1,308 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:de09a4c2813282719223c840622b4f97d21f59c5103e9a20c830f4005781fd9e"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter6 -Control volume"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example1-pg 83"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#calculate diameter for given variable\n",
- "##initialisation of variables\n",
- "R= 8.314 ##J/mol K\n",
- "M= 29 ##gms\n",
- "T= 80 ##C\n",
- "p= 104 ##/kPa\n",
- "v= 30 ##m/sec\n",
- "m= 8000 ##kg/h\n",
- "##CALCULATIONS\n",
- "V= R*(273.15+T)/(M*p)\n",
- "A= m*V/(3600*v)\n",
- "D=math.sqrt(4*A/math.pi)\n",
- "##RESULTS\n",
- "print'%s %.5f %s'%('diameter = ',D,'m^2')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "diameter = 0.30301 m^2\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example2-pg 88"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#calculate intial areas\n",
- "##initialisation of variables\n",
- "R= 8.314 ##J/mol K\n",
- "M= 29. ##gms\n",
- "T1= 230. ##C\n",
- "p1= 30. ##/bar\n",
- "k= 1.4\n",
- "T2= 180. ##C\n",
- "v1= 10. ##m/s\n",
- "p2= 20. ##bar\n",
- "m2= 0.84 ##kg/s\n",
- "##CALCULATIONS\n",
- "V1= R*(273.15+T1)/(M*p1*100)\n",
- "cp= k*R/((k-1)*M)\n",
- "A= m2*V1*10*10*10*10/v1\n",
- "v2= math.sqrt(v1*v1+2*cp*10*10*10*(T1-T2))\n",
- "V2= R*(273.15+T2)/(M*p2*100)\n",
- "A2= m2*V2*10*10*10*10/v2\n",
- "##RESULTS\n",
- "print'%s %.1f %s'%('inlet area =',A,'cm^2')\n",
- "print'%s %.2f %s'%('inlet area =',A2,'cm^2')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "inlet area = 40.4 cm^2\n",
- "inlet area = 1.72 cm^2\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example3-pg 89"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#calculate quantity x and specific volume\n",
- "##initialisation of variables\n",
- "h= 2676.2 ##kJ/kg\n",
- "hf= 721.11 ##kJ/kg\n",
- "hg= 2679.1 ##kJ/kg\n",
- "vf= 0.001115 ##m^3/kg\n",
- "vg= 0.2404 ##m^3/kg\n",
- "##CALCULATIONS\n",
- "x= (h-hf)/(hg-hf)\n",
- "v1= vf+x*(vg-vf)\n",
- "##RESULTS\n",
- "print'%s %.4f %s'%('quantity =',x,'')\n",
- "print'%s %.4f %s'%('specific volume = ',v1,'m^3/kg')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "quantity = 0.9985 \n",
- "specific volume = 0.2400 m^3/kg\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example4-pg 92"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#calculate heat pump and reate heat interaction and work of the turbine and at another point rate of heat interaction and all four areas at given poin\n",
- "##initialisation of variables\n",
- "h4= 419.05 ##kJ/kg\n",
- "h1= 434.92 ##kJ/kg\n",
- "m= 2.5 ##kg/s\n",
- "h2= 3272.4 ##kJ/kg\n",
- "h3= 2601.7 ##kJ/kg\n",
- "v1= 0.001401 ##m^3/kg\n",
- "V1= 5 ##m/s\n",
- "v2= 0.03817 ##m^3/kg\n",
- "V2= 20. ##m/s\n",
- "v3= 0.8415 ##m^3/kg\n",
- "V3= 100. ##m/s\n",
- "v4= 0.00104 ##m^3/kg\n",
- "V4= 5 ##m/s\n",
- "##CALCULATIONS\n",
- "W41= m*(h4-h1)\n",
- "Q12= m*(h2-h1)\n",
- "W23= m*(h2-h3)\n",
- "Q34= m*(h4-h3)\n",
- "A1= m*v1*10*10*10*10/V1\n",
- "A2= m*v2*10*1010*10/V2\n",
- "A3= m*v3*10*1010*10/V3\n",
- "A4= m*v4*10*1010*10/V4\n",
- "##RESULTS\n",
- "print'%s %.1f %s'%('rate of pump =',W41,'kW')\n",
- "print'%s %.f %s'%('rate of heat ineraction =',Q12,'kW')\n",
- "print'%s %.1f %s'%('rate of work of the turbine =',W23,'W')\n",
- "print'%s %.f %s'%('rate of heat ineraction =',Q34,'kW')\n",
- "print'%s %.2f %s'%('area =',A1,'cm^2')\n",
- "print'%s %.2f %s'%('area =',A2,'cm^2')\n",
- "print'%s %.2f %s'%('area =',A3,'cm^2')\n",
- "print'%s %.2f %s'%('area =',A4,'cm^2')\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rate of pump = -39.7 kW\n",
- "rate of heat ineraction = 7094 kW\n",
- "rate of work of the turbine = 1676.8 W\n",
- "rate of heat ineraction = -5457 kW\n",
- "area = 7.00 cm^2\n",
- "area = 481.90 cm^2\n",
- "area = 2124.79 cm^2\n",
- "area = 52.52 cm^2\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example5-pg 96"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#calculate mass of helium and temperature of helium\n",
- "##initialisation of variables\n",
- "m1= 0.03 ##kg\n",
- "R= 8.314 ##J/mol K\n",
- "T1= 300. ##C\n",
- "p1= 120. ##kPa\n",
- "k= 5./3.\n",
- "M=4. ##kg\n",
- "p2= 600. ##kPa\n",
- "##CALCULATIONS\n",
- "V= m1*R*(273.15+T1)/(p1*M)\n",
- "m2= m1*((p2/p1)+k-1)/k\n",
- "T2= p2*V*M/(m2*R)\n",
- "##RESULTS\n",
- "print'%s %.3f %s'%('mass of helium =',m2,'kg')\n",
- "print'%s %.1f %s'%('temperature of helium =',T2,'K')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mass of helium = 0.102 kg\n",
- "temperature of helium = 842.9 K\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Eaxmple 6-pg97"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#calculate volume of container and pressure\n",
- "##initialisation of variables\n",
- "m1= 0.03 ##kg\n",
- "v1= 2.1977 ##m^3/kg\n",
- "h2= 3073.8 ##kJ/kg\n",
- "h1= 3061.6 ##kJ/kg\n",
- "p2= 600. ##kPa\n",
- "p1= 120. ##kPa\n",
- "##CALCULATIONS\n",
- "V=m1*v1\n",
- "r= ((h2-h1)/v1)+p2-p1\n",
- "##RESULTS\n",
- "print'%s %.5f %s'%('volume of container =',V,'m^3')\n",
- "print'%s %.2f %s'%('pressure =',r,'kPa')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "volume of container = 0.06593 m^3\n",
- "pressure = 485.55 kPa\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file