diff options
Diffstat (limited to 'Theory_Of_Machines/ch2.ipynb')
-rwxr-xr-x | Theory_Of_Machines/ch2.ipynb | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/Theory_Of_Machines/ch2.ipynb b/Theory_Of_Machines/ch2.ipynb new file mode 100755 index 00000000..cfa99e45 --- /dev/null +++ b/Theory_Of_Machines/ch2.ipynb @@ -0,0 +1,361 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1f1031fc7a31a26f2df358a4d88897e7d62132cd9ac575d363637d46b39b8c4e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2 : Kinematics of Motion" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1 Page No: 13 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "u1 = 0\n", + "v1 = 72.*1000./3600 \t\t\t#m/s\n", + "s1 = 500. \t\t\t #m\n", + "\n", + "# Solution:\n", + "# Calculating the initial acceleration of the car\n", + "a1 = (v1**2-u1**2)/(2*s1) \t\t\t#m/s**2\n", + "#Calculating time taken by the car to attain the speed\n", + "t1 = (v1-u1)/a1 \t\t\t#seconds\n", + "#Parameters for the second case\n", + "u2 = v1\n", + "v2 = 90.*1000/3600 \t\t\t#m/s\n", + "t2 = 10. \t\t\t#seconds\n", + "\n", + "#Calculating the acceleration for the second case\n", + "a2 = (v2-u2)/t2 \t\t\t#m/s**2\n", + "#Calculating the distance moved by the car in the second case\n", + "s2 = (u2*t2)+(a2/2*t2**2)\n", + "#Parameters for the third case\n", + "u3 = v2\n", + "v3 = 0 \t\t\t#m/s\n", + "t3 = 5 \t\t\t#seconds\n", + "#Calculating the distance moved by the car\n", + "s3 = (u3+v3)*t3/2 \t\t\t#m\n", + "\n", + "#Results:\n", + "print \" The acceleration of the car, a = %.1f m/s**2. \"%(a1)\n", + "print \" The car takes t = %d s to attain the speed.\"%(t1)\n", + "print \" The acceleration of the car in the second case, a = %.1f m/s**2.\"%(a2)\n", + "print \" The distance moved by the cars = %d m.\"%(s2)\n", + "print \" The distance travelled by the car during braking, s = %.1f m.\"%(s3)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The acceleration of the car, a = 0.4 m/s**2. \n", + " The car takes t = 50 s to attain the speed.\n", + " The acceleration of the car in the second case, a = 0.5 m/s**2.\n", + " The distance moved by the cars = 225 m.\n", + " The distance travelled by the car during braking, s = 62.5 m.\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2 Page no : 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# variables\n", + "t = 1. # second\n", + "v = 6.25 # m/s\n", + "\n", + "# calculations and results\n", + "C1 = v - 0.25 +t -5\n", + "\n", + "# when t = 2\n", + "t = 2.\n", + "v = t**4/4 - t**3 + 5*t + 2\n", + "print \"Velocity at t=2 seconds, V = %.f m/s\"%v\n", + "\n", + "# when t = 1 seconds and s = 8.30 m.\n", + "t = 1.\n", + "s = 8.30\n", + "C2 = s - 1./20 + 1./4 - 5./2 - 2\n", + "t = 2. # seconds\n", + "s = t**5/20 - t**4/4 + 5*t**2/2 + 2*t + 4\n", + "print \"Displacement = %.1f m\"%s\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Velocity at t=2 seconds, V = 8 m/s\n", + "Displacement = 15.6 m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 Page No: 15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables:\n", + "#Initial parameters\n", + "v0 = 100. \t\t\t#kmph\n", + "t0 = 0\n", + "#Parameters at the end of 40 seconds\n", + "v1 = 90./100*v0 \t\t\t#kmph\n", + "t1 = 40. \t\t\t#seconds\n", + "\n", + "#Solution:\n", + "#The acceleration is given by\n", + "#a = (-dv/dt) = k*v\n", + "#Integrating\n", + "#we get ln(v) = -k*t+C\n", + "#Calculating the constant of integration\n", + "def f3(v): \n", + " return 1./v\n", + "\n", + "C = quad(f3,1,100)[0]\n", + "\n", + "#Calculating the constant of proportionality\n", + "k = (C-2.3*math.log10(90))/40\n", + "#Time after 120 seconds\n", + "t2 = 120. \t\t\t#seconds\n", + "#Calculating the velocity after 120 seconds\n", + "v120 = 10**((-k*t2+C)/2.29)\n", + "\n", + "#Results:\n", + "print \" The velocity at the end of 120 seconds = %.1f kmph.\"%(v120)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The velocity at the end of 120 seconds = 73.5 kmph.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.5 Page No: 17" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "import math \n", + "from matplotlib.pyplot import *\n", + "\n", + "# Variables:\n", + "s = 500. #mm\n", + "s1 = 125. #mm\n", + "s2 = 250. #mm\n", + "s3 = 125. \t\t#mm\n", + "t = 1. \t\t\t#second\n", + "\n", + "#Solution:\n", + "#Matrices for the velocity vs. time graph\n", + "V = [0 ,750.,750.,0] \t\t\t#The velocity matrix\n", + "T = [0,1./3,2./3,1] \t\t\t#The time matrix\n", + "plot(T,V)\n", + "xlabel(\"Time\")\n", + "ylabel(\"Velocity\")\n", + "#Calculating the time of uniform acceleration\n", + "\n", + "#Equating the time taken to complete the stroke to 1 second\n", + "v = (125/(1./2)+250/1+125/(1./2))/1 \t\t\t#mm/s\n", + "\n", + "#Results:\n", + "show()\n", + "print \" The maximum cutting speed v = %d mm/s.\"%(v)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UVXW+//EnmFa3sUgBnYDSaMpAjpI/ytIZSpHE25SK\nF+xKY14draV37KdNtQTMK6XjjHrvmsa1zLvWDHeWkrpGDcarjp2cHA2/6AiaEjl24+CoBxmyER1B\n9vePrYQKcYCzzz4/Xo+1WEvwnH3ebvW8z2d/Pp/XDjMMw0BERKQV4XYXICIi/ktNQkRE2qQmISIi\nbVKTEBGRNqlJiIhIm9QkRESkTZY2iZycHO69914GDBhARkYG9fX11NbWkpqaisPhIC0tjbq6uubH\n5+fnk5CQQFJSEtu2bbOyNBER8UCYVfskPv/8c8aOHcvRo0fp0aMHmZmZjB07lj//+c/Ex8czb948\nli9fzvHjx1mxYgWlpaXMnj2bvXv3cvLkSUaOHElFRQU9evSwojwREfGAZSOJXr160b17d86dO0dj\nYyP19fXceeedFBcXk52dDcDUqVMpKioCoKioiKysLLp160ZMTAyJiYmUlJRYVZ6IiHjA0ibx0ksv\nceedd3LHHXcQERFBamoqbreb3r17AxAZGcnp06cBqK6uJjY2tvn5sbGxuFwuq8oTEREPWNYkjh07\nxvLly/niiy84ceIEf//73ykoKLDq5URExAI3WHXgkpISHn744eZRw8SJE9m9ezdRUVHU1NQQGRmJ\n2+0mOjoaMEcOVVVVzc93uVzExcVdd9x77rmHY8eOWVW2iEhQio+P5/PPP+/w8ywbSdxzzz3s3buX\n8+fPYxgGO3bsID4+nvT09OYRRUFBAenp6QCkp6ezbt06GhsbcblcHDp0iOHDh1933GPHjmEYhr4M\ng5ycHNtr8JcvnQudC52Lb//q7Idry0YSw4YNIyMjA4fDQXh4OMnJycyZM4f6+noyMzNZs2YNffv2\npbCwEIAhQ4YwYcKE5sevWrWK7t27W1WeiIh4wLImAZCbm0tubu5VP7vpppvYvn17q49//fXXef31\n160sSUREOkA7rgNYSkqK3SX4DZ2Lb+hcfEPnouss20xnlbCwMAKsZBER23X2vVMjCRERaZOahIiI\ntElNQkRE2qQmISIibVKTEBGRNqlJiIhIm9QkRESkTZbuuBa5oqkJ0tJg7167K5HOSkiAjz8GpeWE\nFjUJ8Yn16+Fvf4PqaggLs7sa6YxJk+C992D2bLsrEV/SjmuxXEOD+Sn03XdhzBi7q5HO2r8fnngC\nPvsMbrnF7mqko7TjWvzWmjXQr58aRKB74AEYNQpWrrS7EvEljSTEUvX18L3vwaZNMHSo3dVIV1VW\nwsMPQ0UF9OpldzXSERpJiF9asQIeeUQNIlh873uQkQH5+XZXIr6ikYRYprYW7rsPdu+Ge++1uxrx\nlhMnICkJDh6E2Fi7qxFPdfa9U01CLPPqq/DVV7Bqld2ViLe9/jqcPg2rV9tdiXhKTUL8issFgwZB\nWRnExNhdjXhbXZ05Oty1CwYMsLsa8YSahPiVmTOhd294+227KxGrLF1qbo7csMHuSsQTfjlxXVFR\nQXJycvPXbbfdxsqVK6mtrSU1NRWHw0FaWhp1dXXNz8nPzychIYGkpCS2bdtmZXlikaNH4Xe/g/nz\n7a5ErDRnDpSUmF8SvHw2kmhqaiImJoaSkhKWLFlCfHw88+bNY/ny5Rw/fpwVK1ZQWlrK7Nmz2bt3\nLydPnmTkyJFUVFTQo0ePbwrWSMLvZWTAsGFqEqFg9Wr47W/hD3/QTnp/55cjiZZ27NjBPffcQ1xc\nHMXFxWRnZwMwdepUioqKACgqKiIrK4tu3boRExNDYmIiJfqYElD27YM9e2DuXLsrEV+YNs1c7bR9\nu92ViFV81iTWrl3LlClTAHC73fTu3RuAyMhITp8+DUB1dTWxLdbUxcbG4nK5fFWidJFhwGuvQU4O\n/NM/2V2N+MINN8B//If5997UZHc1YgWfNImLFy+yZcsWJk+e7IuXE5vs2GGuapo+3e5KxJcmTjSb\nxfvv212JWMEnKbC///3vGTJkCFFRUQBERUVRU1NDZGQkbreb6OhowBw5VFVVNT/P5XIRFxd33fFy\nc3Obf52SkkJKSoql9Uv7mprMT5OLFplvGBI6wsLMVWyzZpkNQ1Hi/sHpdOJ0Ort8HJ9MXGdlZTFu\n3Dh+9KMfATB37tzmietf/OIXHD9+nJUrVzZPXO/Zs6d54rqyspLuLf7VaeLaPxUWwpIl5pyEJjBD\nU1oaTJigKHF/5bf7JM6dO8ddd93F8ePH6dmzJwC1tbVkZmZy6tQp+vbtS2FhIREREQAsXryYgoIC\nwsPDWbZsGWlpaVcXrCbhdxQFLqAocX/nt03C29Qk/M+qVeZNhbTCRbKyzJ32P/2p3ZXItdQkxBaK\nApeWFCXuv/x+n4QEJ0WBS0uKEg8+GklIpykKXFqjKHH/pMtN4nOKApe2KErc/6hJiE8pCly+jaLE\n/Y+ahPiUosClPYoS9y9qEuIzR4/CqFHmevjbb7e7GvFX58+bo4kNG2D4cLurEa1uEp958014+WU1\nCPl2N99shj2+9poZ/iiBSU1COkRR4NIRihIPfGoS4jFFgUtHKUo88KlJiMcUBS6doSjxwKaJa/FI\nU5N5S9LXXgPdFkQ6audOM0r8008VJW4XTVyLpdavNyPAMzLsrkQC0WOPQf/+8N57dlciHaWRhLRL\nUeDiDYoSt5dGEmKZNWugXz81COmaBx4w99esWGF3JdIRGknIt1IUuHjTlSjxo0fNHfviOxpJiCUU\nBS7edCVKXHEugUMjCWmTosDFCooSt4eym8TrFAUuVlGUuO/57eWmuro6Jk+ezKBBg7j//vvZu3cv\ntbW1pKam4nA4SEtLo66urvnx+fn5JCQkkJSUxLZt26wuT9rgcpnLFRcssLsSCUavvgqbN5tzE+Lf\nLG8SM2fOZOLEiRw8eJDDhw+TkJBATk4O48ePp6ysjHHjxpGTkwNAaWkpGzdupLy8nK1btzJr1iwu\nXrxodYnSirw8Mw5c94oQK0REwCuvwBtv2F2JtMfSy01nzpzhoYceorKy8qqfx8fHU1JSQu/evamp\nqeGhhx7i888/Z+HChdxyyy289NJLAPzzP/8zr732GiNHjvymYF1uspyiwMUXFCXuW355uamyspKo\nqCj+5V/+hYEDB/LMM8/w9ddf43a76X15/VtkZCSnT58GoLq6mtgWM1mxsbG4XC4rS5RWKApcfEFR\n4oHhBisP3tTUxL59+1ixYgXDhg1j3rx5vPXWW10+bm5ubvOvU1JSSElJ6fIxxbRvn3k3sV//2u5K\nJBRMmwY/+5kZJT52rN3VBBen04nT6ezycSxtEnFxccTExDBs2DAAMjIyWLhwIdHR0dTU1BAZGYnb\n7SY6OhowRw5VVVXNz3e5XMTFxV133JZNQrznShT4ggWKAhffaBklPmYMhGvnltdc+wE6Ly+vU8ex\n9K8kLi6OyMhIPvvsMwB27NjB/fffz7hx4ygoKACgoKCA9PR0ANLT01m3bh2NjY24XC4OHTrEcF2s\n9BlFgYsdFCXu3yzfJ3Hw4EFmzJhBfX09d911F//zP/+DYRhkZmZy6tQp+vbtS2FhIREREQAsXryY\ngoICwsPDWbZsGWlpaVcXrIlrSygKXOykKHHraTOddElhISxZYs5JhIXZXY2EorFjzVHF7Nl2VxKc\n1CSk0xQFLv5AUeLW8sslsBIYFAUu/kBR4v5JI4kQpyhw8SeKEreORhLSKYoCF3+iKHH/o5FECFMU\nuPgjRYlbQxPX0mGKAhd/pShx71OTkA5xuWDQICgrU9Kr+J+6OnN0u2sXDBhgdzXBQU1COmTmTHNi\nUNd+xV8tXWrmiG3YYHclwUFNQjymKHAJBIoS9y6tbhKPKQpcAoGixP2DmkSIuRIFPneu3ZWItG/a\nNHO10/btdlcSutQkQoiiwCXQtIwSb2qyu5rQpCYRQhQFLoFIUeL20sR1iFAUuAQyRYl3nSau5Vut\nX29GgGdk2F2JSMc99hj076/NdXbQSCIEKApcgkFpqRklXlmpKPHO0EhC2vTee4oCl8A3ZIiixO2g\nkUSQUxS4BBNFiXeeRhLSKkWBSzBRlLjvWT6S6NevH7feeivdunWje/fulJSUUFtbS2ZmJqdOneK7\n3/0u69atIyIiAoD8/Hx+85vf0K1bN5YtW8bYsWOvLlgjCY8pClyCkaLEO8dvs5v69+9PaWkpvXr1\nav7Z3LlziY+PZ968eSxfvpzjx4+zYsUKSktLmT17Nnv37uXkyZOMHDmSiooKevTo8U3BahIeUxS4\nBCtFiXecX19uuraw4uJisrOzAZg6dSpFRUUAFBUVkZWVRbdu3YiJiSExMZGSkhJflBh0XC5zwnrB\nArsrEfG+V1+FzZvNuQmxluVNIiwsjNTUVBwOB//1X/8FgNvtpvflWafIyEhOnz4NQHV1NbEtxo+x\nsbG4XC6rSwxKeXlmHLjuFSHBKCICXnkF3njD7kqC3w1Wv8DevXuJjo7G7Xbz+OOPM8ALdxDJzc1t\n/nVKSgopKSldPmYwOXoUfvc7MwpcJFjNmQMrV0JJiaLEW+N0OnE6nV0+juVNIjo6GoCoqCgyMjLY\nt28fUVFR1NTUEBkZidvtbn5MbGwsVVVVzc91uVzExcVdd8yWTUKupyhwCQUto8T/8AczUUC+ce0H\n6Ly8vE4dx9LLTfX19dTX1wNw7tw5tm7dSmJiIunp6RQUFABQUFBAeno6AOnp6axbt47GxkZcLheH\nDh1iuD4idIiiwCWUKErcepaOJE6dOsVTTz1FWFgY9fX1ZGVl8cMf/pCRI0eSmZnJmjVr6Nu3L4WF\nhQAMGTKECRMm4HA4CA8PZ9WqVXRXmpfHFAUuoaZllPiYMRCunV9epx3XQWT7dvM67eHD5n8ekVBg\nGPDgg/DSS5CZaXc1/stv90l4m5pE6xQFLqFMUeLt8+t9EmI9RYFLKFOUuHU0kggCigIXUZR4ezSS\nCGGKAhdRlLhVNJIIcIoCF/lGZSWMGAEVFYoSv5ZGEiFKUeAi31CUuPe1O5IYMmQI06dP5+mnn+Z2\nP9jCq5HENxQFLnI9RYm3zrKRxNq1a6murmbYsGFkZWXxv//7v3qT9hNvvw0TJ6pBiLR0xx3mclil\n93iHx3MSTU1NfPDBBzz33HOEh4czbdo0fvKTnxAZGWl1jVfRSMLkcsGgQVBWpqRXkWvV1Zkfnnbt\nAi9kigYFS+ckDh48yIsvvsgrr7zCpEmTeP/997n99tuvu2uc+I6iwEXapihx7/FoTuK2225jxowZ\nTJo0iRtvvLH59yZNmsSGDRssL7IljSTMKPBRo8wocD+YJhLxS+fPm6OJDRsUJQ4WxnL85S9/4e67\n777qZ8ePH6d///4dfjFvUJMwV28MGwbz59tdiYh/W70afvtbRYmDhZebMlrJeZg0aVKHX0i8Q1Hg\nIp5TlHjXtZkVeuTIET799FPq6urYuHEjhmEQFhbGuXPn+Prrr31Zo1ymKHCRjlGUeNe12SQqKirY\nsmULX331FVu2bGn++c0338xqpWjZYscOc1XT9Ol2VyISOCZOhHfegcJCyMqyu5rA0+6cxJ49exgx\nYoSv6mlXqM5JKApcpPN27oQf/xiOHAndKHGvT1y/8847zJ8/n7mtXPwOCwtj5cqVHa/SC0K1SRQW\nwpIl5pxEqE/AiXTG2LEwYQI895zdldijs++dbV5uSkhIAMwlsGEt3pWuzE2I7zQ0mOu9331XDUKk\ns/LzzSjxZ55RlHhHKAU2APzqV+Zab63QEOmazEwzqeD11+2uxPcsWwI7evRozp492/x9XV0dqamp\nHr/ApUuXSE5O5oknngCgtraW1NRUHA4HaWlp1NXVNT82Pz+fhIQEkpKS2LZtW0f+HEGrvh7eesv8\nFCQiXbNoEfz853DmjN2VBI52m0RtbS233npr8/cRERHU1NR4/AIrVqwgISGh+RJVTk4O48ePp6ys\njHHjxpGTkwNAaWkpGzdupLy8nK1btzJr1iwuXrzY0T9P0FEUuIj3KEq849ptEpcuXaK6urr5e5fL\nRUNDg0cHd7lcFBcXM2PGjOZhTnFxMdnZ2QBMnTqVoqIiAIqKisjKyqJbt27ExMSQmJhISUlJh/9A\nwaS21vzUs2iR3ZWIBI8FC2DNGnM5ubSvzYnrKxYuXMjQoUMZPXo0ADt37uSXv/ylRwd/4YUXWLp0\n6VWXq9xuN70v3zIqMjKS06dPA1BdXc1jjz3W/LjY2FhcIf63qChwEe9rGSWuLV/ta7dJPPXUUzz4\n4IPs3r0bgGXLltGnT592D/zBBx8QHR1NcnIyTqezy4W2lNsiKD4lJYWUlBSvHt8fuFzmvavLy+2u\nRCT4vPqq+eHr6NHgjRJ3Op1eee9tt0kA7Nq1iz/+8Y+AuQR2sge7uf70pz+xefNmiouLuXDhAmfP\nniU7O5uoqChqamqIjIzE7XYTHR0NmCOHqqqq5ue7XC7i4uJaPXZuCNxN5EoU+B132F2JSPBpGSXu\n4yBrn7n2A3ReXl6njtPuEth58+Zx+PBhpkyZgmEYFBYWcv/997N8+XKPX+Sjjz7iZz/7GVu2bGHu\n3LnEx8czb948fvGLX3D8+HFWrlxJaWkps2fPZs+ePZw8eZKRI0dSWVlJ92u2R4bCElhFgYtYL9Si\nxL2+me6Kbdu2cejQIcIvJ2M9++yzJCYmdqpAMLtZZmYma9asoW/fvhQWFgLmpr0JEybgcDgIDw9n\n1apV1zWIUPHmm/Dyy2oQIla6+WbIyTGjbhQl3rZ2RxIJCQn86U9/IiIiAjD3SYwYMYIjR474pMBr\nBftIYt8+Mzrgs8+U9CpitcZGGDgQVq40YzuCmWUjiVdeeYWBAwcyZswYDMNg586dLFy4sFNFyrdT\nFLiIbylKvH0exXJ8+eWX7N27l7CwMEaMGEFsbKwvamtVMI8ktm+HOXPg8GHzH6+IWM8w4MEH4cUX\ngztK3OspsKWlpdcF+115IYAHHnigM3V2WbA2CUWBi9gnFKLEvd4kUlJSvjXt9cMPP+zwi3lDsDaJ\ndetg6VJFgYvYJdijxL3eJPxVMDaJhgZISDCjwMeMsbsakdBUWmpGiVdWBmeUuGUpsF9//TVvvvkm\n0y/fM/PYsWNX3c5Uuu6996BfPzUIETsNGWLuT1qxwu5K/Eu7I4knn3yShx9+mF//+tccPnyYCxcu\nMHz4cMrKynxV41WCbSRRX28mU27apKRXEbtVVsKIEVBRAZcj5oKGZSOJv/zlL8yfP58ePXoAcNNN\nNzVvrJOuUxS4iP9QlPj12l1o2aNHD86fP9/8/ZdffmlpQaHkShT45exEEfEDCxZAUhL85Cdg42p/\nv9HmkOD555/n448/Jicnh9GjR+NyuXjmmWd45JFHyNdt0rxCUeAi/ueOO8zlsCGQI+qRNuckli9f\nzrp16zhx4gSjR49mwIAB3H333YwaNcqjqHCrBMuchMtl3mu3vFxJryL+pq7O/PC2a1fwRIlbtgT2\niy++YO3ataxdu5bz58/z9NNPM2XKFO616eNvsDSJmTPNiTFd+xTxT0uXwt69wRMl7pN9EgcOHODZ\nZ5+lvLycS5cudfjFvCEYmoSiwEX8X7BFiVu2uqmxsZHNmzfz9NNP8/jjjzNgwAA2btzYqSLFpChw\nEf/XMko8wD+XdkmbI4lt27axdu1aioqKGD58OFOmTOGHP/wh3/nOd3xd41UCfSShKHCRwBFMUeJe\nv9z02GOPMWXKFCZNmkSvXr26XKC3BHKTMAxzV3Vmprl6QkT834YNZpz4//t/gR0lruymAKAocJHA\nEyxR4moSfk5R4CKBKxiixC2buBbveP99MwI8I8PuSkSkox57DO6+G1avtrsS37OsSVy4cIFhw4aR\nnJzMvffeywsvvABAbW0tqampOBwO0tLSqKura35Ofn4+CQkJJCUlsW3bNqtK87mGBnNF09tv614R\nIoEqPx/eegvOnbO7Et+yrEncdNNN7Nq1iwMHDvDpp5+yZ88ePvzwQ3Jychg/fjxlZWWMGzeOnJwc\nwLwT3saNGykvL2fr1q3MmjWLixcvWlWeTykKXCTwhWqUuKWXm26++WYALl68yKVLl4iOjqa4uJjs\n7GwApk6dSlFREQBFRUVkZWXRrVs3YmJiSExMpKSkxMryfKK+3vz0obgrkcC3aJEZynnmjN2V+I6l\nTaKpqYnBgwfTp08fHn30URITE3G73fS+HNQeGRnJ6dOnAaiuria2ReRibGwsLpfLyvJ8QlHgIsEj\nFKPELV2IGR4ezp///Ge++uor0tLSvHZf7NwW8YwpKSmkpKR45bjepihwkeATKFHiTqcTp9PZ5eP4\nZLX+bbfdxvjx4/nkk0+IioqipqaGyMhI3G430dHRgDlyqKqqan6Oy+UiLi6u1ePlBkiGr6LARYJP\nyyhxf17tdO0H6Ly8vE4dx7LLTWfOnOHrr78G4Pz582zfvp2kpCTS09MpKCgAoKCggPT0dADS09NZ\nt24djY2NuFwuDh06xPAATtVyucwJ68vz8iISRObPh82bzbDOYGfZSOLEiRM888wzGIbBhQsXePrp\npxk/fjwjRowgMzOTNWvW0LdvXwoLCwEYMmQIEyZMwOFwEB4ezqpVq+geqLtWgLw8Mw5c94oQCT4R\nEfDKK/DGG8ETJd4W7bi2gKLARYJfoEWJa8e1H1EUuEjwC5UocTUJL9u3z7yb1dy5dlciIlabNg1O\nnIAgCoi4jpqEFxmG+aliwQLdK0IkFNxwgxkj/tOfmiGewUhNwot27DBXNU2fbnclIuIrEyeazeLy\nGpygo4lrL1EUuEjoCoQocU1c20xR4CKhK5ijxDWS8IKGBkhIgHffVdKrSKgqLYUnnoDKSrjlFrur\nuZ5GEjZSFLiIBGuUuEYSXVRfbyZDbtqkpFeRUFdZCSNGQEUFXA679hsaSdhEUeAickUwRolrJNEF\ntbVw331mFLiSXkUEzM11SUlw8KB/RYl39r1TTaILXn0VvvoKVq2yuxIR8Sc//Sm43f612klNwsdc\nLhg0CMrLlfQqIlerqzMvPf3xjzBggN3VmNQkfGzmTHNiKpiuPYqI9yxZAp984j9R4moSPqQocBFp\nj79FiWt1kw8pClxE2hMsUeJqEh2kKHAR8VQwRImrSXSAosBFpCOCIUpcTaIDFAUuIh0V6FHiljaJ\nqqoqvv/975OUlMR9993HkiVLAKitrSU1NRWHw0FaWhp1dXXNz8nPzychIYGkpCS2+dEYranJHEUs\nWmT+hYuIeCIszFwF+eabZhhooLG0SfTo0YNf/vKXlJeXU1payurVqzl48CA5OTmMHz+esrIyxo0b\nR05ODgClpaVs3LiR8vJytm7dyqxZs7h48aKVJXpMUeAi0lmBHCVuaZPo06cPAwcOBOA73/kODoeD\n6upqiouLyc7OBmDq1KkUFRUBUFRURFZWFt26dSMmJobExERKSkqsLNEjDQ3mp4C33zYbhYhIR+Xn\nw1tvwblzdlfSMT6bk/jiiy/Yt28fI0eOxO120/tyRGJkZCSnT58GoLq6mtgWYSexsbG4XC5fldgm\nRYGLSFcFapS4T66u//3vfycjI4MVK1Zw6623dvl4ubm5zb9OSUkhJSWly8dsS3292f03bbLsJUQk\nRCxaZEaJz5plfZS40+nE6XR2+TiWN4mGhgYmTZrEv/7rv/LUU08BEBUVRU1NDZGRkbjdbqKjowFz\n5FBVVdX8XJfLRVxc3HXHbNkkrKYocBHxlpZR4kuXWvta136AzsvL69RxLL3cZBgG//Zv/0ZCQgIv\nvPBC88/T09MpKCgAoKCggPT09Oafr1u3jsbGRlwuF4cOHWK4jfvZa2vh5z83u7+IiDcsWABr1pjL\n6QOBpdlNH3/8Md///vdxOByEXZ7xzc/PZ/jw4WRmZnLq1Cn69u1LYWEhERERACxevJiCggLCw8NZ\ntmwZaWlpVxfsw+wmRYGLiBXsiBJXwJ+XKQpcRKxiR5S4moSXKQpcRKzk6yhxNQkvUhS4iFjt/Hlz\nNLFhAzz4oPWvp6hwL1IUuIhYLVCixNUkrqEocBHxlWefhb/+1b+jxNUkWlAUuIj4UiBEiatJtLB9\nu6LARcS3/D1KXBPXlzU1wbBh5khi8mSvH15EpE07d8KPfwxHjkD37ta8hiauu0hR4CJiF3+OEtdI\nAjMKPCEB3n1XSa8iYo/SUnjiCaishFtu8f7xNZLoAkWBi4jd/DVKPORHEvX15oaWTZuU9Coi9qqs\nNKPEKyq8HyWukUQnKQpcRPxFyyhxfxHSI4naWrjvPti9G+691yuHFBHpkhMnICkJDh6EFjfq7DJl\nN3WCosBFxB9ZESWuJtFBigIXEX9lRZS4mkQHKQpcRPyZt6PE1SQ6QFHgIuLvvB0lrtVNHaAocBHx\nd/4SJR5yTUJR4CISKPwhStzSJjF9+nT69OlDUlJS889qa2tJTU3F4XCQlpZGXV1d8+/l5+eTkJBA\nUlIS2yw4K4oCF5FA4g9R4pY2iWeffZatW7de9bOcnBzGjx9PWVkZ48aNIycnB4DS0lI2btxIeXk5\nW7duZdasWVy8eNGr9SgKXEQCjd1R4pY2iVGjRnH7NRf+i4uLyc7OBmDq1KkUFRUBUFRURFZWFt26\ndSMmJobExERKSkq8VktTk9mNFy0yT7iISCAICzNXYb75phlG6ms+n5Nwu930vhxKEhkZyenTpwGo\nrq4mtsX2wtjYWFwul9de9/33ITxcUeAiEnjsjBIPyM/Uubm5zb9OSUkhJSXlWx/f0GB24V/9yuzK\nIiKBJj/fjBJ/5hnPosSdTidOp7PLr+vzJhEVFUVNTQ2RkZG43W6io6MBc+RQVVXV/DiXy0VcXFyr\nx2jZJDxxJQp89OjOVi0iYq+WUeKvv97+46/9AJ2Xl9ep1/X55ab09HQKCgoAKCgoID09vfnn69at\no7GxEZfLxaFDhxg+fHiXX6++Ht56y+zCIiKBbNEi+PnP4cwZ372mpTuup0yZwkcffURNTQ19+vRh\n4cKFPPkkbM6YAAAIpElEQVTkk2RmZnLq1Cn69u1LYWEhERERACxevJiCggLCw8NZtmwZaWlp1xfc\nwV2D+flw4ID/3mRcRKQjZs+Gnj1h6dKOPU+xHK1QFLiIBJvORomrSbRCUeAiEow6EyWuJnENRYGL\nSLC6EiW+axfcf79nz1GTuIaiwEUkmHU0SlxNogVFgYtIsOtolLiiwltQFLiIBDtfRYkHXZNQFLiI\nhIpnnzVXO1kZJR5UTUJR4CISSnwRJR5UTUJR4CISaiZNsjZKPGgmrpuaYNgwcyQxebINhYmI2GTn\nTvjxj+HIEejevfXHhPzEtaLARSRUWRklHhQjiYYGSEgwo8CV9Coioai01IwSr6xsPUo8pEcSigIX\nkVDXMkrcmwJ+JFFfb24o2bQJhg61sTAREZtVVsKIEVBRYSZOtBSyI4kVK+CRR9QgRES+9z1zXtab\ncUQBPZJQFLiIyNXaihIPyewmRYGLiFyvtSjxkGsSigIXEWlda1HiIdckFAUuItK2a6PEg2bieuvW\nrSQlJZGQkMA777zT6mOOHoXf/Q7mz/dxcSIiAWLuXLNJfPJJ147jV03iH//4B8899xxbt26lrKyM\n9evXc+DAgesepyhwk9PptLsEv6Fz8Q2di2+E8rnwVpS4XzWJTz75hMTERGJiYrjhhhvIzMykqKjo\nuscpCtwUyv8BrqVz8Q2di2+E+rnwRpS4XzUJl8tFXFxc8/exsbG4XK7rHqcocBGR9rWMEu8sv2oS\nYWFhHj1OUeAiIp65EiXeaYYf2bVrlzF+/Pjm75csWWIsWrToqsfEx8cbgL70pS996asDX/Hx8Z16\nX/arJbAXLlxgwIAB7N69m+joaB5++GFWrVrFAw88YHdpIiIhqSuDEK+76aabePfdd0lLS6OpqYns\n7Gw1CBERG/nVSEJERPyLX01ct+TJprp///d/JzExkQceeKDV/RTBor1z8Zvf/AaHw0FSUhJDhw6l\ntLTUhip9w5N/FwD79u3jhhtuYOPGjT6szrc8ORdOp5Phw4czePBgfvCDH/i4Qt9p71ycPHmS0aNH\nk5iYyH333ceqIA18mz59On369CEpKanNx3T4fbPTs8wWunDhgtGvXz/D5XIZDQ0NxtChQ439+/df\n9Zj169cbTz75pGEYhrF//35j0KBBdpRqOU/OxSeffGKcPXvWMAzD+P3vf28MHjzYjlIt58m5MAzD\naGxsNB599FFj/Pjxxvr1622o1HqenIu//vWvRmJionHq1CnDMAzjzJkzdpRqOU/OxRtvvGG89tpr\nhmEYhtvtNiIiIowLFy7YUa6ldu3aZezfv98YOHBgq7/fmfdNvxxJeLKprri4mOzsbACSk5NpbGxs\ndU9FoPPkXAwfPpyePXsC8Mgjj1BdXW1HqZbzdLPlf/7nf5KRkUFUVJQNVfqGJ+di7dq1ZGZmEh0d\nDUCvXr3sKNVynpyLuLg4zp49C8DZs2eJiorixhtvtKNcS40aNYrbvyWKojPvm37ZJDzZVOfpxrtA\n19E/56pVq3jyySd9UZrPeXIuqqur2bRpE8899xzg+d6bQOPJuaioqODEiROMGDECh8PB6pa50UHE\nk3Mxc+ZMDh8+zB133MGgQYNY4e17fAaIzrxv+tXqpis8/Y9tXDPnHoxvCB35MzmdTtasWcPu3bst\nrMg+npyLefPm8fbbbzcnXl77byRYeHIuLl26xKFDh9i5cyf19fU89NBDjBgxgsTERB9U6DuenIvF\nixczePBgnE4nx44dIzU1lYMHDzaPwENJR983/XIkERsbS1VVVfP3VVVVV3W/1h7jcrmIbXkbpiDh\nybkAKCsrY8aMGWzevPlbh5uBzJNzUVpaSlZWFv3792fDhg08//zzbN682delWs6Tc3HnnXcyduxY\nbr75Znr37s0PfvADysrKfF2q5Tw5Fx9//DGTJ08GID4+nv79+3PkyBGf1ukPOvW+6bUZEy86f/68\ncddddxkul8u4ePGiMXToUKO0tPSqx6xfv9546qmnDMMwjNLSUsPhcNhRquU8ORf/93//Z8THxxt7\n9uyxqUrf8ORctDRt2jRjw4YNPqzQdzw5F/v37zdGjx5tNDY2GufOnTMSEhKMAwcO2FSxdTw5F88/\n/7yRm5trGIZhnDx50ujbt2/zhH6wOX78+LdOXHf0fdMvLze1tanuyrK1WbNmMWnSJD788EMSExO5\n8cYb+e///m+bq7aGJ+di4cKF/O1vf2u+Dt+9e3dKSkrsLNsSnpyLUOHJuUhOTubxxx/H4XDQ0NDA\njBkzGDx4sM2Ve58n52LBggVMnTqVhIQELl26xKJFi5on9IPJlClT+Oijj6ipqSEuLo68vDwaGhqA\nzr9vajOdiIi0yS/nJERExD+oSYiISJvUJEREpE1qEiIi0iY1CRERaZOahIiItElNQuRbnDlzhuTk\nZJKTk/nud79LbGwsycnJ9OzZkzlz5thdnojltE9CxEN5eXn07NmTF1980e5SRHxGIwmRDrjymcrp\ndPLEE08AkJuby49+9CMeffRR+vXrx8aNG3n55ZdxOByMHj2af/zjHwDs2bOnOZH10UcfDdpIdwku\nahIiXvDFF1+wc+dONm/ezNSpU0lLS6OsrIzbbruNLVu2cPHiRebMmcMHH3xAWVkZs2fPZv78+XaX\nLdIuv8xuEgkkYWFhPP7444SFhTFw4ECamppITU0FICkpiaqqKsrLy/n8888ZM2YMYMZ49+nTx86y\nRTyiJiHiBT169AAgPDyc7t27N/88PDycpqYmDMNg0KBB7Nq1y64SRTpFl5tEusiTtR8Oh4Mvv/yy\n+cbzjY2NVFRUWF2aSJepSYh0wJW7eIWFhbX665aPafl9jx49eP/995k9ezaDBw9m8ODBfPTRR74r\nXKSTtARWRETapJGEiIi0SU1CRETapCYhIiJtUpMQEZE2qUmIiEib1CRERKRNahIiItImNQkREWnT\n/wcnH4HjeqCFSgAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f5ef004da50>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The maximum cutting speed v = 750 mm/s.\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.6 Page No: 19" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Variables:\n", + "N0 = 0\n", + "N = 2000. \t\t\t#rpm\n", + "t = 20. \t\t\t#seconds\n", + "\n", + "#Solution:\n", + "#Calculating the angular velocities\n", + "omega0 = 0\n", + "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", + "#Calculating the angular acceleration\n", + "alpha = (omega-omega0)/t \t\t\t#rad/s**2\n", + "#Calculating the angular distance moved by the wheel during 2000 rpm\n", + "theta = (omega0+omega)*t/2 \t\t\t#rad\n", + "#Calculating the number of revolutions made by the wheel\n", + "n = theta/(2*math.pi)\n", + "\n", + "#Results:\n", + "print \" The angular acceleration of the wheel, alpha = %.3f rad/s**2.\"%(alpha)\n", + "print \" The wheel makes n = %.1f revolutions.\"%(n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The angular acceleration of the wheel, alpha = 10.472 rad/s**2.\n", + " The wheel makes n = 333.3 revolutions.\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7 Page No: 21" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables:\n", + "r = 1.5 \t\t\t#m\n", + "N0 = 1200.\n", + "N = 1500. \t\t\t#rpm\n", + "t = 5. \t\t\t#seconds\n", + "\n", + "#Solution:\n", + "#Calculating the angular velocities\n", + "omega0 = 2*math.pi*N0/60\n", + "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", + "#Calculating the linear velocity at the beginning\n", + "v0 = r*omega0 \t\t\t#m/s\n", + "#Calculating the linear velocity at the end of 5 seconds\n", + "v5 = r*omega \t\t\t#m/s\n", + "#Calculating the angular acceleration\n", + "alpha = (omega-omega0)/t \t\t\t#ad/s**2\n", + "#Calculating the math.tangential acceleration after 5 seconds\n", + "TangentialAcceleration = alpha*(r/2) \t\t\t#m/s**2\n", + "#Calculating the radial acceleration after 5 seconds\n", + "RadialAcceleration = (round(omega)**2)*(r/2) \t\t\t#m/s**2\n", + "\n", + "#Results:\n", + "print \" The linear velocity at the beginning, v0 = %.1f m/s.\"%(v0)\n", + "print \" The linear velocity after 5 seconds, v5 = %.1f m/s.\"%(v5)\n", + "print \" The tangential acceleration after 5 seconds is %.1f m/s**2.\"%(TangentialAcceleration)\n", + "print \" The radial acceleration after 5 seconds is %.f m/s**2.\"%(RadialAcceleration)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The linear velocity at the beginning, v0 = 188.5 m/s.\n", + " The linear velocity after 5 seconds, v5 = 235.6 m/s.\n", + " The tangential acceleration after 5 seconds is 4.7 m/s**2.\n", + " The radial acceleration after 5 seconds is 18487 m/s**2.\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |