summaryrefslogtreecommitdiff
path: root/Problems_In_Fluid_Flow/ch5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Problems_In_Fluid_Flow/ch5.ipynb')
-rw-r--r--Problems_In_Fluid_Flow/ch5.ipynb757
1 files changed, 757 insertions, 0 deletions
diff --git a/Problems_In_Fluid_Flow/ch5.ipynb b/Problems_In_Fluid_Flow/ch5.ipynb
new file mode 100644
index 00000000..2f6c5b6c
--- /dev/null
+++ b/Problems_In_Fluid_Flow/ch5.ipynb
@@ -0,0 +1,757 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Flow measurement in open channel\n"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.1 page no : 83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "volumetric flow rate\n",
+ "chezy coefficient\n",
+ "velocity gradient in the channel\n",
+ "'''\n",
+ "import math \n",
+ "\n",
+ "# Initialization of Variable\n",
+ "rho = 999.7;\n",
+ "g = 9.81;\n",
+ "mu = 1.308/1000;\n",
+ "s = 1./6950;\n",
+ "b = 0.65;\n",
+ "h = 32.6/100;\n",
+ "n = 0.016;\n",
+ "\n",
+ "#calculation\n",
+ "A = b*h;\n",
+ "P = b+2*h;\n",
+ "m = A/P;\n",
+ "u = s**.5*m**(2./3)/n;\n",
+ "Q = A*u\n",
+ "\n",
+ "print \"volumetric flow rate (m**3/s): %.4f\"%Q\n",
+ "C = u/m**0.5/s**0.5;\n",
+ "print \"chezy coefficient (m**0.5/s): %.4f\"%C\n",
+ "a = -m*rho*g*s/mu #delu/dely\n",
+ "print \"velocity gradient in the channel (s**-1): %.4f\"%a\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "volumetric flow rate (m**3/s): 0.0474\n",
+ "chezy coefficient (m**0.5/s): 46.1814\n",
+ "velocity gradient in the channel (s**-1): -175.5764\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.2 page no : 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# find depth of water\n",
+ "\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "\n",
+ "# Initialization of Variable\n",
+ "Q = 0.885\n",
+ "pi = 3.1428\n",
+ "s = 1./960\n",
+ "s = round(s*1000000)/1000000.\n",
+ "b = 1.36\n",
+ "n = 0.014\n",
+ "theta = 55.*pi/180.\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "def flow(x):\n",
+ " a = (x*(b+x/math.tan(theta)))/(b+2*x/math.sin(theta))\n",
+ " y = a**(2./3)*s**(1./2)*(x*(b+x/math.tan(theta)))/n-Q\n",
+ " return y\n",
+ "x = fsolve(flow,0.1)\n",
+ "\n",
+ "print \"depth of water in (m): %.4f\"%x[0]\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of water in (m): 0.4813\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.3 page no : 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# find slope of channel\n",
+ "\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "from numpy import *\n",
+ "\n",
+ "# Initialization of Variable\n",
+ "n = 0.011\n",
+ "h = 0.12\n",
+ "Q = 25./10000.\n",
+ "\n",
+ "#calculation\n",
+ "def f(x): \n",
+ "\t return 1./x**2-1\n",
+ "\t \n",
+ "x = fsolve(f,0.1)\n",
+ "theta = 2.*arctan(x)\n",
+ "A = h*2*h/math.tan(theta/2)/2.\n",
+ "P = 2.*h*math.sqrt(2.)\n",
+ "s = Q**2.*n**2.*P**(4./3)/A**(10./3)\n",
+ "print \"the slope of channel in (radians): %f\"%s\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the slope of channel in (radians): 0.000246\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.4 pageno : 88"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "maximum velocity\n",
+ "maximum volumetric flow \n",
+ "maximum velocity of obtained fluid \n",
+ "maximum flow rate obtained\n",
+ "'''\n",
+ "\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "\n",
+ "# Initialization of Variable\n",
+ "\n",
+ "#part1\n",
+ "#maximizing eqution in theta & get a function\n",
+ "def theta(x):\n",
+ " return (x-.5*math.sin(2.*x))/2/x**2.-(1-math.cos(2.*x))/2/x\n",
+ "\n",
+ "x = fsolve(theta,2.2)\n",
+ "x = round(x*1000.)/1000.\n",
+ "a = (1-math.cos(x))/2.\n",
+ "print \"velocity will be maximum when stream depth in times of diameter is %.3f\"%(a)\n",
+ "\n",
+ "#part2\n",
+ "#maximizing eqution in theta & get a function\n",
+ "def theta2(x):\n",
+ " return 3*(x-.5*math.sin(2*x))**2*(1.-math.cos(2.*x))/2./x-(x-.5*math.sin(2.*x))**3./2./x**2 \n",
+ "\n",
+ "x1 = fsolve(theta2,2.2)\n",
+ "x1 = round(x1*1000)/1000.\n",
+ "a = (1-math.cos(x1))/2.\n",
+ "\n",
+ "print \"vlumetric flow will be maximum when stream depth in times of diameter is %.3f\"%(a)\n",
+ "\n",
+ "#part3\n",
+ "r = 1.\n",
+ "A = 1.*x-0.5*math.sin(2*x)\n",
+ "s = 0.35*3.14/180\n",
+ "P = 2.*x*r\n",
+ "C = 78.6\n",
+ "u = C*(A/P)**0.5*s**0.5\n",
+ "print \"maximum velocity of obtained fluid (m/s): %.4f\"%u\n",
+ "\n",
+ "#part4\n",
+ "print \"maximum flow rate obtained at angle in (radians): %.4f\"%x1\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity will be maximum when stream depth in times of diameter is 0.813\n",
+ "vlumetric flow will be maximum when stream depth in times of diameter is 0.950\n",
+ "maximum velocity of obtained fluid (m/s): 4.7913\n",
+ "maximum flow rate obtained at angle in (radians): 2.6890\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.5 page no : 91"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "velocity of fluid \n",
+ "fluid depth over weir in (m)\n",
+ "fluid depth over weir in if SI units \n",
+ "base angle of the notch of weir\n",
+ "'''\n",
+ "\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "import numpy\n",
+ "\n",
+ "#example 5.5 \n",
+ "# Initialization of Variable\n",
+ "g = 9.81\n",
+ "h = 28./100\n",
+ "Cd = 0.62\n",
+ "B = 46./100\n",
+ "Q = 0.355\n",
+ "n = 2. #from francis formula\n",
+ "\n",
+ "#calcualtion\n",
+ "\n",
+ "#part1\n",
+ "u = math.sqrt(2*g*h)\n",
+ "print \"velocity of fluid (m/s): %.4f\"%u\n",
+ "\n",
+ "#part2a\n",
+ "H = (3.*Q/2./Cd/B/(2.*g)**0.5)**(2./3)\n",
+ "\n",
+ "print \"fluid depth over weir in (m): %.4f\"%H\n",
+ "\n",
+ "#part2b\n",
+ "#using francis formula\n",
+ "def root(x):\n",
+ " return Q-1.84*(B-0.1*n*x)*x**1.5\n",
+ "\n",
+ "x = fsolve(root,0.2)\n",
+ "print \"fluid depth over weir in if SI units uesd in (m): %.4f\"%x\n",
+ "\n",
+ "#part3\n",
+ "H = 18.5/100\n",
+ "Q = 22./1000\n",
+ "a = 15.*Q/8/Cd/(2*g)**0.5/H**2.5\n",
+ "theta = 2*numpy.arctan(a)\n",
+ "print \"base angle of the notch of weir (degrees) %.4f\"%(theta*180/3.14)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of fluid (m/s): 2.3438\n",
+ "fluid depth over weir in (m): 0.5622\n",
+ "fluid depth over weir in if SI units uesd in (m): 0.7196\n",
+ "base angle of the notch of weir (degrees) 91.2010\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.6 pageno : 93"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "alternative depth \n",
+ "maximum volumetric flow\n",
+ "Froude no.\n",
+ "% of kinetic energy in initial system\n",
+ "% of kinetic energy in final system \n",
+ "'''\n",
+ "\n",
+ "import math \n",
+ "from numpy import poly1d\n",
+ "#from scipy.optimize import root\n",
+ "from numpy import *\n",
+ "# Initialization of Variable\n",
+ "\n",
+ "Q = 0.675\n",
+ "B = 1.65\n",
+ "D = 19.5/100\n",
+ "g = 9.81\n",
+ "\n",
+ "#caculation\n",
+ "u = Q/B/D\n",
+ "u = round(u*1000.)/1000.\n",
+ "E = D+u**2./2./g\n",
+ "y = poly1d([1,-E, 0, 8.53/1000],False)\n",
+ "#y = poly1d([8.53/1000, 0, -E, 1],False)\n",
+ "x = roots(y)\n",
+ "print \"alternative depth in (m) %.4f\"%x[0]\n",
+ "print \"It is shooting flow\"\n",
+ "Dc = 2./3*E\n",
+ "Qmax = B*(g*Dc**3)**0.5\n",
+ "print \"maximum volumetric flow (m**3/s) %.4f\"%Qmax\n",
+ "Fr = u/math.sqrt(g*D)\n",
+ "print \"Froude no. %.4f\"%Fr\n",
+ "a = (E-D)/E\n",
+ "print \"%% of kinetic energy in initial system %.4f\"%(a*100)\n",
+ "b = (E-x[0])/E\n",
+ "print \"%% of kinetic energy in final system %.4f\"%(b*100)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "alternative depth in (m) 0.3495\n",
+ "It is shooting flow\n",
+ "maximum volumetric flow (m**3/s) 0.7639\n",
+ "Froude no. 1.5169\n",
+ "% of kinetic energy in initial system 53.4987\n",
+ "% of kinetic energy in final system 16.6510\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.7 page no : 96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "alternate depths \n",
+ "slode when depth is 12.9cm\n",
+ "slode when depth is 45.1cm \n",
+ "'''\n",
+ "\n",
+ "import math \n",
+ "from numpy import *\n",
+ "\n",
+ "# Initialization of Variable\n",
+ "\n",
+ "G = 338. #mass flow rate\n",
+ "rho = 998.\n",
+ "q = G/rho\n",
+ "E = 0.48\n",
+ "n = 0.015\n",
+ "g = 9.81\n",
+ "B = 0.4\n",
+ "y = poly1d([1, -E, 0 ,5.85/1000 ],False)\n",
+ "x = roots(y)\n",
+ "print \"alternate depths (m): %.4f %.4f\"%(x[0],x[1])\n",
+ "s = (G*n/rho/x[1]/(B*x[1]/(B+2*x[1]))**(2./3))**2\n",
+ "print \"slode when depth is 12.9cm %.4f\"%s\n",
+ "s = (G*n/rho/x[0]/(B*x[0]/(B+2*x[0]))**(2./3))**2\n",
+ "print \"slode when depth is 45.1cm %.4f\"%s\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "alternate depths (m): 0.4513 0.1291\n",
+ "slode when depth is 12.9cm 0.0461\n",
+ "slode when depth is 45.1cm 0.0018\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.8 page no : 97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "critical depth\n",
+ "critical velocity\n",
+ "Critical volumetric flow\n",
+ "'''\n",
+ "\n",
+ "import math \n",
+ "from numpy import *\n",
+ "\n",
+ "# Initialization of Variable\n",
+ "\n",
+ "pi = 3.14\n",
+ "theta = pi/3.\n",
+ "h = 1./math.tan(theta)\n",
+ "B = 0.845\n",
+ "E = 0.375\n",
+ "g = 9.81\n",
+ "\n",
+ "#calculation\n",
+ "#part1\n",
+ "\n",
+ "#deducing a polynomial(quadratic) in Dc \n",
+ "a = 5.*h\n",
+ "b = 3.*B-4*h*E\n",
+ "c = -2.*E*B\n",
+ "y = poly1d([a ,b ,c],False)\n",
+ "x = roots(y)\n",
+ "\n",
+ "print \"critical depth in (m): %.4f\"%x[1]\n",
+ "\n",
+ "#part2\n",
+ "Ac = x[1]*(B+x[1]*math.tan(theta/2))\n",
+ "Btc = B+x[1]*math.tan(theta/2.)*2\n",
+ "Dcbar = Ac/Btc\n",
+ "uc = math.sqrt(g*Dcbar)\n",
+ "print \"critical velocity (m/s): %.4f\"%uc\n",
+ "\n",
+ "#part3\n",
+ "Qc = Ac*uc\n",
+ "print \"Critical volumetric flow (m**3/s): %.4f\"%Qc\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "critical depth in (m): 0.2615\n",
+ "critical velocity (m/s): 1.4925\n",
+ "Critical volumetric flow (m**3/s): 0.3887\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.9 page no : 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "volumetric flow rate over flat topped weir over rectangular section in non uniform width\n",
+ "volumetric flow rate over flat topped weir over rectangular section in uniform width\n",
+ "'''\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "# Initialization of Variable\n",
+ "\n",
+ "B2 = 1.60 #breadth at 2\n",
+ "D2 = (1-0.047)*1.27 #depth at 2\n",
+ "g = 9.81\n",
+ "B1 = 2.95 #breadth at 1\n",
+ "D1 = 1.27 #depth at 1\n",
+ "Z = 0.\n",
+ "\n",
+ "#calculation\n",
+ "Q = B2*D2*(2*g*(D1-D2-Z)/(1-(B2*D2/B1/D1)**2))**0.5\n",
+ "print \"volumetric flow rate over flat topped weir over rectangular\\\n",
+ "section in non uniform width(m**3/s) : %.4f\"%Q\n",
+ "\n",
+ "#next part\n",
+ "B2 = 12.8\n",
+ "D1 = 2.58\n",
+ "Z = 1.25\n",
+ "Q = 1.705*B2*(D1-Z)**1.5\n",
+ "print \"volumetric flow rate over flat topped weir over rectangular section in uniform width (m**3/s): %.4f\"%Q\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "volumetric flow rate over flat topped weir over rectangularsection in non uniform width(m**3/s) : 2.4480\n",
+ "volumetric flow rate over flat topped weir over rectangular section in uniform width (m**3/s): 33.4743\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.10 page no : 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "Normal depth \n",
+ "Critical depth \n",
+ "distance in (m) from upstream to that place\n",
+ "'''\n",
+ "\n",
+ "from numpy import linspace\n",
+ "from scipy.optimize import fsolve \n",
+ "import math \n",
+ "\n",
+ "# Initialization of Variable\n",
+ "pi = 3.14\n",
+ "n = 0.022\n",
+ "B = 5.75\n",
+ "s = 0.15*pi/180\n",
+ "Q = 16.8\n",
+ "g = 9.81\n",
+ "\n",
+ "def normal(x):\n",
+ " y = Q-B*x/n*(B*x/(B+2*x))**(2./3)*s**0.5\n",
+ "\n",
+ "x = fsolve(normal,1.33)\n",
+ "print \"Normal depth in (m) : %.4f\"%x[0]\n",
+ "Dc = (Q**2/g/B**2)**(1./3)\n",
+ "print \"Critical depth in (m): %.4f\"%Dc\n",
+ "delD = .1\n",
+ "D = [1.55,1.65,1.75,1.85,1.95,2.05,2.15,2.25,2.35]\n",
+ "su = 0\n",
+ "for i in range(9):\n",
+ " delL = delD/s*(1-(Dc/D[i])**3.)/(1.-(x/D[i])**3.33)\n",
+ " su = su+delL\n",
+ "\n",
+ "print \"distance in (m) from upstream to that place: %.4f\"%su\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Normal depth in (m) : 1.3300\n",
+ "Critical depth in (m): 0.9547\n",
+ "distance in (m) from upstream to that place: 456.5757\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stderr",
+ "text": [
+ "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py:227: RuntimeWarning: The iteration is not making good progress, as measured by the \n",
+ " improvement from the last ten iterations.\n",
+ " warnings.warn(msg, RuntimeWarning)\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "example 5.11 page no : 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''\n",
+ "find\n",
+ "critical depth \n",
+ "normal depth upstream\n",
+ "normal depth downstream \n",
+ "conjugate depth for upstream \n",
+ "conjugate depth for downstream \n",
+ "distance in (m) of occurence of jump by accurate method\n",
+ "distance in (m) of occurence of jump by not so accurate method\n",
+ "power loss in hydraulic jump per unit width\n",
+ "'''\n",
+ "\n",
+ "import math \n",
+ "from numpy import linspace\n",
+ "\n",
+ "# Initialization of Variable\n",
+ "\n",
+ "g = 9.81\n",
+ "q = 1.49\n",
+ "pi = 3.14\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "#part1\n",
+ "Dc = (q**2/g)**.333\n",
+ "print \"critical depth in (m): %.4f\"%Dc\n",
+ "\n",
+ "#part2\n",
+ "n = 0.021\n",
+ "su = 1.85*pi/180 #slope upstream\n",
+ "sd = 0.035*pi/180 #slope downstream\n",
+ "Dnu = (n*q/math.sqrt(su))**(3./5)\n",
+ "Dnu = round(Dnu*1000)/1000.\n",
+ "print \"normal depth upstream in (m): %.4f\"%Dnu\n",
+ "Dnd = (n*q/math.sqrt(sd))**(3./5)\n",
+ "print \"normal depth downstream in (m): %.4f\"%Dnd\n",
+ "\n",
+ "#part3\n",
+ "D2u = -0.5*Dnu*(1-math.sqrt(1+8*q**2/g/Dnu**3))\n",
+ "D2u = round(D2u*1000)/1000.\n",
+ "print \"conjugate depth for upstream in (m): %.4f\"%D2u\n",
+ "D1d = -0.5*Dnd*(1-math.sqrt(1+8*q**2/g/Dnd**3))\n",
+ "print \"conjugate depth for downstream in (m): %.4f\"%D1d\n",
+ "\n",
+ "#part4\n",
+ "#accurate method\n",
+ "delD = .022\n",
+ "D = linspace(0.987,.022,9)\n",
+ "\n",
+ "dis = 0.\n",
+ "for i in range(8):\n",
+ " delL = delD/su*(1-(Dc/D[i])**3)/(1-(Dnu/D[i])**3.33)\n",
+ " dis = dis+delL\n",
+ "\n",
+ "print \"distance in (m) of occurence of jump by accurate method: %.4f\"%dis\n",
+ "\n",
+ "#not so accurate one\n",
+ "E1 = D2u+q**2./2./g/D2u**2\n",
+ "E2 = Dnd+q**2./2./g/Dnd**2\n",
+ "E2 = round(E2*1000)/1000.\n",
+ "E1 = round(E1*1000)/1000.\n",
+ "ahm = (D2u+Dnd)/2 #av. hyd.raulic mean\n",
+ "afv = .5*(q/D2u+q/Dnd) #av. fluid velocity\n",
+ "i = (afv*0.021/ahm**(2./3))**2\n",
+ "l = (E2-E1)/(su-i+0.0002)\n",
+ "print \"distance in (m) of occurence of jump by not so accurate method: %.4f\"%l\n",
+ "\n",
+ "#part5\n",
+ "rho = 998.\n",
+ "Eu = Dnu++q**2./2./g/Dnu**2\n",
+ "Eu = round(Eu*1000)/1000.\n",
+ "P = rho*g*q*(Eu-E1)\n",
+ "print \"power loss in hydraulic jump per unit width in (kW): %.4f\"%(P/1000)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "critical depth in (m): 0.6097\n",
+ "normal depth upstream in (m): 0.3500\n",
+ "normal depth downstream in (m): 1.1522\n",
+ "conjugate depth for upstream in (m): 0.9760\n",
+ "conjugate depth for downstream in (m): 0.2752\n",
+ "distance in (m) of occurence of jump by accurate method: 0.6270\n",
+ "distance in (m) of occurence of jump by not so accurate method: 4.4844\n",
+ "power loss in hydraulic jump per unit width in (kW): 2.6112\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file