diff options
Diffstat (limited to 'Theory_Of_Machines/ch8.ipynb')
-rwxr-xr-x | Theory_Of_Machines/ch8.ipynb | 1243 |
1 files changed, 1243 insertions, 0 deletions
diff --git a/Theory_Of_Machines/ch8.ipynb b/Theory_Of_Machines/ch8.ipynb new file mode 100755 index 00000000..30669b70 --- /dev/null +++ b/Theory_Of_Machines/ch8.ipynb @@ -0,0 +1,1243 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:8b757cfb7a3d46c26051163fc5ae963591320e2fd8a4c339acfb031be7305afd" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8 : Acceleration in Mechanisms" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1 Page No : 177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NBO = 300. \t\t\t#rpm\n", + "OB = 150./1000\n", + "BA = 600./1000 \t\t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.4\n", + "#Calculating the angular velocity of BO\n", + "omegaBO = 2*math.pi*NBO/60 \t\t\t#rad/s\n", + "#Calculating the linear velocity of B with respect to O\n", + "vBO = omegaBO*OB \t\t\t#m/s\n", + "vB = vBO\n", + "#By measurement from the velocity diagram Fig. 8.4(b)\n", + "vAB = 3.4\n", + "vD = 4.1 \t\t\t#m/s\n", + "#Calculating the radial component of the acceleration of B with respect of O\n", + "arBO = vBO**2/OB \t\t\t#m/s**2\n", + "aB = arBO\n", + "#Calculating the radisla component of the accaleration of A with respect to B\n", + "arAB = vAB**2/BA \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.4(c)\n", + "aD = 117.\n", + "adashAB = 103. \t\t\t#m/s**2\n", + "#Calculating the angular velocity of the connecting rod\n", + "omegaAB = vAB/BA \t\t\t#rad/s**2\n", + "#Calculating the angular acceleration of the connecting rod\n", + "alphaAB = adashAB/BA \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" The linear velocity of the midpoint of the connecting rod, vD = %.1f m/s.\"%(vD)\n", + "print \" The linear acceleration of the midpoint of the connecting rod, aD = %d m/s**2.\"%(aD)\n", + "print \" The angular velocity of the connecting rod, omegaAB = %.2f rad/s, anticlockwise about B.\"%(omegaAB)\n", + "print \" The angular acceleration of the connecting rod, alphaAB = %.2f rad/s**2, clockwise about B.\"%(alphaAB)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The linear velocity of the midpoint of the connecting rod, vD = 4.1 m/s.\n", + " The linear acceleration of the midpoint of the connecting rod, aD = 117 m/s**2.\n", + " The angular velocity of the connecting rod, omegaAB = 5.67 rad/s, anticlockwise about B.\n", + " The angular acceleration of the connecting rod, alphaAB = 171.67 rad/s**2, clockwise about B.\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2 Page No : 180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "omegaBC = 75. \t \t\t#rad/s\n", + "alphaBC = 1200. \t\t\t#rad/s**2\n", + "CB = 100/1000. #m\n", + "BA = 300/1000. \t\t\t#m/\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.5\n", + "#Calculating the linear velocity of B with respect to C\n", + "vBC = omegaBC*CB \t\t\t#m/s\n", + "#Calculating the math.tangential component of the acceleration of B with respect to C\n", + "alphatBC = alphaBC*CB \t\t\t#m/s**2\n", + "#By measurement from the velocity diagram Fig. 8.6(b)\n", + "vG = 6.8\n", + "vAB = 4 \t\t\t#m/s\n", + "#Calculating the angular velocity of AB\n", + "omegaAB = vAB/BA \t\t\t#rad/s\n", + "#Calculating the radial component of the acceleration of B with respect to C\n", + "arBC = vBC**2/CB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of A with respect to B\n", + "arAB = vAB**2/BA \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.6(c)\n", + "arBC = 120.\n", + "arAB = 53.3\n", + "aG = 414.\n", + "atAB = 546. \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of AB\n", + "alphaAB = atAB/BA \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" The velocity of G, vG = %.1f m/s.\"%(vG)\n", + "print \" The angular velocity of AB, omegaAB = %.1f rad/s, clockwise.\"%(omegaAB)\n", + "print \" The acceleration of G, aG = %d m/s**2.\"%(aG)\n", + "print \" The angular accaleration of AB, alphaAB = %d rad/s**2.\"%(alphaAB)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The velocity of G, vG = 6.8 m/s.\n", + " The angular velocity of AB, omegaAB = 13.3 rad/s, clockwise.\n", + " The acceleration of G, aG = 414 m/s**2.\n", + " The angular accaleration of AB, alphaAB = 1820 rad/s**2.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3 Page No : 182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "vC = 1.\n", + "vCD = vC \t\t\t#m/s\n", + "aC = 2.5 \t\t\t#m/s**2\n", + "AB = 3. #m\n", + "BC = 1.5 \t\t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.8\n", + "#By measurement from the velocity diagram Fig. 8.8(b)\n", + "vBA = 0.72\n", + "vBC = 0.72 \t\t\t#m/s\n", + "#Calculating the radial component of acceleration of B with respect to C\n", + "arBC = vBC**2/BC \t\t\t#m/s**2\n", + "#Calculating the radial component of acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.8(c)\n", + "aCD = 2.5\n", + "aC = aCD\n", + "arBC = 0.346\n", + "arBA = 0.173\n", + "atBA = 1.41\n", + "atBC = 1.94\n", + "vectorbb = 1.13\n", + "vectorab = 0.9 \t\t\t#m/s**2\n", + "#Calculating the angular accaleration of AB\n", + "alphaAB = atBA/AB \t\t\t#rad/s**2\n", + "#Calculating the angular acceleration of BC\n", + "alphaBC = atBC/BC \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" The magnitude of vertical component of the acceleration of the point B is %.2f m/s**2.\"%(vectorbb)\n", + "print \" The magnitude of horizontal component of the acceleration of the point B is %.1f m/s**2.\"%(vectorab)\n", + "print \" The angular acceleration of the link AB, alphaAB = %.2f rad/s**2.\"%(alphaAB)\n", + "print \" The angular acceleration of the link BC, alphaBC = %.1f rad/s**2.\"%(alphaBC)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The magnitude of vertical component of the acceleration of the point B is 1.13 m/s**2.\n", + " The magnitude of horizontal component of the acceleration of the point B is 0.9 m/s**2.\n", + " The angular acceleration of the link AB, alphaAB = 0.47 rad/s**2.\n", + " The angular acceleration of the link BC, alphaBC = 1.3 rad/s**2.\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4 Page No : 184" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "omegaQP = 10. \t\t\t#rad/s\n", + "PQ = 62.5/1000 #m\n", + "QR = 175./1000 #m\n", + "RS = 112.5/1000 #m\n", + "PS = 200./1000 \t\t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.9\n", + "#Calculating the velocity of Q with respect to P\n", + "vQP = omegaQP*PQ \t\t\t#m/s\n", + "vQ = vQP\n", + "#By measurement from the velocity diagram Fig. 8.9(b)\n", + "vRQ = 0.333\n", + "vRS = 0.426\n", + "vR = vRS \t\t\t#m/s\n", + "#Calculating the angular velocity of link QR\n", + "omegaQR = vRQ/QR \t\t\t#rad/s\n", + "#Calculating the angular velocity of link RS\n", + "omegaRS = vRS/RS \t\t\t#rad/s\n", + "#Calculating the radial component of the acceleration of Q with respect to P\n", + "arQP = vQP**2/PQ \t\t\t#m/s**2\n", + "aQP = arQP\n", + "aQ = aQP\n", + "#Calculating the radial component of the acceleration of R with respect to Q\n", + "arRQ = vRQ**2/QR \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of R with respect to S\n", + "arRS = vRS**2/RS \t\t\t#m/s**2\n", + "aRS = arRS\n", + "aR = aRS\n", + "#By measurement from the acceleration diagram Fig. 8.9(c)\n", + "atRQ = 4.1\n", + "atRS = 5.3 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of link QR\n", + "alphaQR = atRQ/QR \t\t\t#rad/s**2\n", + "#Calculating the angular acceleration of link RS\n", + "alphaRS = atRS/RS \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" The angular velocity of link QR, omegaQR = %.1f rad/s anticlockwise.\"%(omegaQR)\n", + "print \" The angular velocity of link RS, omegaRS = %.2f rad/s clockwise.\"%(omegaRS)\n", + "print \" The angular acceleration of link QR, alphaQR = %.2f rad/s**2 anticlockwise.\"%(alphaQR)\n", + "print \" The angular acceleration of link RS, alphaRS = %.1f rad/s**2 anticlockwise.\"%(alphaRS)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The angular velocity of link QR, omegaQR = 1.9 rad/s anticlockwise.\n", + " The angular velocity of link RS, omegaRS = 3.79 rad/s clockwise.\n", + " The angular acceleration of link QR, alphaQR = 23.43 rad/s**2 anticlockwise.\n", + " The angular acceleration of link RS, alphaRS = 47.1 rad/s**2 anticlockwise.\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.5 Page No : 186" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "omegaAP1 = 10. \t\t\t#rad/s\n", + "alphaAP1 = 30. \t\t\t#rad/s**2\n", + "P1A = 300./1000 #m\n", + "P2B = 360./1000 #m\n", + "AB = P2B \t\t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.10\n", + "#Calculating the velocity of A with respect to P1\n", + "vAP1 = omegaAP1/P1A \t\t\t#m/s\n", + "vA = vAP1\n", + "#By measurement from the velocity diagram Fig. 8.11(b)\n", + "vBP2 = 2.2\n", + "vBA = 2.05 \t\t\t#m/s\n", + "#Calculating the angular velocity of P2B\n", + "omegaP2B = vBP2/P2B \t\t\t#rad/s\n", + "#Calculating the angular velocity of AB\n", + "omegaAB = vBA/AB \t\t\t#rad/s\n", + "#Calculating the math.tangential component of the acceleration of A with respect to P1\n", + "atAP1 = alphaAP1*P1A \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of A with respect to P1\n", + "arAP1 = vAP1**2/P1A \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of B with respect to P2\n", + "arBP2 = vBP2**2/P2B \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.11(c)\n", + "aBP2 = 29.6\n", + "aB = aBP2\n", + "atBA = 13.6\n", + "atBP2 = 26.6 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of P2B\n", + "alphaP2B = atBP2/P2B \t\t\t#rad/s**2\n", + "#Calculating the angular acceleration of AB\n", + "alphaAB = atBA/AB \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" The velocity of P2B, vBP2 = %.1f m/s.\"%(vBP2)\n", + "print \" The angular velocity of P2B, omegaP2B = %.1f rad/s, clockwise.\"%(omegaP2B)\n", + "print \" The angular velocity of AB, omegaAB = %.1f rad/s, anticlockwise.\"%(omegaAB)\n", + "print \" The acceleration of the joint B, aB = %.1f m/s**2.\"%(aB)\n", + "print \" The angular acceleration of P2B, alphaP2B = %.1f rad/s**2, anticlockwise.\"%(alphaP2B)\n", + "print \" The angular acceleration of AB, alphaAB = %.1f rad/s**2, anticlockwise.\"%(alphaAB)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The velocity of P2B, vBP2 = 2.2 m/s.\n", + " The angular velocity of P2B, omegaP2B = 6.1 rad/s, clockwise.\n", + " The angular velocity of AB, omegaAB = 5.7 rad/s, anticlockwise.\n", + " The acceleration of the joint B, aB = 29.6 m/s**2.\n", + " The angular acceleration of P2B, alphaP2B = 73.9 rad/s**2, anticlockwise.\n", + " The angular acceleration of AB, alphaAB = 37.8 rad/s**2, anticlockwise.\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.6 Page No : 188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NAO = 20. \t\t\t#rpm\n", + "OA = 300./1000 #m\n", + "AB = 1200./1000 #m\n", + "BC = 450./1000 #m\n", + "CD = BC \t\t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.13\n", + "#Calculating the angular velocity of crank AO\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the linear velocity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.13(b)\n", + "vB = 0.4\n", + "vD = 0.24\n", + "vDC = 0.37\n", + "vBA = 0.54 \t\t\t#m/s\n", + "#Calculating the angular velocity of CD\n", + "omegaCD = vDC/CD \t\t\t#rad/s\n", + "#Calculating the radial component of the acceleration of A with respect to O\n", + "arAO = vAO**2/OA \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of D with respect to C\n", + "arDC = vDC**2/CD \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.13(c)\n", + "aD = 0.16\n", + "atDC = 1.28 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of CD\n", + "alphaCD = atDC/CD \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of sliding at B, vB = %.1f m/s.\"%(vB)\n", + "print \" Velocity of sliding at D, vD = %.2f m/s.\"%(vD)\n", + "print \" Angular velocity of CD, omegaCD = %.2f rad/s.\"%(omegaCD)\n", + "print \" Linear acceleration of D, aD = %.2f m/s**2.\"%(aD)\n", + "print \" Angular acceleration of CD, alphaCD = %.2f rad/s**2, clockwise.\"%(alphaCD)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of sliding at B, vB = 0.4 m/s.\n", + " Velocity of sliding at D, vD = 0.24 m/s.\n", + " Angular velocity of CD, omegaCD = 0.82 rad/s.\n", + " Linear acceleration of D, aD = 0.16 m/s**2.\n", + " Angular acceleration of CD, alphaCD = 2.84 rad/s**2, clockwise.\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.7 Page No : 191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NAO = 180. \t\t\t#rpm\n", + "OA = 150./1000 #m\n", + "AB = 450./1000 #m\n", + "PB = 240./1000 #m\n", + "CD = 660./1000 \t\t#m\n", + "\n", + "#solution:\n", + "#Refer Fig. 8.15\n", + "#Calculating the angular speed of crank AO\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the velocity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.15(b)\n", + "vD = 2.36\n", + "vDC = 1.2\n", + "vBA = 1.8\n", + "vBP = 1.5 \t\t\t#m/s\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arAO = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to P\n", + "arBP = vBP**2/PB \t\t\t#m/s**2\n", + "#Calculating the radial component of D with respect to C\n", + "arDC = vDC**2/CD \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.15(c)\n", + "aD = 69.6\n", + "atDC = 17.4 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of CD\n", + "alphaCD = atDC/CD \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" Acceleration of slider D, aD = %.1f m/s**2.\"%(aD)\n", + "print \" Angular acceleration of link CD, alphaCD = %.1f rad/s**2.\"%(alphaCD)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Acceleration of slider D, aD = 69.6 m/s**2.\n", + " Angular acceleration of link CD, alphaCD = 26.4 rad/s**2.\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.8 Page No : 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables:\n", + "NAO = 180. \t\t\t#rpm\n", + "OA = 180./1000\n", + "CB = 240./1000\n", + "AB = 360./1000\n", + "BD = 540./1000 \t\t\t#m\n", + "alphaAO = 50. \t\t\t#rad/s**2\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.17\n", + "#Calculating the angular speed of crank AO\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the velcoity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.17(b)\n", + "vBA = 0.9\n", + "vBC = 2.4\n", + "vDB = 2.4\n", + "vD = 2.05 \t\t\t#m/s\n", + "\n", + "#Calculating the angular velocity of BD\n", + "omegaBD = vDB/BD \t\t\t#rad/s\n", + "#Calculating the tangential component of the acceleration of A with respect to O\n", + "atAO = alphaAO*OA \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of A with respect to O\n", + "arAO = vAO**2/OA \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to C\n", + "arBC = vBC**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of D with respect to B\n", + "arDB = vDB**2/BD \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.17(c)\n", + "aD = 13.3\n", + "atDB = 38.5 \t\t\t#m/s**2\n", + "\n", + "#Calculating the angular acceleration of BD\n", + "alphaBD = atDB/BD \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of slider D, vD = %.2f m/s.\"%(vD)\n", + "print \" Angular velocity of BD, omegaBD = %.1f rad/s.\"%(omegaBD)\n", + "print \" Acceleration of slider D, aD = %.1f m/s**2.\"%(aD)\n", + "print \" Angular acceleration of BD, alphaBD = %.1f rad/s**2, clockwise.\"%(alphaBD)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of slider D, vD = 2.05 m/s.\n", + " Angular velocity of BD, omegaBD = 4.4 rad/s.\n", + " Acceleration of slider D, aD = 13.3 m/s**2.\n", + " Angular acceleration of BD, alphaBD = 71.3 rad/s**2, clockwise.\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.9 Page No : 196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "omegaAO1 = 100. \t\t\t#rad/s\n", + "O1A = 100./1000 #m\n", + "AC = 700./1000 #m\n", + "BC = 200./1000 #m\n", + "BD = 150./1000 #m\n", + "O2D = 200./1000 #m\n", + "O2E = 400./1000 #m\n", + "O3C = 200./1000 \t\t\t#m\n", + "m=0.0;\n", + "#Solution:\n", + "#Refer Fig. 8.19\n", + "#Calculating the linear velocity of A with respect to O1\n", + "vAO1 = omegaAO1/O1A \t\t\t#m/s\n", + "vA = vAO1\n", + "#By measurement from the velocity diagram Fig. 8.19(b)\n", + "vCA = 7.\n", + "vCO3 = 10.\n", + "vC = vCO3\n", + "vDB = 10.2\n", + "vDO2 = 2.8\n", + "vD = vDO2\n", + "vE = 5.8\n", + "vEO2 = vE \t\t\t#m/s\n", + "#Calculating the radial component of the acceleration of A with respect to O1\n", + "arAO1 = vAO1**2/O1A \t\t\t#m/s**2\n", + "aAO1 = arAO1\n", + "aA = aAO1\n", + "#Calculating the radial component of the acceleration of C with respect to A\n", + "arCA = vCA**2/AC \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of C with respect to O3\n", + "arCO3 = vCO3**2/O3C \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of D with respect to B\n", + "arDB = vDB**2/BD \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of D with respect to O2\n", + "arDO2 = vDO2**2/O2D \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of E with respect to O2\n", + "arEO2 = vEO2**2/O2E \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.19(c)\n", + "aE = 1200.\n", + "atDO2 = 610. \t\t\t#m/s**2\n", + "aEO2 = aE\n", + "aB = 440. \t\t\t#Acceleration of point B\n", + "#m/s**2\n", + "#Calculating the angular acceleration of the bell crank lever\n", + "alpha = atDO2/O2D \t\t\t#The angular acceleration of the bell crank lever rad/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of the point E on the bell crank lever, vE = %.1f m/s.\"%(vE)\n", + "print \" Acceleration of point B = %d m/s**2.\"%(aB)\n", + "print \" Acceleration of point E, aE = %d m/s**2.\"%(aE)\n", + "print \" Angular acceleration of the bell crank lever = %d rad/s**2, anticlockwise.\"%(alpha)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of the point E on the bell crank lever, vE = 5.8 m/s.\n", + " Acceleration of point B = 440 m/s**2.\n", + " Acceleration of point E, aE = 1200 m/s**2.\n", + " Angular acceleration of the bell crank lever = 3050 rad/s**2, anticlockwise.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.10 Page No : 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NAO = 100. \t\t\t#rpm\n", + "OA = 150./1000 #m\n", + "AB = 600./1000 #m\n", + "BC = 350./1000 #m\n", + "CD = 150./1000 #m\n", + "DE = 500./1000 \t\t#m\n", + "dA = 50./1000\n", + "dB = dA\n", + "rA = dA/2\n", + "rB = dB/2 \t\t\t#m\n", + "pF = 0.35 \t\t\t#N/mm**2\n", + "DF = 250. \t\t\t#mm\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.21\n", + "#Calculating the angular speed of the crank AO\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the velocity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.21(b)\n", + "vBA = 1.65\n", + "vBC = 0.93\n", + "vB = vBC\n", + "vED = 0.18\n", + "vEO = 0.36\n", + "vE = vEO\n", + "vF = vE \t\t\t#m/s\n", + "\n", + "#Calculating the velocity of D with respect to C\n", + "vDC = vBC*CD/BC \t\t\t#m/s\n", + "#Calculating the angular velocity of B with respect to A\n", + "omegaBA = vBA/AB \t\t\t#rad/s\n", + "#Calculating the angular velocity of B with respect to C\n", + "omegaBC = vBC/BC \t\t\t#rad/s\n", + "#Calculating the rubbing velocity of pin at A\n", + "vrA = (omegaAO-omegaBA)*rA \t\t\t#The rubbing velocity of pin at A m/s\n", + "#Calculating the rubbing velocity of pin at B\n", + "vrB = (omegaBA+omegaBC)*rB \t\t\t#The rubbing velocity of pin at B m/s\n", + "#Calculating the force at the pump piston at F\n", + "FF = pF*math.pi/4*DF**2 \t\t\t#N\n", + "#Calculating the force required at the crankshaft A\n", + "FA = FF*vF/vA \t\t\t#N\n", + "#Calculating the torque required at the crankshaft\n", + "TA = FA*OA \t\t\t#N-m\n", + "#Calculating the radial component of the acceleration of A with respect to O\n", + "arAO = vAO**2/OA \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to C\n", + "arBC = vBC**2/BC \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of E with respect to D\n", + "arED = vED**2/DE \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.21(c)\n", + "aBC = 9.2\n", + "aB = aBC\n", + "aBA = 9\n", + "aE = 3.8 \t\t\t#m/s**2\n", + "#Calculating the acceleration of D\n", + "aD = aBC*CD/BC \t\t\t#m/s**2\n", + "\n", + "#Results:\n", + "print \" The velocity of the cross-head E, vE = %.2f m/s.\"%(vE)\n", + "print \" The rubbing velocity of pin at A = %.3f m/s.\"%(vrA)\n", + "print \" The rubbing velocity of pin at B = %.3f m/s.\"%(vrB)\n", + "print \" The torque required at the crankshaft, TA = %d N-m.\"%(TA)\n", + "print \" The acceleration of the crosshead E, aE = %.1f m/s**2.\"%(aE)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The velocity of the cross-head E, vE = 0.36 m/s.\n", + " The rubbing velocity of pin at A = 0.193 m/s.\n", + " The rubbing velocity of pin at B = 0.135 m/s.\n", + " The torque required at the crankshaft, TA = 590 N-m.\n", + " The acceleration of the crosshead E, aE = 3.8 m/s**2.\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.11 Page No : 203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NAO = 150. \t\t\t#rpm\n", + "OA = 150./1000 #m\n", + "AB = 550./1000 #m\n", + "AC = 450./1000 #m\n", + "DC = 500./1000 #m\n", + "BE = 350./1000 \t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.23\n", + "#Calculating the angular speed of the crank AO\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the linear velocity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.23(b)\n", + "vCA = 0.53\n", + "vCD = 1.7\n", + "vC = vCD\n", + "vEB = 1.93\n", + "vE = 1.05 \t\t\t#m/s\n", + "#Calculating the radial component of the acceleration of A with respect to O\n", + "arAO = vAO**2/OA \t\t\t#m/s**2\n", + "aA = arAO\n", + "#Calculating the radial component of the acceleration of C with respect to A\n", + "arCA = vCA**2/AC \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of C with respect to D\n", + "arCD = vCD**2/DC \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of E with respect to B\n", + "arEB = vEB**2/BE \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.23(c)\n", + "aE = 3.1 \t\t\t#m/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of the ram E, vE = %.2f m/s.\"%(vE)\n", + "print \" Acceleration of the ram E, aE = %.1f m/s**2.\"%(aE)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of the ram E, vE = 1.05 m/s.\n", + " Acceleration of the ram E, aE = 3.1 m/s**2.\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.12 Page No : 205" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NDC = 1140. \t\t\t#rpm\n", + "AB = 80./1000 #m\n", + "CD = 40./1000 #m\n", + "BE = 150./1000 #m\n", + "DE = BE #m\n", + "EP = 200./1000 \t\t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.25\n", + "#Calculating the angular speed of the link CD\n", + "omegaDC = 2*math.pi*NDC/60 \t\t\t#rad/s\n", + "#Calculating the velocity of D with respect to C\n", + "vDC = omegaDC*CD \t\t\t#m/s\n", + "vD = vDC\n", + "#Calculating the angular speed of the larger wheel\n", + "omegaBA = omegaDC*CD/AB \t\t\t#rad/s\n", + "#Calculating the velocity of B with respect to A\n", + "vBA = omegaBA*AB \t\t\t#m/s\n", + "vB = vBA\n", + "#By measurement from the velocity diagram Fig. 8.25(b)\n", + "vEB = 8.1\n", + "vED = 0.15\n", + "vPE = 4.7\n", + "vP = 0.35 \t\t\t#m/s\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of D with respect to C\n", + "arDC = vDC**2/CD \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of E with respect to B\n", + "arEB = vEB**2/BE \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of E with respect to D\n", + "arED = vED**2/DE \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of P with respect to E\n", + "arPE = vPE**2/EP \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.25(c)\n", + "aP = 655. \t\t\t#m/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of P, vP = %.2f m/s.\"%(vP)\n", + "print \" Acceleration of the piston P, aP = %d m/s**2.\"%(aP)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of P, vP = 0.35 m/s.\n", + " Acceleration of the piston P, aP = 655 m/s**2.\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.13 Page No : 211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NBA = 120. \t\t\t#rpm\n", + "AB = 150./1000 #m\n", + "OC = 700./1000 #m\n", + "CD = 200./1000 \t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.29\n", + "#Calculating the angular speed of the crank AB\n", + "omegaAB = 2*math.pi*NBA/AB \t\t\t#rad/s\n", + "#Calculating the velocity of B with respect to A\n", + "vBA = omegaBA*AB \t\t\t#m/s\n", + "#By measurement from the velocity diagram Fig. 8.29(b)\n", + "vD = 2.15\n", + "vBBdash = 1.05\n", + "vDC = 0.45\n", + "vBdashO = 1.55\n", + "vCO = 2.15 \t\t\t#m/s\n", + "BdashO = 0.52 \t\t\t#m\n", + "#Calculating the angular velocity of the link OC or OB'\n", + "omegaCO = vCO/OC \t\t\t#rad/s\n", + "omegaBdashO = omegaCO \t\t\t#rad/s\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = omegaAB**2/AB \t\t\t#m/s**2\n", + "#Calculating the coriolis component of the acceleration of slider B with respect to the coincident point B'\n", + "acBBdash = 2*omegaCO*vBBdash \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of D with respect to C\n", + "arDC = vDC**2/CD \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B' with respect to O\n", + "arBdashO = vBdashO**2/BdashO \t\t\t#m/s**2\n", + "#By measurement fro the acceleration diagram Fig. 8.29(c)\n", + "aD = 8.4\n", + "atBdashO = 6.4 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of the slotted lever\n", + "alpha = atBdashO/BdashO \t\t\t#The angular acceleration of the slotted lever rad/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of the ram D, vD = %.2f m/s.\"%(vD)\n", + "print \" Acceleration of the ram D, aD = %.1f m/s**2.\"%(aD)\n", + "print \" Angular acceleration of the slotted lever = %.1f rad/s**2, anticlockwise.\"%(alpha)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of the ram D, vD = 2.15 m/s.\n", + " Acceleration of the ram D, aD = 8.4 m/s**2.\n", + " Angular acceleration of the slotted lever = 12.3 rad/s**2, anticlockwise.\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.14 Page No : 214" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NBA = 200. \t\t\t#rpm\n", + "AB = 75./1000 #m\n", + "PQ = 375./1000 #m\n", + "QR = 500./1000 \t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.31\n", + "#Calculating the angular velocity of the crank AB\n", + "omegaBA = 2*math.pi*NBA/60 \t\t\t#rad/s\n", + "#Calculating the velocity of B with respect to A\n", + "vBA = omegaBA*AB \t\t\t#m/s\n", + "#By measurement from the velocity diagram Fig. 8.31(b)\n", + "vR = 1.6\n", + "vBdashB = 1.06\n", + "vBdashP = 1.13\n", + "vRQ = 0.4\n", + "vQP = 1.7 \t\t\t#m/s\n", + "PBdash = 248./1000 \t\t\t#m\n", + "#Calculating the angular velocity of the link PQ\n", + "omegaPQ = vQP/PQ \t\t\t#rad/s\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = omegaBA**2*AB \t\t\t#m/s**2\n", + "#Calculating the coriolis component of the acceleration of B with respect to coincident point B'\n", + "acBBdash = 2*omegaPQ*vBdashB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of R with respect to Q\n", + "arRQ = vRQ**2/QR \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B' with respect to P\n", + "arBdashP = vBdashP**2/PBdash \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.31(d)\n", + "aR = 22.\n", + "aBBdash = 18. \t\t\t#m/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of the tool-box R, vR = %.1f m/s.\"%(vR)\n", + "print \" Acceleration of the tool-box R, aR = %d m/s**2.\"%(aR)\n", + "print \" The acceleration of sliding of the block B along the slotted lever PQ, aBBdash = %d m/s**2.\"%(aBBdash)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of the tool-box R, vR = 1.6 m/s.\n", + " Acceleration of the tool-box R, aR = 22 m/s**2.\n", + " The acceleration of sliding of the block B along the slotted lever PQ, aBBdash = 18 m/s**2.\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.15 Page No : 218" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NAO = 30. \t\t\t#rpm\n", + "OA = 150./1000 #m\n", + "OC = 100./1000 #m\n", + "CD = 125./1000 #m\n", + "DR = 500./1000 \t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.33\n", + "#Calculating the angular speed of the crank OA\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the velocity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.33(b)\n", + "vBC = 0.46\n", + "vAB = 0.15\n", + "vRD = 0.12 \t\t\t#m/s\n", + "CB = 240./1000 \t\t\t#m\n", + "#Calculating the angular velocity of the link BC\n", + "omegaBC = vBC/CB \t\t\t#rad/s\n", + "#Calculating the radial component of the acceleration of A with respect to O\n", + "arAO = vAO**2/OA \t\t\t#m/s**2\n", + "#Calculating the coriolis component of the acceleration of A with respect to coincident point B\n", + "acAB = 2*omegaBC*vAB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to C\n", + "arBC = vBC**2/CB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of R with respect to D\n", + "arRD = vRD**2/DR \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.33(c)\n", + "aR = 0.18\n", + "atBC = 0.14 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of the slotted lever CA\n", + "alphaCA = atBC/CB \t\t\t#rad/s**2\n", + "alphaBC = alphaCA\n", + "\n", + "#Results:\n", + "print \" Acceleration of the sliding block R, aR = %.2f m/s**2.\"%(aR)\n", + "print \" Angular acceleration of the slotted lever CA, alphaCA = %.3f rad/s**2, anticlockwise.\"%(alphaCA)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Acceleration of the sliding block R, aR = 0.18 m/s**2.\n", + " Angular acceleration of the slotted lever CA, alphaCA = 0.583 rad/s**2, anticlockwise.\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.16 Page No : 221" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "AB = 125./1000 \t\t\t#m\n", + "NCO = 300. \t\t\t#rpm\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.35\n", + "#By measurement from the space diagram Fig. 8.35(a)\n", + "OC = 85./1000 \t\t\t#m\n", + "#Calculating the angular velocity of the link CO\n", + "omegaCO = 2*math.pi*NCO/60 \t\t\t#rad/s\n", + "#Calculating the velocity of C with respect to O\n", + "vCO = omegaCO*OC \t\t\t#m/s\n", + "vC = vCO\n", + "#By measurement from the velocity diagram Fig. 8.35(b)\n", + "vBC = 0.85\n", + "vBA = 2.85\n", + "vB = vBA \t\t\t#m/s\n", + "#Calculating the radial component of of the acceleration of C with respect to O\n", + "arCO = vCO**2/OC \t\t\t#m/s**2\n", + "#Calculating the coriolis component of of acceleration of the piston B with respect to the cylinder or the coincident point C\n", + "acBC = 2*omegaCO*vBC \t\t\t#m/s**2\n", + "#Calculating the radial component of of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.35(d)\n", + "aBC = 73.2\n", + "atBA = 37.6 \t\t\t#m/s**2\n", + "#Calculating the angular acceleration of the connecting rod AB\n", + "alphaAB = atBA/AB \t\t\t#rad/s**2\n", + "\n", + "#Results:\n", + "print \" Acceleration of the piston inside the cylinder, aBC = %.1f m/s**2.\"%(aBC)\n", + "print \" Angular acceleration of the connecting rod AB, alphaAB = %d rad/s**2, clockwise.\"%(alphaAB)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Acceleration of the piston inside the cylinder, aBC = 73.2 m/s**2.\n", + " Angular acceleration of the connecting rod AB, alphaAB = 300 rad/s**2, clockwise.\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.17 Page No : 223" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "NAO = 100. \t\t\t#rpm\n", + "OA = 50./1000 #m\n", + "AB = 350./1000 #m\n", + "DE = 250./1000 #m\n", + "EF = DE #m\n", + "CB = 125./1000 \t\t#m\n", + "\n", + "#Solution:\n", + "#Refer Fig. 8.37\n", + "#Calculating the angular velocity of the crank AO\n", + "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", + "#Calculating the velocity of A with respect to O\n", + "vAO = omegaAO*OA \t\t\t#m/s\n", + "vA = vAO\n", + "#By measurement from the velocity diagram Fig. 8.37(b)\n", + "vBA = 0.4\n", + "vBC = 0.485\n", + "vB = vBC\n", + "vSD = 0.265\n", + "vQS = 0.4\n", + "vED = 0.73\n", + "vFE = 0.6\n", + "vF = 0.27 \t\t\t#m/s\n", + "DS = 85./1000 \t\t\t#m\n", + "#Calculating the angular velocity of the link DE\n", + "omegaDE = vED/DE \t\t\t#rad/s\n", + "#Calculating the velocity of sliding of the link DE in the swivel block\n", + "vS = vQS \t\t\t#m/s\n", + "#Calculating the radial component of the acceleration of A with respect to O\n", + "arAO = vAO**2/OA \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to A\n", + "arBA = vBA**2/AB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of B with respect to C\n", + "arBC = vBC**2/CB \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of S with respect to D\n", + "arSD = vSD**2/DS \t\t\t#m/s**2\n", + "#Calculating the coriolis component of the acceleration of Q with respect to S\n", + "acQS = 2*omegaDE*vQS \t\t\t#m/s**2\n", + "#Calculating the radial component of the acceleration of F with respect to E\n", + "arFE = vFE**2/EF \t\t\t#m/s**2\n", + "#By measurement from the acceleration diagram Fig. 8.37(d)\n", + "arQS = 1.55 \t\t\t#m/s**2\n", + "\n", + "#Results:\n", + "print \" Velocity of the slider block F, vF = %.2f m/s.\"%(vF)\n", + "print \" Angular velocity of the link DE, omegaDE = %.2f rad/s, anticlockwise.\"%(omegaDE)\n", + "print \" Velocity of sliding of the link DE in the swivel block, vS = %.1f m/s.\"%(vS)\n", + "print \" Acceleration of sliding of the link DE in the trunnion, arQS = %.2f m/s**2.\"%(arQS)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Velocity of the slider block F, vF = 0.27 m/s.\n", + " Angular velocity of the link DE, omegaDE = 2.92 rad/s, anticlockwise.\n", + " Velocity of sliding of the link DE in the swivel block, vS = 0.4 m/s.\n", + " Acceleration of sliding of the link DE in the trunnion, arQS = 1.55 m/s**2.\n" + ] + } + ], + "prompt_number": 18 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |