summaryrefslogtreecommitdiff
path: root/Testing_the_interface/chapter7_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Testing_the_interface/chapter7_1.ipynb')
-rwxr-xr-xTesting_the_interface/chapter7_1.ipynb465
1 files changed, 465 insertions, 0 deletions
diff --git a/Testing_the_interface/chapter7_1.ipynb b/Testing_the_interface/chapter7_1.ipynb
new file mode 100755
index 00000000..7c80c103
--- /dev/null
+++ b/Testing_the_interface/chapter7_1.ipynb
@@ -0,0 +1,465 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Analysis of Stress and Strain"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1, page no. 472"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculate stresses acting on an element inclined at 45\u00b0\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "# Let x1, y1 be the transformed direction inclined at 45 deegree to the original\n",
+ "sx = 16000 # Direct stress in x-direction in psi\n",
+ "sy = 6000 # Direct stress in y-direction \"\"\n",
+ "txy = 4000 # Shear stress in y-direction \"\"\n",
+ "tyx = txy # Shear stress in x-direction \"\"\n",
+ "t = 45 # Inclination pf plane in degree \n",
+ "\n",
+ "#calculation\n",
+ "sx1 = (sx+sy)/2 + ((sx-sy)*(math.cos(math.radians(2*t))/2.0)) + txy*math.sin(math.radians(2*t)) # Direct stress in x1-direction in psi\n",
+ "sy1 = (sx+sy)/2 - ((sx-sy)*(math.cos(math.radians(2*t))/2.0)) - txy*math.sin(math.radians(2*t)) # Direct stress in y1-direction in psi\n",
+ "tx1y1 = - ((sx-sy)*(math.sin(math.radians(2*t))/2.0)) + txy*math.cos(math.radians(2*t)) # Shear stress in psi\n",
+ "\n",
+ "print \"The direct stress on the element in x1-direction is\", sx1, \"psi\"\n",
+ "print \"The direct stress on the element in y1-direction is\", sy1, \"psi\"\n",
+ "print \"The shear stress on the element\", tx1y1, \"psi\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The direct stress on the element in x1-direction is 15000.0 psi\n",
+ "The direct stress on the element in y1-direction is 7000.0 psi\n",
+ "The shear stress on the element -5000.0 psi\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2, page no. 473"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "stresses acting on an element that is oriented at a clockwise 15\u00b0 \n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "# Let x1, y1 be the transformed direction inclined at 15 deegree to the original\n",
+ "sx = -46e06 # Direct stress in x-direction in Pa\n",
+ "sy = 12e06 # Direct stress in y-direction \"\"\n",
+ "txy = -19e06 # Shear stress in y-direction \"\"\n",
+ "t = -15 # Inclination of plane in degree \n",
+ "\n",
+ "#calculation\n",
+ "sx1 = (sx+sy)/2.0 + ((sx-sy)*(math.cos(math.radians(2*t))/2.0)) + txy*math.sin(math.radians(2*t)) # Direct stress in x1-direction in Pa\n",
+ "sy1 = (sx+sy)/2.0 - ((sx-sy)*(math.cos(math.radians(2*t))/2.0)) - txy*math.sin(math.radians(2*t)) # Direct stress in y1-direction in Pa\n",
+ "tx1y1 = -((sx-sy)*(math.sin(math.radians(2*t))/2.0)) + txy*math.cos(math.radians(2*t)) # Shear stress in Pa\n",
+ "\n",
+ "\n",
+ "print \"The direct stress on the element in x1-direction is\", sx1, \"Pa\"\n",
+ "print \"The direct stress on the element in y1-direction is\", sy1, \"Pa\"\n",
+ "print \"The shear stress on the element\", tx1y1, \"Pa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The direct stress on the element in x1-direction is -32614736.7097 Pa\n",
+ "The direct stress on the element in y1-direction is -1385263.29025 Pa\n",
+ "The shear stress on the element -30954482.6719 Pa\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 7.3, page no. 481"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "Calculate shear stress and principal stress\n",
+ "\"\"\"\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ax = 12300.0\n",
+ "ay = -4200.0\n",
+ "txy = -4700.0\n",
+ "\n",
+ "tan_2p = round((2*txy)/(ax-ay), 4)\n",
+ "\n",
+ "theta_p1 = 150.3\n",
+ "theta_p2 = 330.3\n",
+ "\n",
+ "stress1 = (ax+ay)/2.0\n",
+ "stress2 = (ax-ay)/2.0\n",
+ "a1 = stress1 + math.sqrt((stress2**2.0)+(txy**2.0))\n",
+ "a2 = stress1 - math.sqrt((stress2**2.0)+(txy**2.0))\n",
+ "\n",
+ "#python calculations differ a bit. hence, differences in the answer\n",
+ "print \"Principal stesses are \", round(a1), \"psi and \", round(a2), \" psi\"\n",
+ "\n",
+ "tmax = math.sqrt((stress2**2.0)+(txy**2.0))\n",
+ "print \"Maximum shear stress is \", round(tmax), \" psi\"\n",
+ "\n",
+ "a_aver = (ax+ay)/2.0\n",
+ "\n",
+ "print \"Normal stress acting at maximum shear stress = \", round(a_aver), \"psi\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Principal stesses are 13545.0 psi and -5445.0 psi\n",
+ "Maximum shear stress is 9495.0 psi\n",
+ "Normal stress acting at maximum shear stress = 4050.0 psi\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4, page no. 492"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "stresses acting on an element inclined at 30\u00b0 \n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "sx = 90e06 # Direct stress in x-direction in Pa\n",
+ "sy = 20e06 # Direct stress in y-direction in Pa\n",
+ "t = 30 # Inclination of element in degree\n",
+ "\n",
+ "#calculation\n",
+ "savg = (sx+sy)/2.0 # Average in-plane direct stress\n",
+ "txy = 0 \n",
+ "R = math.sqrt(((sx-sy)/2)**2+(txy)**2) # Radius of mohr circle\n",
+ "\n",
+ "# Point D at 2t = 60\n",
+ "sx1 = savg + R*math.cos(math.radians(2*t)) # Direct stress at point D \n",
+ "tx1y1 = -R*math.sin(math.radians(2*t)) # shear stress at point D\n",
+ "print \"The direct stress at point D is\", sx1, \"Pa\"\n",
+ "print \"The shear stress at point D is\", tx1y1, \"Pa\"\n",
+ "\n",
+ "# Point D at 2t = 240\n",
+ "sx2 = savg + R*math.cos(math.radians(90 + t)) # Direct stress at point D \n",
+ "tx2y2 = R*math.sin(math.radians(90 + t)) # shear stress at point D\n",
+ "print \"The direct stress at point D_desh is\", sx2, \"Pa\"\n",
+ "print \"The shear stress at point D_desh is\", tx2y2, \"Pa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The direct stress at point D is 72500000.0 Pa\n",
+ "The shear stress at point D is -30310889.1325 Pa\n",
+ "The direct stress at point D_desh is 37500000.0 Pa\n",
+ "The shear stress at point D_desh is 30310889.1325 Pa\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5, page no. 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "stresses acting on an element, principal stress, max. shear stress\n",
+ "\"\"\"\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "\n",
+ "#initialisation \n",
+ "sx = 15000 # Direct stress in x-direction in psi\n",
+ "sy = 5000 # Direct stress in y-direction \"\"\n",
+ "txy = 4000 # Shear stress in y-direction \"\"\n",
+ "savg = (sx+sy)/2.0 # Average in-plane direct stress\n",
+ "sx1 = 15000 # Stress acting on face at theta = 0 degree\n",
+ "tx1y1 = 4000 # Stress acting on face at theta = 0 degree\n",
+ "sx1_ = 5000 \n",
+ "tx1y1_ = -4000 \n",
+ "\n",
+ "#calculation\n",
+ "R = math.sqrt(((sx-sy)/2)**2+(txy)**2) # Radius of mohr circle\n",
+ "\n",
+ "# Part (a)\n",
+ "t = 40 # Inclination of the plane in degree\n",
+ "f1 = numpy.degrees(numpy.arctan((4000.0/5000.0))) # Angle between line CD and x1-axis\n",
+ "f2 = 80 - f1 # Angle between line CA and x1-axis\n",
+ "\n",
+ "# Point D \n",
+ "sx1 = savg + R*math.cos(math.radians(f2)) # Direct stress at point D \n",
+ "tx1y1 = -R*math.sin(math.radians(f2)) # shear stress at point D\n",
+ "print \"The shear stress at point D\", round(tx1y1), \"psi\"\n",
+ "\n",
+ "# Point D' \n",
+ "sx2 = savg - R*math.cos(math.radians(f2)) # Direct stress at point D' \n",
+ "tx2y2 = R*math.sin(math.radians(f2)) # shear stress at point D'\n",
+ "print \"The direct stres at point D_desh\", round(sx2), \"psi\"\n",
+ "\n",
+ "#Part (b)\n",
+ "sp1 = savg + R # Maximum direct stress in mohe circle (at point P1)\n",
+ "tp1 = f1/2 # Inclination of plane of maximum direct stress\n",
+ "print \"with angle\", sp1, \"psi The maximum direct stress at P1 is \", round(tp1,2), \"degree\"\n",
+ "sp2 = savg - R # Minimum direct stress in mohe circle (at point P2)\n",
+ "tp2 = (f1+180)/2 # Inclination of plane of minimum direct stress\n",
+ "print \"with angle\", sp2, \"psi The maximum direct stress at P2 is \", round(tp2,2), \"degree\"\n",
+ "\n",
+ "# Part (c)\n",
+ "tmax = R # Maximum shear stress in mohe circle\n",
+ "ts1 = -(90 - f1)/2.0 # Inclination of plane of maximum shear stress\n",
+ "print \"with plane incilation of\", tmax, \"psi The Maximum shear stress is \", round(ts1,2), \"deegree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The shear stress at point D -4229.0 psi\n",
+ "The direct stres at point D_desh 5193.0 psi\n",
+ "with angle 16403.1242374 psi The maximum direct stress at P1 is 19.33 degree\n",
+ "with angle 3596.87576257 psi The maximum direct stress at P2 is 109.33 degree\n",
+ "with plane incilation of 6403.12423743 psi The Maximum shear stress is -25.67 deegree\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "use Mohr\u2019s circle, to calculate various quantities\n",
+ "\"\"\"\n",
+ "\n",
+ "import math \n",
+ "import numpy\n",
+ "\n",
+ "\n",
+ "sx = -50e06 # Direct stress in x-direction in psi\n",
+ "sy = 10e06 # Direct stress in y-direction \"\"\n",
+ "txy = -40e06 # Shear stress in y-direction \"\"\n",
+ "savg = (sx+sy)/2 # Average in-plane direct stress\n",
+ "sx1 = -50e06\n",
+ "tx1y1 = -40e06 # Stress acting on face at theta = 0 degree\n",
+ "sx1_ = 10e06\n",
+ "tx1y1_ = 40e06 # Stress acting on face at theta = 0 degree\n",
+ "\n",
+ "#calculation\n",
+ "R = math.sqrt(((sx-sy)/2)**2+(txy)**2) # Radius of mohr circle\n",
+ "\n",
+ "# Part (a)\n",
+ "t = 45 # Inclination of the plane in degree\n",
+ "f1 = numpy.degrees(numpy.arctan((40e06/30e06))) # Angle between line CD and x1-axis\n",
+ "f2 = 90 - f1 # Angle between line CA and x1-axis\n",
+ "\n",
+ "# Point D \n",
+ "sx1 = savg - R*math.cos(math.radians(f2)) # Direct stress at point D \n",
+ "tx1y1 = R*math.sin(math.radians(f2)) # shear stress at point D\n",
+ "print \"The direct stres at point D\", sx1, \"Pa\"\n",
+ "print \"The shear stress at point D\", tx1y1, \"Pa\"\n",
+ "\n",
+ "# Point D' \n",
+ "sx2 = savg + R*math.cos(math.radians(f2)) # Direct stress at point D' \n",
+ "tx2y2 = -R*math.sin(math.radians(f2)) # shear stress at point D'\n",
+ "print \"The direct stres at point D_desh\", sx2, \"Pa\"\n",
+ "print \"The shear stress at point D_desh\", tx2y2, \"Pa\"\n",
+ "\n",
+ "#Part (b)\n",
+ "sp1 = savg + R # Maximum direct stress in mohe circle (at point P1)\n",
+ "tp1 =(f1+180)/2 # Inclination of plane of maximum direct stress\n",
+ "print \"with angle\", round(tp1,2), \"degree\", \"The maximum direct stress at P1 is \", sp1, \"Pa\" \n",
+ "sp2 = savg - R # Minimum direct stress in mohe circle (at point P2)\n",
+ "tp2 = f1/2 # Inclination of plane of minimum direct stress\n",
+ "print \"with angle\", round(tp2,2), \"degree\", \"The maximum direct stress at P2 is \", sp2, \"Pa\"\n",
+ "\n",
+ "# Part (c)\n",
+ "tmax = R # Maximum shear stress in mohe circle\n",
+ "ts1 = (90 + f1)/2 # Inclination of plane of maximum shear stress\n",
+ "print \"with plane incilation of\", round(ts1,2), \"degree\", \"The Maximum shear stress is \", tmax, \"Pa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The direct stres at point D -60000000.0 Pa\n",
+ "The shear stress at point D 30000000.0 Pa\n",
+ "The direct stres at point D_desh 20000000.0 Pa\n",
+ "The shear stress at point D_desh -30000000.0 Pa\n",
+ "with angle 116.57 degree The maximum direct stress at P1 is 30000000.0 Pa\n",
+ "with angle 26.57 degree The maximum direct stress at P2 is -70000000.0 Pa\n",
+ "with plane incilation of 71.57 degree The Maximum shear stress is 50000000.0 Pa\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.7, page no. 520"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\"\"\"\n",
+ "calculate various quantities\n",
+ "\"\"\"\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "\n",
+ "#initialisation\n",
+ "\n",
+ "ex = 340e-06 # Strain in x-direction\n",
+ "ey = 110e-06 # Strain in y-direction\n",
+ "txy = 180e-06 # shear strain\n",
+ "\n",
+ "\n",
+ "# Part (a)\n",
+ "t = 30 # Inclination of the element in degree\n",
+ "ex1 = (ex+ey)/2.0 + ((ex-ey)/2.0)*math.cos(math.radians(2*t)) + (txy/2.0)*(math.sin(math.radians(2*t))) # Strain in x1 direction (located at 30 degree)\n",
+ "tx1y1 = 2*(-((ex-ey)/2.0)*math.sin(math.radians(2*t)) + (txy/2.0)*(math.cos(math.radians(2*t)))) # Shear starin\n",
+ "ey1 = ex+ey-ex1 # Strain in y1 direction (located at 30 degree)\n",
+ "print \"Strain in x1 direction (located at 30 degree) is\", round((ex1/1E-6),2),\"* 10^-6\"\n",
+ "print \"shear strain is\", round((tx1y1/1E-6),2),\"* 10^-6\"\n",
+ "print \"Strain in y1 direction (located at 30 degree) is\", ey1\n",
+ "\n",
+ "# Part (b)\n",
+ "e1 = (ex+ey)/2.0 + math.sqrt(((ex-ey)/2.0)**2 + (txy/2.0)**2) # Principle stress\n",
+ "e2 = (ex+ey)/2.0 - math.sqrt(((ex-ey)/2.0)**2 + (txy/2.0)**2) # Principle stress\n",
+ "tp1 = (0.5)*numpy.degrees(numpy.arctan((txy/(ex-ey)))) # Angle to principle stress direction\n",
+ "tp2 = 90 + tp1 # Angle to principle stress direction\n",
+ "e1 = (ex+ey)/2.0 + ((ex-ey)/2.0)*math.cos(math.radians(2*tp1)) + (txy/2.0)*(math.sin(math.radians(2*tp1))) # Principle stress via another method\n",
+ "e2 = (ex+ey)/2.0 + ((ex-ey)/2.0)*math.cos(math.radians(2*tp2)) + (txy/2.0)*(math.sin(math.radians(2*tp2))) # Principle stress via another method\n",
+ "print \"with angle\", tp1, \"degree\",\"The Principle stress is \", e1\n",
+ "print \"with angle\",tp2, \"degree\",\"The Principle stress is \",e2\n",
+ "\n",
+ "# Part (c)\n",
+ "tmax = 2*math.sqrt(((ex-ey)/2.0)**2 + (txy/2.0)**2) # Maxmum shear strain\n",
+ "ts = tp1 + 45 # Orientation of element having maximum shear stress \n",
+ "tx1y1_ = 2*( -((ex-ey)/2)*math.sin(math.radians(2*ts)) + (txy/2)*(math.cos(math.radians(2*ts)))) # Shear starin assosiated with ts direction\n",
+ "print \"with angle\",round(ts,2), \"degree\",\"The Maximum shear strain is \",tx1y1_tx1y1_,\n",
+ "eavg = (e1+e2)/2.0 # Average atrain\n",
+ "print \"The average strain is\", eavg"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Strain in x1 direction (located at 30 degree) is 360.44 * 10^-6\n",
+ "shear strain is -109.19 * 10^-6\n",
+ "Strain in y1 direction (located at 30 degree) is 8.95577136594e-05\n",
+ "with angle 19.0235212659 degree The Principle stress is 0.000371030818665\n",
+ "with angle 109.023521266 degree The Principle stress is 7.89691813349e-05\n",
+ "with angle 64.02 degree The Maximum shear strain is -0.00029206163733\n",
+ "The average strain is 0.000225\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file