diff options
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter6.ipynb')
-rw-r--r-- | Solid_State_Physics_by_Dr._M._Arumugam/Chapter6.ipynb | 331 |
1 files changed, 331 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6.ipynb new file mode 100644 index 00000000..ab8cdc23 --- /dev/null +++ b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter6.ipynb @@ -0,0 +1,331 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 6: Principles of Quantum Mechanics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 6.22" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deBroglie wavelength is 0.66 angstrom\n", + "spacing between planes is 0.35 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=344; #voltage(V)\n", + "theta=40; #angle(degrees)\n", + "n=1; \n", + "\n", + "#Calculation\n", + "lamda=12.26/math.sqrt(V); #deBroglie wavelength(angstrom)\n", + "theta=((180-theta)/2)*math.pi/180; #angle(radian)\n", + "d=n*lamda/(2*math.sin(theta)); #spacing between planes(angstrom)\n", + "\n", + "#Result\n", + "print \"deBroglie wavelength is\",round(lamda,2),\"angstrom\"\n", + "print \"spacing between planes is\",round(d,2),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 6.22" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deBroglie wavelength is 0.00286 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "m=1.675*10**-27; #mass(kg)\n", + "E=10*10**3*e; #kinetic energy(J)\n", + "h=6.625*10**-34; #planks constant(Js)\n", + "\n", + "#Calculation\n", + "v=math.sqrt(2*E/m); #velocity(m/sec)\n", + "lamda=h*10**10/(m*v); #deBroglie wavelength(angstrom)\n", + "\n", + "#Result\n", + "print \"deBroglie wavelength is\",round(lamda,5),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 6.22" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy difference is 1.81 *10**-37 J\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass(kg)\n", + "h=6.63*10**-34; #planks constant(Js)\n", + "a=1; #length(m)\n", + "nx1=1;\n", + "ny1=1;\n", + "nz1=1;\n", + "nx2=1;\n", + "ny2=1;\n", + "nz2=2;\n", + "\n", + "#Calculation\n", + "E1=h**2*(nx1**2+ny1**2+nz1**2)/(8*m*a**2); #energy of 1st quantum state(J)\n", + "E2=h**2*(nx2**2+ny2**2+nz2**2)/(8*m*a**2); #energy of 2nd quantum state(J)\n", + "E=E2-E1; #energy difference(J)\n", + "\n", + "#Result\n", + "print \"energy difference is\",round(E*10**37,2),\"*10**-37 J\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 6.23" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "uncertainity in position of electron is 0.002 m\n", + "uncertainity in position of bullet is 0.4 *10**-31 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m1=9.1*10**-31; #mass(kg)\n", + "m2=0.05; #mass(kg)\n", + "v=300; #velocity(m/sec)\n", + "p=0.01/100; #probability\n", + "h=6.6*10**-34; #planks constant(Js)\n", + "\n", + "#Calculation\n", + "p1=m1*v; #momentum of electron(kg m/s)\n", + "deltap1=p*p1; \n", + "deltax1=h/(deltap1*4*math.pi); #uncertainity in position of electron(m)\n", + "p2=m2*v; #momentum of bullet(kg m/s)\n", + "deltap2=p*p2; \n", + "deltax2=h/(deltap2*4*math.pi); #uncertainity in position of bullet(m)\n", + "\n", + "#Result\n", + "print \"uncertainity in position of electron is\",round(deltax1,3),\"m\"\n", + "print \"uncertainity in position of bullet is\",round(deltax2*10**31,1),\"*10**-31 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 6.24" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "probability of finding the particle is 0.2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "deltax=10**-10; #uncertainity in position(m)\n", + "L=10*10**-10; #width(m)\n", + "\n", + "#Calculation\n", + "p=2*deltax/L; #probability of finding the particle\n", + "\n", + "#Result\n", + "print \"probability of finding the particle is\",p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 6.24" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deBroglie wavelength is 2.73 *10**-11 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "m=9.1*10**-31; #mass(kg)\n", + "E=2*10**3*e; #kinetic energy(J)\n", + "h=6.6*10**-34; #planks constant(Js)\n", + "\n", + "#Calculation\n", + "p=math.sqrt(2*E*m); #momentum(kg m/s)\n", + "lamda=h/p; #deBroglie wavelength(m)\n", + "\n", + "#Result\n", + "print \"deBroglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 6.24" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "deBroglie wavelength is 1.807 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.602*10**-19; #charge(coulomb)\n", + "m=1.676*10**-27; #mass(kg)\n", + "h=6.62*10**-34; #planks constant(Js)\n", + "E=0.025*e; #kinetic energy(J)\n", + "\n", + "#Calculation\n", + "mv=math.sqrt(2*E*m); #velocity(m/s)\n", + "lamda=h*10**10/mv; #deBroglie wavelength(angstrom)\n", + "\n", + "#Result\n", + "print \"deBroglie wavelength is\",round(lamda,3),\"angstrom\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |