summaryrefslogtreecommitdiff
path: root/Solid_state_physics/Chapter_2_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_state_physics/Chapter_2_1.ipynb')
-rwxr-xr-xSolid_state_physics/Chapter_2_1.ipynb331
1 files changed, 0 insertions, 331 deletions
diff --git a/Solid_state_physics/Chapter_2_1.ipynb b/Solid_state_physics/Chapter_2_1.ipynb
deleted file mode 100755
index 99284878..00000000
--- a/Solid_state_physics/Chapter_2_1.ipynb
+++ /dev/null
@@ -1,331 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:64e1fbee0e1d9b8157cae12a98a7773b847a3c5e842a9d3f124a5485fe931875"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 2: Crystal Structure"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.1, Page number 2.16"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "from math import sqrt \n",
- "\n",
- "#Variable declaration\n",
- "#Assuming r=1 for simpliciy in calculations\n",
- "r = 1\n",
- "\n",
- "#Calculations\n",
- "a = (4*r)/sqrt(3)\n",
- "#Let R be the radius of interstitial sphere that can fit into the void,therefore,\n",
- "R = (a-2*r)/2 \n",
- "\n",
- "#Result\n",
- "print \"The maximum radius of interstitial sphere is\",round(R,3),\"r\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The maximum radius of interstitial sphere is 0.155 r\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.2, Page number 2.17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "from math import sqrt\n",
- "\n",
- "#Variable declaration\n",
- "r1 = 1.258*10**-10 #atomic radius(m)\n",
- "r2 = 1.292*10**-10 #atomic radius(m)\n",
- "\n",
- "#Calculations\n",
- "#In BCC\n",
- "a_bcc = (4*r1)/sqrt(3)\n",
- "v_bcc = a_bcc**3 #volume of unit cell(m^3)\n",
- "n1 = ((1./8.)*8.)+1\n",
- "V1 = v_bcc/n1 #volume occupied by 1 atom(m^3)\n",
- "\n",
- "#In FCC\n",
- "a_fcc = 2*sqrt(2)*r2\n",
- "v_fcc = a_fcc**3 #volume of unit cell(m^3)\n",
- "n2 = ((1./2.)*6.)+((1./8.)*8.)\n",
- "V2 = v_fcc/n2 #volume occupied by 1 atom(m^3)\n",
- "\n",
- "del_v = ((V1-V2)/V1)*100 #change in volume\n",
- "\n",
- "#Result\n",
- "print \"During the conversion of iron from BCC to FCC, the decrease in volume is\",round(del_v,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "During the conversion of iron from BCC to FCC, the decrease in volume is 0.5 %\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.3, Page number 2.17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "from math import sqrt\n",
- "\n",
- "#Variable declaration\n",
- "a = 0.27*10**-9 #nearest neighbour distance(m)\n",
- "c = 0.494*10**-9 #height of unit cell(m)\n",
- "M = 65.37 #atomic weight of zinc\n",
- "N = 6.023*10**26 #Avogadro's number(k/mol)\n",
- "\n",
- "#Calculations\n",
- "V = (3*sqrt(3)*a**2*c)/2 #volume of unit cell\n",
- "rho = (6*M)/(N*V) #density of crystal\n",
- "\n",
- "#Results\n",
- "print \"Volume of unit cell =\",round((V/1E-29),2),\"*10^29 m^3\"\n",
- "print \"Density of zinc =\",round(rho),\"kg/m^3\"\n",
- "print \"\\nThe solution differs because of rounding-off of the digits in the textbook\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Volume of unit cell = 9.36 *10^29 m^3\n",
- "Density of zinc = 6960.0 kg/m^3\n",
- "\n",
- "The solution differs because of rounding-off of the digits in the textbook\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.4, Page number 2.18"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "from math import sqrt\n",
- "\n",
- "#Varaible declaration\n",
- "#Let r be the radius of atom and R be the radius of sphere\n",
- "#For simplicity in calculations, let us assume r =1\n",
- "r = 1\n",
- "\n",
- "#Calculations\n",
- "#For FCC structure\n",
- "a = (4*r)/sqrt(2)\n",
- "R = (a/2)-r\n",
- "\n",
- "print \"Maximum radius of sphere =\",round(R,3),\"r\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum radius of sphere = 0.414 r\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.5, Page number 2.19"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Variable declaration\n",
- "a = 0.356*10**-9 #cube edge(m)\n",
- "M = 12.01 #atomic weight of carbon\n",
- "N = 6.023*10**26 #Avogadro's number(k/mol)\n",
- "na = 1.77*10**29 #no. of atoms per meter cube\n",
- "\n",
- "#Calculations\n",
- "#Diamond has 2 interpenetrating FCC lattices. Since each FCC unit cell has 4 atoms, the total no. of atoms per unit cell is 8\n",
- "n = 8/a**3\n",
- "m = M/N\n",
- "rho = m*na\n",
- "\n",
- "#Result\n",
- "print \"Number of atoms =\",round((n/1E+29),3),\"*10^29\"\n",
- "print \"The density of diamond is\",round(rho,1),\"kg/m^3(Calculation mistake in the textbook)\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of atoms = 1.773 *10^29\n",
- "The density of diamond is 3529.4 kg/m^3(Calculation mistake in the textbook)\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.6, Page number 2.19"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Variable declaration\n",
- "rho = 2.18 #density of NaCl(gm/cm^3)\n",
- "N = 6.023*10**23 #Avogadro's number(/mol)\n",
- "\n",
- "#Caculations\n",
- "w = 23+35.5 #molecular weight of NaCl\n",
- "m = w/N #mass of NaCl molecule\n",
- "nm = rho/m #no. of molecules per unit volume(molecule/cm^3)\n",
- "#Since NaCl is diatomic\n",
- "n = 2*nm\n",
- "#Let a be the distance between adjacent atoms in NaCl and\n",
- "# n be the no. of atoms along the edge of the cube\n",
- "#length of an edge = na\n",
- "#volume of unit cube = n^3*a^3\n",
- "a = (1/n)**(1./3.)\n",
- "\n",
- "#Result\n",
- "print \"The distance between two adjacent atoms is\",round((a/1E-8),2),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The distance between two adjacent atoms is 2.81 A\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.7, Page number 2.20"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "from math import sqrt\n",
- "\n",
- "#Variable declaration\n",
- "w = 63.5 #atomic weight of copper\n",
- "r = 1.278*10**-8 #atomic rdius(m)\n",
- "N = 6.023*10**23 #Avogadro's number(/mol)\n",
- "\n",
- "#Calculations\n",
- "m = w/N #mass of each copper atom(gm)\n",
- "#Since copper has FCC structure lattice constant\n",
- "a = (4*r)/sqrt(2) \n",
- "n = 4 #no. of atoms in unit cell of FCC structure\n",
- "M = n*m #mass of unit cell\n",
- "rho = M/a**3 #density\n",
- "\n",
- "#Result\n",
- "print \"Density of copper =\",round(rho,2),\"gm/cm^3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Density of copper = 8.93 gm/cm^3\n"
- ]
- }
- ],
- "prompt_number": 3
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file