summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines/ch12.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Theory_Of_Machines/ch12.ipynb')
-rwxr-xr-xTheory_Of_Machines/ch12.ipynb1145
1 files changed, 1145 insertions, 0 deletions
diff --git a/Theory_Of_Machines/ch12.ipynb b/Theory_Of_Machines/ch12.ipynb
new file mode 100755
index 00000000..22e6fba9
--- /dev/null
+++ b/Theory_Of_Machines/ch12.ipynb
@@ -0,0 +1,1145 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:844073ad5c928bfdaf4248256fc5562a2dc71b1c2156a1230e38f2c366a18bf7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12 : Toothed Gearing"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1 Page No : 393"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "P = 120.*1000 \t\t\t#W\n",
+ "d = 250./1000\n",
+ "r = d/2 \t\t\t#m\n",
+ "N = 650. \t\t\t#rpm\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the angular speed of the gear\n",
+ "omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
+ "#Calculating the torque transmitted\n",
+ "T = P/omega \t\t\t#N-m\n",
+ "#Calculating the math.tangential load on the pinion\n",
+ "FT = T/r \t\t\t#N\n",
+ "#Calculating the total load due to power transmitted\n",
+ "F = FT/(math.cos(math.radians(phi))*1000) \t\t\t#kN\n",
+ "\n",
+ "#Results:\n",
+ "print \" Total load due to power transmitted, F = %.2f kN.\"%(F)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Total load due to power transmitted, F = 15.01 kN.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 Page No : 397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "T = 40.\n",
+ "t = T\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "m = 6. \t\t\t#mm\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the circular pitch\n",
+ "pc = math.pi*m \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = 1.75*pc \t\t\t#Length of arc of contact mm\n",
+ "#Calculating the length of path of contact\n",
+ "Lpc = Lac*math.cos(phi) \t\t\t#Length of path of contact mm\n",
+ "#Calculating the pitch circle radii of each wheel\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "r = R \t\t\t#mm\n",
+ "#Calculating the radius of the addendum circle of each wheel\n",
+ "RA = math.sqrt(R**2*(math.cos(phi))**2+(Lpc/2+R*math.sin(phi))**2) \t\t\t#mm\n",
+ "#Calculating the addendum of the wheel\n",
+ "Ad = RA-R \t\t\t#Addendum of the wheel mm\n",
+ "\n",
+ "#Results:\n",
+ "print \" Addendum of the wheel = %.2f mm.\"%(Ad)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Addendum of the wheel = 6.17 mm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3 Page No : 398"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "t = 30.\n",
+ "T = 80.\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "m = 12. \t\t\t#mm\n",
+ "Addendum = 10. \t\t#mm\n",
+ "\n",
+ "#Solution:\n",
+ "#Length of path of contact:\n",
+ "#Calculating the pitch circle radius of pinion\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of gear\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of pinion\n",
+ "rA = r+Addendum \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of gear\n",
+ "RA = R+Addendum \t\t\t#mm\n",
+ "#Calculating the length of path of approach\n",
+ "#Refer Fig. 12.11\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = KL/math.cos(math.radians(phi)) \t\t\t#Length of arc of contact mm\n",
+ "#Contact ratio:\n",
+ "#Calculating the circular pitch\n",
+ "Pc = math.pi*m \t\t\t#mm\n",
+ "#Calculating the contact ratio\n",
+ "CR = Lac/Pc \t\t\t#Contact ratio\n",
+ "\n",
+ "#Results:\n",
+ "print \" Length of path of contact, KL = %.1f mm.\"%(KL)\n",
+ "print \" Length of arc of contact = %.2f mm.\"%(Lac)\n",
+ "print \" Contact ratio = %.1f.\"%(CR)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Length of path of contact, KL = 52.3 mm.\n",
+ " Length of arc of contact = 55.61 mm.\n",
+ " Contact ratio = 1.5.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4 Page No : 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "t = 20.\n",
+ "G = 2.\n",
+ "m = 5. \t\t\t#mm\n",
+ "v = 1.2 \t\t\t#m/s\n",
+ "addendum = 1*m \t\t\t#mm\n",
+ "\n",
+ "#Solution:\n",
+ "#Angle turned through by pinion when one pair of teeth is in mesh:\n",
+ "#Calculating the pitch circle radius of pinion\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of wheel\n",
+ "R = m*G*t/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of pinion\n",
+ "rA = r+addendum \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of wheel\n",
+ "RA = R+addendum \t\t\t#mm\n",
+ "#Calculating the length of path of approach\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = KL/math.cos(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the angle turned by the pinion\n",
+ "angle = Lac*360/(2*math.pi*r) \t\t\t#Angle turned by the pinion degrees\n",
+ "#Maximum velocity of sliding:\n",
+ "#Calculating the angular speed of pinion\n",
+ "omega1 = v*1000/r \t\t\t#rad/s\n",
+ "#Calculating the angular speed of wheel\n",
+ "omega2 = v*1000/R \t\t\t#rad/s\n",
+ "#Calculating the maximum velocity of sliding\n",
+ "vS = (omega1+omega2)*KP \t\t\t#mm/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" Angle turned through by pinion when one pair of teeth is in mesh = %.2f degrees.\"%(angle)\n",
+ "print \" Maximum velocity of sliding, vS = %.1f mm/s.\"%(vS)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Angle turned through by pinion when one pair of teeth is in mesh = 29.43 degrees.\n",
+ " Maximum velocity of sliding, vS = 455.3 mm/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5 Page No : 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "T = 40.\n",
+ "t = 20.\n",
+ "N1 = 2000. \t\t\t#rpm\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "addendum = 5.\n",
+ "m = 5. \t\t\t#mm\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the angular velocity of the smaller gear\n",
+ "omega1 = 2*math.pi*N1/60 \t\t\t#rad/s\n",
+ "#Calculating the angular velocity of the larger gear\n",
+ "omega2 = omega1*t/T \t\t\t#rad/s\n",
+ "#Calculating the pitch circle radius of the smaller gear\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of the larger gear\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of aaddendum circle of smaller gear\n",
+ "rA = r+addendum \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of larger gear\n",
+ "RA = R+addendum \t\t\t#mm\n",
+ "#Calculating the length of path of approach\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the velocity of sliding at the point of engagement\n",
+ "vSK = (omega1+omega2)*KP \t\t\t#mm/s\n",
+ "#Calculating the velocity of sliding at the point of disengagement\n",
+ "vSL = (omega1+omega2)*PL \t\t\t#mm/s\n",
+ "#Angle through which the pinion turns:\n",
+ "#Calculating the length of path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = KL/math.cos(math.radians(phi)) \t\t\t#Length of arc of contact mm\n",
+ "#Calculating the circumference of pinion\n",
+ "C = 2*math.pi*r \t\t\t#Circumference of pinion mm\n",
+ "#Calculating the angle through which the pinion turns\n",
+ "angle = Lac*360/C \t\t\t#Angle through which the pinion turns degrees\n",
+ "\n",
+ "#Results:\n",
+ "print \" Velocity of sliding at the point of engagement, vSK = %.f mm/s.\"%(vSK)\n",
+ "print \" Velocity of sliding at the point of disengagement, vsL = %.f mm/s.\"%(vSL)\n",
+ "print \" Angle through which the pinion turns = %.2f degrees.\"%(angle)\n",
+ "\n",
+ "# answers differ due to rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Velocity of sliding at the point of engagement, vSK = 3973 mm/s.\n",
+ " Velocity of sliding at the point of disengagement, vsL = 3610 mm/s.\n",
+ " Angle through which the pinion turns = 29.43 degrees.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6 Page No : 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Variables:\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "m = 6.\n",
+ "addendum = 1*m \t\t\t#mm\n",
+ "t = 17.\n",
+ "T = 49.\n",
+ "\n",
+ "#Solution:\n",
+ "#Number of pairs of teeth in contact:\n",
+ "#Calculating the pitch circle radius of pinion\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of gear\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of pinion\n",
+ "rA = r+addendum \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of gear\n",
+ "RA = R+addendum \t\t\t#mm\n",
+ "#Calculating the length of path of approach\n",
+ "#Refer Fig. 12.11\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = KL/math.cos(math.radians(phi)) \t\t\t#Length of arc of contact mm\n",
+ "#Calculating the circular pitch\n",
+ "pc = math.pi*m \t\t\t#mm\n",
+ "#Calculating the number of pairs of teeth in contact\n",
+ "n = Lac/pc \t\t\t#Number of pairs of teeth in contact\n",
+ "#Angle turned by the pinion and gear wheel when one pair of teeth is in contact:\n",
+ "#Calculating the angle turned through by the pinion\n",
+ "anglep = Lac*360/(2*math.pi*r) \t\t\t#Angle turned through by the pinion degrees\n",
+ "#Calculating the angle turned through by the wheel\n",
+ "angleg = Lac*360/(2*math.pi*R) \t\t\t#Angle turned through by the gear wheel degrees\n",
+ "#Ratio of sliding to rolling motion:\n",
+ "#At the instant when the tip of a tooth on the larger wheel is just making contact with its mating teeth\n",
+ "r1 = ((1+t/T)*KP)/r \t\t\t#Ratio of sliding velocity to rolling velocity\n",
+ "#At the instant when the tip of a tooth on a larger wheel is just leaving contact with its mating teeth\n",
+ "r2 = ((1+t/T)*PL)/r \t\t\t#Ratio of sliding velocity to rolling velocity\n",
+ "\n",
+ "\n",
+ "#Results:\n",
+ "print \" Number of pairs of teeth in contact = %.f.\"%(n)\n",
+ "print \" Angle turned through by the pinion = %.1f degrees.\"%(anglep)\n",
+ "print \" Angle turned through by the gear wheel = %.f degrees.\"%(angleg)\n",
+ "print \" At the instant when the tip of a tooth on the larger wheel is just\\\n",
+ " making contact with its mating teeth, ratio of sliding \\nvelocity to rolling velocity = %.2f.\"%(r1)\n",
+ "print \" At the instant when the tip of a tooth on a larger wheel is just leaving contact\\\n",
+ " with its mating teeth, ratio of sliding velocity to rolling velocity = %.3f.\"%(r2)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Number of pairs of teeth in contact = 2.\n",
+ " Angle turned through by the pinion = 34.6 degrees.\n",
+ " Angle turned through by the gear wheel = 12 degrees.\n",
+ " At the instant when the tip of a tooth on the larger wheel is just making contact with its mating teeth, ratio of sliding \n",
+ "velocity to rolling velocity = 0.41.\n",
+ " At the instant when the tip of a tooth on a larger wheel is just leaving contact with its mating teeth, ratio of sliding velocity to rolling velocity = 0.354.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.7 Page No : 403"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "t = 18.\n",
+ "T = 72.\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "m = 4. \t\t\t #mm\n",
+ "addendump = 8.5 \t\t\t#Addendum on pinion mm\n",
+ "addendumg = 3.5 \t\t\t#Addendum on gear mm\n",
+ "\n",
+ "#SOlution:\n",
+ "#Refer Fig. 12.12\n",
+ "#Calculating the pitch circle radius of the pinion\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of the gear\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of the pinion\n",
+ "rA = r+addendump \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of the gear\n",
+ "RA = R-addendumg \t\t\t#mm\n",
+ "#Calculating the radius of the base circle of the pinion\n",
+ "O1M = r*math.cos(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the radius of the base circle of the gear\n",
+ "O2N = R*math.cos(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of approach\n",
+ "KP = R*math.sin(math.radians(phi))-math.sqrt(RA**2-O2N**2) \t\t\t#mm\n",
+ "#Calculating the length of path of recess\n",
+ "PL = math.sqrt(rA**2-O1M**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of the path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "\n",
+ "#Results:\n",
+ "print \" Length of the path of contact, KL = %.2f mm.\"%(KL)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Length of the path of contact, KL = 28.04 mm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.8 Page No : 406"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "t = 20.\n",
+ "T = 40.\n",
+ "m = 10. \t\t\t#mm\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "\n",
+ "#Solution:\n",
+ "#Addendum height for each gear wheel:\n",
+ "#Calculating the pitch circle radius of the smaller gear wheel\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of the larger wheel\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle for the larger gear wheel\n",
+ "RA = math.sqrt((r*math.sin(math.radians(phi))/2+R*math.sin(math.radians(phi)))**2+R**2*(math.cos(math.radians(phi)))**2) \t\t\t#mm\n",
+ "#Calculating the addendum height for larger gear wheel\n",
+ "addendumg = RA-R \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle for the smaller gear wheel\n",
+ "rA = math.sqrt((R*math.sin(math.radians(phi))/2+r*math.sin(math.radians(phi)))**2+r**2*(math.cos(math.radians(phi)))**2) \t\t\t#mm\n",
+ "#Calculating the addendum height for smaller gear wheel\n",
+ "addendump = rA-r \t\t\t#mm\n",
+ "#Calculating the length of the path of contact\n",
+ "Lpc = (r+R)*math.sin(math.radians(phi))/2 \t\t\t#Length of the path of contact mm\n",
+ "#Calculating the length of the arc of contact\n",
+ "Lac = Lpc/math.cos(math.radians(phi)) \t\t\t#Length of the arc of contact mm\n",
+ "#Contact ratio:\n",
+ "#Calculating the circular pitch\n",
+ "pc = math.pi*m \t\t\t#mm\n",
+ "#Calculating the contact ratio\n",
+ "CR = Lpc/pc \t\t\t#Contact ratio\n",
+ "\n",
+ "#Results:\n",
+ "print \" Addendum height for larger gear wheel = %.1f mm.\"%(addendumg)\n",
+ "print \" Addendum height for smaller gear wheel = %.1f mm.\"%(addendump)\n",
+ "print \" Length of the path of contact = %.1f mm.\"%(Lpc)\n",
+ "print \" Length of the arc of contact = %.1f mm.\"%(Lac)\n",
+ "print \" Contact ratio = %d.\"%(CR+1)\n",
+ "\n",
+ "# book answer is wrong for 2nd "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Addendum height for larger gear wheel = 6.5 mm.\n",
+ " Addendum height for smaller gear wheel = 16.2 mm.\n",
+ " Length of the path of contact = 51.3 mm.\n",
+ " Length of the arc of contact = 54.6 mm.\n",
+ " Contact ratio = 2.\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.9 Page No : 410"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "G = 3.\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "Aw = 1. \t\t\t#module\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the minimum number of teeth for a gear ratio of 3:1\n",
+ "t1 = (2*Aw)/(G*(math.sqrt(1+1/G*(1/G+2)*(math.sin(math.radians(phi)))**2)-1))\n",
+ "#Calculating the minimum number of teeth for equal wheel\n",
+ "t2 = (2*Aw)/(math.sqrt(1+3*(math.sin(math.radians(phi)))**2)-1)\n",
+ "\n",
+ "#Results:\n",
+ "print \" Minimum number of teeth for a gear ratio of 3:1, t = %.f.\"%(t1+1)\n",
+ "print \" Minimum number of teeth for equal wheel, t = %d.\"%(t2+1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Minimum number of teeth for a gear ratio of 3:1, t = 16.\n",
+ " Minimum number of teeth for equal wheel, t = 13.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.10 Page No : 410"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "import numpy\n",
+ "\n",
+ "# Variables:\n",
+ "G = 4.\n",
+ "phi = 14.5 \t\t\t#degrees\n",
+ "\n",
+ "#Solution:\n",
+ "#Least number of teeth on each wheel:\n",
+ "#Calculating the least number of teeth on the pinion\n",
+ "t = 2*math.pi/(math.tan(math.radians(phi)))\n",
+ "#Calculating the least number of teeth on the gear\n",
+ "T = G*t\n",
+ "\n",
+ "#Results:\n",
+ "print \" Least number of teeth on the pinion, t = %.1f.\"%(t)\n",
+ "print \" Least number of teeth on the gear, T = %.f.\"%(round(T,-1))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Least number of teeth on the pinion, t = 24.3.\n",
+ " Least number of teeth on the gear, T = 100.\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.11 Page No : 411"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "phi = 16. \t\t\t#degrees\n",
+ "m = 6. \t\t\t #mm\n",
+ "t = 16.\n",
+ "G = 1.75\n",
+ "T = G*t\n",
+ "N1 = 240. \t\t\t#rpm\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the angular speed of the pinion\n",
+ "omega1 = 2*math.pi*N1/60 \t\t\t#rad/s\n",
+ "#Addenda on pinion and gear wheel:\n",
+ "#Calculating the addendum on pinion\n",
+ "addendump = m*t/2*(math.sqrt(1+T/t*(T/t+2)*(math.sin(math.radians(phi)))**2)-1) \t\t\t#Addendum on pinion mm\n",
+ "#Calculating the addendum on wheel\n",
+ "addendumg = m*T/2*(math.sqrt(1+t/T*(t/T+2)*(math.sin(math.radians(phi)))**2)-1) \t\t\t#Addendum on wheel mm\n",
+ "#Length of path of contact:\n",
+ "#Calculating the pitch circle radius of wheel\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of pinion\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the addendum circle radius of wheel\n",
+ "RA = R+addendump \t\t\t#mm\n",
+ "#Calculating the addendum circle radius of pinion\n",
+ "rA = r+addendumg \t\t\t#mm\n",
+ "#Calculating the length of path of approach\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "#Maximum velocity of sliding of teeth on either side of pitch point:\n",
+ "#Calculating the angular speed of gear wheel\n",
+ "omega2 = omega1/G \t\t\t#rad/s\n",
+ "#Calculating the maximum velocity of sliding of teeth on the left side of pitch point\n",
+ "vmaxl = (omega1+omega2)*KP \t\t\t#Maximum velocity of sliding of teeth on the left side of pitch point mm/s\n",
+ "#Calculating the maximum velocity of sliding of teeth on the right side of pitch point\n",
+ "vmaxr = (omega1+omega2)*PL \t\t\t#Maximum velocity of sliding of teeth on the right side of pitch point mm/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" Addendum on pinion = %.2f mm.\"%(addendump)\n",
+ "print \" Addendum on wheel = %.2f mm.\"%(addendumg)\n",
+ "print \" Length of path of contact, KL = %.2f mm.\"%(KL)\n",
+ "print \" Maximum velocity of sliding of teeth on the left side of pitch point = %d mm/s.\"%(vmaxl)\n",
+ "print \" Maximum velocity of sliding of teeth on the right side of pitch point = %d mm/s.\"%(vmaxr)\n",
+ "\n",
+ "# rounding error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Addendum on pinion = 10.76 mm.\n",
+ " Addendum on wheel = 4.56 mm.\n",
+ " Length of path of contact, KL = 38.39 mm.\n",
+ " Maximum velocity of sliding of teeth on the left side of pitch point = 1044 mm/s.\n",
+ " Maximum velocity of sliding of teeth on the right side of pitch point = 471 mm/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12 Page No : 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "t = 30.\n",
+ "T = 50.\n",
+ "m = 4.\n",
+ "N1 = 1000. \t\t\t#rpm\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the angular speed of thr pinion\n",
+ "omega1 = 2*math.pi*N1/60 \t\t\t#rad/s\n",
+ "#Sliding velocities at engagement and at disengagement of a pair of teeth:\n",
+ "#Calculating the addendum of the smaller gear\n",
+ "addendump = m*t/2*(math.sqrt(1+T/t*(T/t+2)*(math.sin(math.radians(phi)))**2)-1) \t\t\t#Addendum of the smaller gear mm\n",
+ "#Calculating the addendum of the larger gear\n",
+ "addendumg = m*T/2*(math.sqrt(1+t/T*(t/T+2)*(math.sin(math.radians(phi)))**2)-1) \t\t\t#Addendum of the larger gear mm\n",
+ "#Calculating the pitch circle radius of the smaller gear\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of the smaller gear\n",
+ "rA = r+addendump \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of the larer gear\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of the larger gear\n",
+ "RA = R+addendumg \t\t\t#mm\n",
+ "#Calculating the path of approach\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the angular speed of the larger gear\n",
+ "omega2 = omega1*t/T \t\t\t#rad/s\n",
+ "#Calculating the sliding velocity at engagement of a pair of teeth\n",
+ "v1 = (omega1+omega2)*KP \t\t\t#Sliding velocity at engagement of a pair of teeth mm/s\n",
+ "#Calculating the sliding velocity at disengagement of a pair of teeth\n",
+ "v2 = (omega1+omega2)*PL \t\t\t#Sliding velocity at disengagement of a pair of teeth mm/s\n",
+ "#Contact ratio:\n",
+ "#Calculating the length of the arc of contact\n",
+ "Lac = (KP+PL)/math.cos(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the circular pitch\n",
+ "pc = math.pi*m \t\t\t#Circular pitch mm\n",
+ "#Calculating the contact ratio\n",
+ "CR = Lac/pc \t\t\t#Contact ratio\n",
+ "\n",
+ "#Results:\n",
+ "print \" Sliding velocity at engagement of a pair of teeth = %.3f m/s.\"%(v1/1000)\n",
+ "print \" Sliding velocity at disengagement of a pair of teeth = %.3f m/s.\"%(v2/1000)\n",
+ "print \" Contact ratio = %d.\"%(CR+1)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Sliding velocity at engagement of a pair of teeth = 3.438 m/s.\n",
+ " Sliding velocity at disengagement of a pair of teeth = 5.731 m/s.\n",
+ " Contact ratio = 5.\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.13 Page No : 414"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "G = 3.\n",
+ "m = 6.\n",
+ "AP = 1*m\n",
+ "AW = AP \t\t\t#mm\n",
+ "phi = 20. \t\t\t#degrees\n",
+ "N1 = 90. \t\t\t#rpm\n",
+ "\n",
+ "#Solution:\n",
+ "#Calculating the angular speed of the pinion\n",
+ "omega1 = 2*math.pi*N1/60 \t\t\t#rad/s\n",
+ "#Calculating the number of teeth on the pinion to avoid interference on it\n",
+ "t = 2*AP/(math.sqrt(1+G*(G+2)*(math.sin(math.radians(phi)))**2)-1)\n",
+ "#Calculating the corresponding number of teeth on the wheel\n",
+ "T = G*t\n",
+ "#Length of path and arc of contact:\n",
+ "#Calculating the pitch circle radius of pinion\n",
+ "r = m*t/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of pinion\n",
+ "rA = r+AP \t\t\t#mm\n",
+ "#Calculating the pitch circle radius of wheel\n",
+ "R = m*T/2 \t\t\t#mm\n",
+ "#Calculating the radius of addendum circle of wheel\n",
+ "RA = R+AW \t\t\t#mm\n",
+ "#Calculating the path of approach\n",
+ "KP = math.sqrt(RA**2-R**2*(math.cos(math.radians(phi)))**2)-R*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the path of recess\n",
+ "PL = math.sqrt(rA**2-r**2*(math.cos(math.radians(phi)))**2)-r*math.sin(math.radians(phi)) \t\t\t#mm\n",
+ "#Calculating the length of path of contact\n",
+ "KL = KP+PL \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = KL/math.cos(math.radians(phi)) \t\t\t#Length of arc of contact mm\n",
+ "#Number of pairs of teeth in contact:\n",
+ "#Calculating the circular pitch\n",
+ "pc = math.pi*m \t\t\t#mm\n",
+ "#Calculating the number of pairs of teeth in contact\n",
+ "n = Lac/pc \t\t\t#Number of pairs of teeth in contact\n",
+ "#Maximum velocity of sliding:\n",
+ "#Calculating the angular speed of wheel\n",
+ "omega2 = omega1*t/T \t\t\t#rad/s\n",
+ "#Calculating the maximum velocity of sliding\n",
+ "vs = (omega1+omega2)*KP \t\t\t#mm/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" Number of teeth on the pinion to avoid interference, t = %d.\"%(t+1)\n",
+ "print \" Corresponding number of teeth on the wheel, T = %.F.\"%(T+1)\n",
+ "print \" Length of path of contact, KL = %.2f mm.\"%(KL)\n",
+ "print \" Length of arc of contact = %.2f mm.\"%(Lac)\n",
+ "print \" Number of pairs of teeth in contact = %d.\"%(n+1)\n",
+ "print \" Maximum velocity of sliding, vs = %.f mm/s.\"%(vs)\n",
+ "\n",
+ "# ROUNDING ERROR"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Number of teeth on the pinion to avoid interference, t = 19.\n",
+ " Corresponding number of teeth on the wheel, T = 56.\n",
+ " Length of path of contact, KL = 29.24 mm.\n",
+ " Length of arc of contact = 31.12 mm.\n",
+ " Number of pairs of teeth in contact = 2.\n",
+ " Maximum velocity of sliding, vs = 197 mm/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.14 Page No : 416"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "T = 20.\n",
+ "d = 125. #mm\n",
+ "r = d/2\n",
+ "OP = r\n",
+ "LH = 6.25 \t\t\t#mm\n",
+ "#Calculating the least pressure angle to avoid interference\n",
+ "phi = math.sin(math.sqrt(LH/r))*180/math.pi \t\t\t#degrees\n",
+ "#Length of arc of contact:\n",
+ "#Calculating the length of path of contact\n",
+ "KL = math.sqrt((OP+LH)**2-(OP*math.cos(math.radians(phi)))**2) \t\t\t#mm\n",
+ "#Calculating the length of arc of contact\n",
+ "Lac = KL/math.cos(math.radians(phi)) \t\t\t#Length of arc of contact mm\n",
+ "#Minimum number of teeth:\n",
+ "#Calculating the circular pitch\n",
+ "pc = math.pi*d/T \t\t\t#mm\n",
+ "#Calculating the number of pairs of teeth in contact\n",
+ "n = Lac/pc \t\t\t#Number of pairs of teeth in contact\n",
+ "#Calculating the minimum number of teeth in contact\n",
+ "nmin = n \t\t\t#Mimimum number of teeth in contact\n",
+ "\n",
+ "#Results:\n",
+ "print \" Least pressure angle to avoid interference, phi = %.3f degrees.\"%(phi)\n",
+ "print \" Length of arc of contact = %.2f mm.\"%(Lac)\n",
+ "print \" Minimum number of teeth in contact = %d or %d pair.\"%(nmin+1,(nmin+1)/2)\n",
+ "\n",
+ "# rounding error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Least pressure angle to avoid interference, phi = 17.818 degrees.\n",
+ " Length of arc of contact = 36.17 mm.\n",
+ " Minimum number of teeth in contact = 2 or 1 pair.\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.15 Page No : 421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from numpy import linalg\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "L = 175./1000\n",
+ "d2 = 100./1000 #m\n",
+ "r2 = d2/2 \t\t\t #m\n",
+ "theta = 70. \t\t\t#degrees\n",
+ "G = 1.5\n",
+ "T2 = 80.\n",
+ "Tf = 75. \t\t\t#Torque on faster wheel N-m\n",
+ "\n",
+ "#Solution:\n",
+ "#Spiral angles for each wheel:\n",
+ "#Calculating the number of teeth on slower wheel\n",
+ "T1 = T2*G\n",
+ "#Calculating the pitch circle diameter of the slower wheel\n",
+ "d1 = (L*2)-d2 \t\t\t#m\n",
+ "#Calculating the spiral angles\n",
+ "#We have d2/d1 = (T2*math.cos(alpha1))/(T1*math.cos(alpha2)) or T2*d1*math.cos(alpha1)-T1*d2*math.cos(alpha2) = 0 .....(i)\n",
+ "#Also alpha1+alpha2 = theta or alpha1+alpha2-theta = 0 .....(ii)\n",
+ "def f(x):\n",
+ " alpha1 = x[0]\n",
+ " alpha2 = x[1]\n",
+ " y = [0,0]\n",
+ " y[0] = T2*d1*math.cos(alpha1)-T1*d2*math.cos(alpha2)\n",
+ " y[1] = alpha1+alpha2-theta*math.pi/180\n",
+ " return y\n",
+ " \n",
+ "z = fsolve(f,[1,1])\n",
+ "alpha1 = z[0]*180/math.pi \t\t\t#Spiral angle for slower wheel degrees \n",
+ "alpha2 = z[1]*180/math.pi \t\t\t#Spiral angle for faster wheel degrees\n",
+ "#Axial thrust on each shaft:\n",
+ "#Calculating the math.tangential force at faster wheel\n",
+ "F2 = Tf/r2 \t\t\t#N\n",
+ "#Calculating the normal reaction at the point of contact\n",
+ "RN = F2/math.cos(math.radians(alpha2)) \t\t\t#N\n",
+ "#Calculating the axial thrust on the shaft of slower wheel\n",
+ "Fa1 = RN*math.sin(math.radians(alpha1)) \t\t\t#N\n",
+ "#Calculating the axial thrust on the shaft of faster wheel\n",
+ "Fa2 = RN*math.sin(math.radians(alpha2)) \t\t\t#N\n",
+ "\n",
+ "#Results:\n",
+ "print \" Spiral angle for slower wheel, alpha1 = %.2f degrees.\"%(alpha1)\n",
+ "print \" Spiral angle for faster wheel, alpha2 = %.2f degrees.\"%(alpha2)\n",
+ "print \" Axial thrust on the shaft of slower wheel, Fa1 = %d N.\"%(Fa1+1)\n",
+ "print \" Axial thrust on the shaft of faster wheel, Fa2 = %d N.\"%(Fa2+1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Spiral angle for slower wheel, alpha1 = 54.65 degrees.\n",
+ " Spiral angle for faster wheel, alpha2 = 15.35 degrees.\n",
+ " Axial thrust on the shaft of slower wheel, Fa1 = 1269 N.\n",
+ " Axial thrust on the shaft of faster wheel, Fa2 = 412 N.\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.16 Page No : 422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "L = 400./1000 \t\t\t#m\n",
+ "G = 3.\n",
+ "theta = 50.\n",
+ "phi = 6. \t\t\t#degrees\n",
+ "pN = 18. \t\t\t#mm\n",
+ "\n",
+ "#Solution:\n",
+ "#Number of teeth on each wheel:\n",
+ "#Calculating the spiral angles of the driving and driven wheels\n",
+ "alpha1 = theta/2 \t\t\t#degrees\n",
+ "alpha2 = alpha1 \t\t\t#degrees\n",
+ "#Calculating the number of teeth on driver wheel\n",
+ "T1 = L*1000*2*math.pi/(pN*(1/math.cos(math.radians(alpha1))+G/math.cos(math.radians(alpha2))))\n",
+ "#Calculating the number of teeth on driven wheel\n",
+ "T2 = G*T1\n",
+ "#Calculating the exact centre distance\n",
+ "#L1 = pN*T1/(2*math.pi)*(1/math.cos(math.radians(alpha1))+G/math.cos(math.radians(alpha2))) \t\t\t#mm\n",
+ "L1 = pN*T1/(2*math.pi)*((1+G)/math.cos(math.radians(alpha1))) \t\t\t#mm\n",
+ "#Calculating the efficiency of the drive\n",
+ "eta = (math.cos(math.radians(alpha2+phi))*math.cos(math.radians(alpha1)))/(math.cos(math.radians(alpha1-phi))*math.cos(math.radians(alpha2)))*100 \t\t\t#%\n",
+ "\n",
+ "#Results:\n",
+ "print \" Number of teeth on driver wheel, T1 = %d.\"%(T1+1)\n",
+ "print \" Number of teeth on driven wheel, T2 = %.f.\"%(T2+1)\n",
+ "print \" Exact centre distance, L1 = %.1f mm.\"%(L1)\n",
+ "print \" Efficiency of the drive, eta = %.1f %%.\"%(eta)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Number of teeth on driver wheel, T1 = 32.\n",
+ " Number of teeth on driven wheel, T2 = 96.\n",
+ " Exact centre distance, L1 = 400.0 mm.\n",
+ " Efficiency of the drive, eta = 90.7 %.\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.17 Page No : 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from numpy import linalg\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "pN = 12.5\n",
+ "L = 134. \t\t\t#mm\n",
+ "theta = 80.\n",
+ "phi = 6. \t\t\t#degrees\n",
+ "G = 1.25\n",
+ "\n",
+ "#Solution:\n",
+ "#Spiral angle of each wheel:\n",
+ "#Calculating the spiral angles of wheels 1 and 2\n",
+ "#We have d2/d1 = (T2*math.cos(alpha1))/(T1*math.cos(alpha2)) or math.cos(alpha1)-G*math.cos(alpha2) = 0 .....(i)\n",
+ "#Also alpha1+alpha2 = theta or alpha1+alpha2-theta = 0 .....(ii)\n",
+ "def f(x):\n",
+ " alpha1 = x[0]\n",
+ " alpha2 = x[1]\n",
+ " y = [0,0]\n",
+ " y[0] = math.cos(alpha1)-G*math.cos(alpha2)\n",
+ " y[1] = alpha1+alpha2-theta*math.pi/180\n",
+ " return y\n",
+ "\n",
+ "z = fsolve(f,[1,1])\n",
+ "alpha1 = z[0]*180/math.pi \t\t\t#Spiral angle for slower wheel degrees\n",
+ "alpha2 = z[1]*180/math.pi \t\t\t#Spiral angle for faster wheel degrees\n",
+ "#Number of teeth on each wheel:\n",
+ "#Calculating the diameters of the wheels\n",
+ "d1 = L\n",
+ "d2 = d1 \t\t\t#mm\n",
+ "#Calculating the number of teeth on wheel 1\n",
+ "T1 = d1*math.pi*math.cos(math.radians(alpha1))/pN\n",
+ "#Calculating the number of teeth on wheel 2\n",
+ "T2 = T1/G\n",
+ "#Calculating the efficiency of the drive\n",
+ "eta = (math.cos(math.radians(alpha2+phi))*math.cos(math.radians(alpha1)))/(math.cos(math.radians(alpha1-phi))*math.cos(math.radians(alpha2)))*100 \t\t\t#%\n",
+ "#Calculating the maximum efficiency\n",
+ "etamax = (math.cos(math.radians(theta+phi))+1)/(math.cos(math.radians(theta-phi))+1)*100 \t\t\t#%\n",
+ "\n",
+ "#Results:\n",
+ "print \" Spiral angle for slower wheel, alpha1 = %.2f degrees.\"%(alpha1)\n",
+ "print \" Spiral angle for faster wheel, alpha2 = %.2f degrees.\"%(alpha2)\n",
+ "print \" Number of teeth on wheel 1, T1 = %.1f.\"%(T1)\n",
+ "print \" Number of teeth on wheel 2, T2 = %.f.\"%(T2+1)\n",
+ "print \" Efficiency of the drive, eta = %d %%.\"%(eta+1)\n",
+ "print \" Maximum efficiency, etamax = %.1f %%.\"%(etamax)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Spiral angle for slower wheel, alpha1 = 32.46 degrees.\n",
+ " Spiral angle for faster wheel, alpha2 = 47.54 degrees.\n",
+ " Number of teeth on wheel 1, T1 = 28.4.\n",
+ " Number of teeth on wheel 2, T2 = 24.\n",
+ " Efficiency of the drive, eta = 83 %.\n",
+ " Maximum efficiency, etamax = 83.9 %.\n"
+ ]
+ }
+ ],
+ "prompt_number": 57
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file