summaryrefslogtreecommitdiff
path: root/Strength_of_Materials_by_Dr.R.K.Bansal/chapter24.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Strength_of_Materials_by_Dr.R.K.Bansal/chapter24.ipynb')
-rwxr-xr-xStrength_of_Materials_by_Dr.R.K.Bansal/chapter24.ipynb132
1 files changed, 132 insertions, 0 deletions
diff --git a/Strength_of_Materials_by_Dr.R.K.Bansal/chapter24.ipynb b/Strength_of_Materials_by_Dr.R.K.Bansal/chapter24.ipynb
new file mode 100755
index 00000000..6c709b70
--- /dev/null
+++ b/Strength_of_Materials_by_Dr.R.K.Bansal/chapter24.ipynb
@@ -0,0 +1,132 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:087506e84c2c9ece60ca0c23e6e5e2f5e309357e67157657330423d5e748517d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 24 :Theories of Failure"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 24.10,page no.1019"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Given\n",
+ "#Variable declaration\n",
+ "P=9*1000 #Axial pull in N\n",
+ "F=4.5*1000 #Shear force in N \n",
+ "sigmat_star=225 #Elastic limit in tension in N/sq.mm\n",
+ "Sf=3 #Factor of safety \n",
+ "mu=0.3 #Poisson's ratio \n",
+ "sigma3=0 #third principle stress\n",
+ "\n",
+ "#Calculation\n",
+ "sigmat=sigmat_star/Sf \n",
+ "sigma=(P/(math.pi/4))\n",
+ "tau=float(str(F/(math.pi/4))[:6])\n",
+ "sigma1=float(str((tau)+int(round(math.sqrt((sigma/2)**2+tau**2),0)))[:7])\n",
+ "sigma2=float(str((tau)-int(round(math.sqrt((sigma/2)**2+tau**2),0)))[:8])\n",
+ "d=round(((((sigma1-sigma2)**2+(sigma2-sigma3)**2+(sigma3-sigma1)**2)/(2*(sigmat**2)))**(1/4)),3) \n",
+ "\n",
+ "#Result\n",
+ "print\"Diameter of the bolt =\",d,\"mm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of the bolt = 14.217 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 24.12,page no.1027"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "import math\n",
+ "#Given\n",
+ "#Variable declaration\n",
+ "d=1.2 #Diameter in m\n",
+ "p=1.5 #Internal pressure in MN/sq.m\n",
+ "sigmat_star=200 #Yield stress in MN/sq.m\n",
+ "Sf=3 #Factor of safety\n",
+ "\n",
+ "#Calculation\n",
+ "sigmat=sigmat_star/Sf #Permissible stress in simple tension in MN/sq.m\n",
+ "\n",
+ "#case(i):Thickness on the basis of Maximum principal stress theory\n",
+ "t1=((p*d)/2)/sigmat*1e3\n",
+ "\n",
+ "#case(ii):Thickness on the basis of Maximum shear stress theory\n",
+ "t2=((p*d)/2)/sigmat*1e3\n",
+ "\n",
+ "#case(iii):Thickness on the basis of Maximum shear strain energy theory\n",
+ "t3=round(math.sqrt((((p*d/2)**2)+((p*d/4)**2)-((p*d/2)*(p*d/4)))/(sigmat**2)),4)\n",
+ "\n",
+ "#Result\n",
+ "print \"Thickness of plate on the basis of maximum principal stress theory =\",\"%.1fmm\"%t1\n",
+ "print \"Thickness of plate on the basis of maximum shear stress theory =\",\"%.1fmm\"%t2\n",
+ "print \"Thickness of plate on the basis of maximum shear strain energy theory =\",\"%.4fmm\"%t3"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of plate on the basis of maximum principal stress theory = 13.5mm\n",
+ "Thickness of plate on the basis of maximum shear stress theory = 13.5mm\n",
+ "Thickness of plate on the basis of maximum shear strain energy theory = 0.0117mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file