summaryrefslogtreecommitdiff
path: root/Principles_of_physics
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_physics')
-rwxr-xr-xPrinciples_of_physics/Chapter12.ipynb540
-rwxr-xr-xPrinciples_of_physics/Chapter13.ipynb352
-rwxr-xr-xPrinciples_of_physics/README.txt10
-rwxr-xr-xPrinciples_of_physics/chapter1.ipynb537
-rwxr-xr-xPrinciples_of_physics/chapter10.ipynb203
-rwxr-xr-xPrinciples_of_physics/chapter11.ipynb95
-rwxr-xr-xPrinciples_of_physics/chapter15.ipynb216
-rwxr-xr-xPrinciples_of_physics/chapter16.ipynb101
-rwxr-xr-xPrinciples_of_physics/chapter17.ipynb216
-rwxr-xr-xPrinciples_of_physics/chapter2.ipynb323
-rwxr-xr-xPrinciples_of_physics/chapter3.ipynb222
-rwxr-xr-xPrinciples_of_physics/chapter4.ipynb210
-rwxr-xr-xPrinciples_of_physics/chapter5.ipynb332
-rwxr-xr-xPrinciples_of_physics/chapter6.ipynb219
-rwxr-xr-xPrinciples_of_physics/chapter7.ipynb191
-rwxr-xr-xPrinciples_of_physics/chapter9.ipynb214
-rwxr-xr-xPrinciples_of_physics/screenshots/image_1.pngbin0 -> 25954 bytes
-rwxr-xr-xPrinciples_of_physics/screenshots/image_2.pngbin0 -> 19810 bytes
-rwxr-xr-xPrinciples_of_physics/screenshots/image_3.pngbin0 -> 13101 bytes
19 files changed, 3981 insertions, 0 deletions
diff --git a/Principles_of_physics/Chapter12.ipynb b/Principles_of_physics/Chapter12.ipynb
new file mode 100755
index 00000000..d7cd7474
--- /dev/null
+++ b/Principles_of_physics/Chapter12.ipynb
@@ -0,0 +1,540 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1f479e444a408fcb9cb7e4430e1c4545dad453af571a814f51ef48ce1d81ede8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12 Direct current circut"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1 page no 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(6,6.0,12) #Resistances from circuit diagram 12.34 on page no.192 in ohms\n",
+ "V=(5,2) #Voltage in V from circuit diagram 12.20 on page no.192\n",
+ "\n",
+ "#Calculations\n",
+ "Re=(R[2]*R[1])/(R[2]+R[1])\n",
+ "Re2=Re+R[1]\n",
+ "I=V[0]/Re2\n",
+ "Ve=I*Re\n",
+ "I1=Ve/R[2]\n",
+ "RE=(R[0]*R[1])/(R[0]+R[1])\n",
+ "RE2=RE+R[2]\n",
+ "I2=Ve/RE2\n",
+ "Itotal=I1-I2\n",
+ "\n",
+ "#Output\n",
+ "print\"The current is \",round(Itotal,2),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current is 0.03 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 page no 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(3,5,6,7) #Resistances from circuit diagram 12.36(a) on page no. 193 in ohms\n",
+ "V=12 #Voltage in V from circuit diagram 12.36(a) on page no. 193\n",
+ "\n",
+ "#Calculations\n",
+ "Vth=(V*R[2])/(R[2]+R[3]+R[1])\n",
+ "Rth=R[0]+(V*R[2])/(V+R[2])\n",
+ "\n",
+ "#Output\n",
+ "print\"Thevenin equivalent resistance is \",Rth,\"ohms\" \n",
+ "print\"Thevenin equivalent voltage is \",Vth,\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thevenin equivalent resistance is 7 ohms\n",
+ "Thevenin equivalent voltage is 4 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3 page no 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(2,3,4.0) #Resistances from circuit diagram 12.37(a) on page no.194 in ohms\n",
+ "V=5 #Voltage in V from circuit diagram 12.37(a) on page no.194\n",
+ "\n",
+ "#Calculations\n",
+ "RN=(V*R[2])/(V+R[2])\n",
+ "IN=V/(R[0]+R[1])\n",
+ "\n",
+ "#Output\n",
+ "print\"Nortons equivalent resistance is \",round(RN,1),\"ohms\"\n",
+ "print\"Nortons equivalent current is \",IN,\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nortons equivalent resistance is 2.2 ohms\n",
+ "Nortons equivalent current is 1 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4 page no 194 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "C=10*10**-6 #Capicitance in F\n",
+ "R=10.0*10.0**3 #Resistance in ohms\n",
+ "e=6 #Emf of the battery in V\n",
+ "\n",
+ "#Calculations\n",
+ "t=C*R\n",
+ "Qm=(C*e)/10.0**-6\n",
+ "Im=(e/R)*1000\n",
+ "\n",
+ "#Output\n",
+ "print\"Time constant of the circuit is \",t,\"s\" \n",
+ "print\"Maximum charge on the capacitor is \",Qm,\"micro C\" \n",
+ "print\"Maximum current in the circuit is \",Im,\"mA\" \n",
+ "print\"Charge at time t is Q(t) = \",Qm,\"micro C\"\n",
+ "print\"Currrent at time t is I(t) = \",Im,\"mA\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time constant of the circuit is 0.1 s\n",
+ "Maximum charge on the capacitor is 60.0 micro C\n",
+ "Maximum current in the circuit is 0.6 mA\n",
+ "Charge at time t is Q(t) = 60.0 micro C\n",
+ "Currrent at time t is I(t) = 0.6 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5 page no 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "L=50 #Inductance in mH\n",
+ "R=5.0 #Resistance in ohms\n",
+ "V=6 #Volatage of the battery in V\n",
+ "t=5 #Time in ms\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "t1=(L/R)\n",
+ "I=(V/R)*(1-math.exp(-t/t1))\n",
+ "\n",
+ "#Output\n",
+ "print\"The time constant of the circuit is \",t1,\"ms\" \n",
+ "print\"The current in the circuit is \",round(I,2),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The time constant of the circuit is 10.0 ms\n",
+ "The current in the circuit is 0.47 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6 page no 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "L=6 #Inductance in mH\n",
+ "C=12 #Capacitance in pF\n",
+ "V=6 #Voltage of the battery in V\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "f=(1/(2.0*3.14*math.sqrt(L*10**-3*C*10**-12)))/10**5\n",
+ "Qm=(C*10**-12*V)/10.0**-12\n",
+ "Im=(2*3.14*f*10**5*Qm*10**-12)/10.0**-6\n",
+ "\n",
+ "#Output\n",
+ "print\"Frequency of oscillation is \",round(f,2),\"*10^5 Hz\" \n",
+ "print\"The maximum value of charge on capacitor is \",Qm,\"*10**-12 C\" \n",
+ "print\"The current in the circuit is \",round(Im,0),\"micro A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of oscillation is 5.93 *10^5 Hz\n",
+ "The maximum value of charge on capacitor is 72.0 *10**-12 C\n",
+ "The current in the circuit is 268.0 micro A\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.1 Page no 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "V=10 #voltage in V from fig.12.7 on page no.175\n",
+ "R=10.0 #Resistance in ohms from fig.12.7 on page no.175\n",
+ "\n",
+ "#Calculations\n",
+ "I=(V/R)\n",
+ "\n",
+ "#Output\n",
+ "print\"Current in the circuit shown in fig.12.7 is \",I,\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Current in the circuit shown in fig.12.7 is 1.0 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.2 Page no 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(6,6,3.0) #Resistances in the circuit from circuit diagram 12.9 on page no. 175 in ohms\n",
+ "V=(24,16) #Voltages in the circuit from circuit diagram 12.9 on page no. 175 in V\n",
+ "\n",
+ "#Calculations\n",
+ "Re=(R[1]*R[2])/(R[1]+R[2])\n",
+ "Re1=Re+R[0]\n",
+ "I=V[0]/Re1\n",
+ "Ve=I*Re\n",
+ "Ie=Ve/R[2]\n",
+ "RE=(R[0]*R[1])/(R[0]+R[1])\n",
+ "RE1=RE+R[2]\n",
+ "I1=V[1]/RE1\n",
+ "VE=R[2]*I1\n",
+ "I2=VE/R[0]\n",
+ "Itotal=Ie+I2\n",
+ "#Output\n",
+ "print\"The current shown in the circiut is \",round(Itotal,1),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current shown in the circiut is 3.3 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.3 Page no 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(4,12,2.0,12) #Resistances from circuit diagram 12.12 on page no. 177 in ohms\n",
+ "V=12 #Voltage in V from circuit diagram 12.12 on page no. 177\n",
+ "\n",
+ "#Calculations\n",
+ "Rth=((R[0]+R[2])*R[1])/(R[0]+R[2]+R[1])\n",
+ "Vth=(V*R[1])/(R[0]+R[2]+R[1])\n",
+ "I=(Vth/(Rth+R[3]))\n",
+ "\n",
+ "#Output\n",
+ "print\"The current through the resistor is \",I,\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current through the resistor is 0.5 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.4 Page no 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(2,3,6) #Resistances from circuit diagram 12.15 on page no. 178 in ohms\n",
+ "I=2 #Current in A from circuit diagram 12.15 on page no. 178\n",
+ "\n",
+ "#Calculations\n",
+ "Rth=(R[1]+R[2])\n",
+ "Vth=(R[2]*I)\n",
+ "\n",
+ "#Output\n",
+ "print\"Thevenin equivalent resistance is \",Rth,\"ohms\" \n",
+ "print\"Thevenin equivalent voltage is \",Vth,\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thevenin equivalent resistance is 9 ohms\n",
+ "Thevenin equivalent voltage is 12 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.5 Page no 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(12,8.0,3.0,6) #Resistances from circuit diagram 12.17 on page no.179 in ohms\n",
+ "V=12 #Voltage in V from circuit diagram 12.17 on page no.179\n",
+ "\n",
+ "#Calculations\n",
+ "Rth=((R[2]*R[0])/(R[2]+R[0]))+((R[1]*R[3])/(R[1]+R[3]))\n",
+ "Vth=V*((R[1]*R[3])/(R[1]+R[3]))/(R[0]+R[2])\n",
+ "\n",
+ "#Output\n",
+ "print\"Thevenin equivalent resistance is \",round(Rth,2),\"ohms\" \n",
+ "print\"Thevenin equivalent voltage is \",round(Vth,2),\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thevenin equivalent resistance is 5.83 ohms\n",
+ "Thevenin equivalent voltage is 2.74 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.6 Page no 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(4,12,2,12) #Resistances from circuit diagram 12.20 on page no.180 in ohms\n",
+ "V=12 #Voltage in V from circuit diagram 12.20 on page no.180\n",
+ "\n",
+ "#Calculations\n",
+ "RN=((R[0]+R[2])*R[1])/(R[0]+R[2]+R[1])\n",
+ "IN=V/(RN+R[2])\n",
+ "\n",
+ "#Output\n",
+ "print\"Nortons equivalent resistance is \",RN,\"ohms\"\n",
+ "print\"Nortons equivalent current is \",IN,\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nortons equivalent resistance is 4 ohms\n",
+ "Nortons equivalent current is 2 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.e.7 Page no 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=(4.0,5,6) #Resistances from circuit diagram 12.22 on page no.181 in ohms\n",
+ "I=2 #Current in A from circuit diagram 12.22 on page no.181\n",
+ "\n",
+ "#Calculations\n",
+ "RN=(R[0]+R[1]+R[2])\n",
+ "IN=(R[0]*I)/RN\n",
+ "\n",
+ "#Output\n",
+ "print\"Nortons equivalent resistance is \",RN,\"ohms\"\n",
+ "print\"Nortons equivalent current is \",round(IN,2),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nortons equivalent resistance is 15.0 ohms\n",
+ "Nortons equivalent current is 0.53 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/Chapter13.ipynb b/Principles_of_physics/Chapter13.ipynb
new file mode 100755
index 00000000..7a510f42
--- /dev/null
+++ b/Principles_of_physics/Chapter13.ipynb
@@ -0,0 +1,352 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a93967e9e262485d7a93dbdce7f33a1a65f797a1b1bf83e41cb800f1ff62d528"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13 Alternating current circuits"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1 page no 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "Vm=100 #Maximum voltage in V\n",
+ "R=50 #resitance in ohms\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Vrms=(Vm/math.sqrt(2))\n",
+ "Irms=(Vrms/R)\n",
+ "Im=(Vm/R)\n",
+ "\n",
+ "#Output\n",
+ "print\"rms current is \",round(Irms,2),\"A and maximum current is \",Im,\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rms current is 1.41 A and maximum current is 2 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2 page no 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "c=50 #Capacitor in micro F\n",
+ "Vm=220 #Maximum voltage in V\n",
+ "f=50 #Frequency in Hz\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Xc=(1/(2.0*3.14*c*10**-6*f))\n",
+ "I=(Vm/Xc)\n",
+ "Irms=I/math.sqrt(2)\n",
+ "\n",
+ "#Output\n",
+ "print\"rms current is \",round(Irms,2),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rms current is 2.44 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.3 page no 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "L=2 #Inductance in H\n",
+ "Vrms=220 #rms voltage in V\n",
+ "f=50 #Frequency in Hz\n",
+ "\n",
+ "#Calculations\n",
+ "Xl=(2*3.14*f*L)\n",
+ "Irms=(Vrms/Xl)\n",
+ "\n",
+ "#Output\n",
+ "print\"rms current is \",round(Irms,3),\"A\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rms current is 0.35 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.4 page no 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "Vm=220 #Maximum voltage in V\n",
+ "f=50 #frequency in Hz\n",
+ "R=2000 #Resistance in ohms\n",
+ "C=5*10**-6 #Capacitor in F\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Xc=(1/(2*3.14*f*C))\n",
+ "Z=math.sqrt(R**2+Xc**2)\n",
+ "Vc=(Vm*Xc)/Z\n",
+ "\n",
+ "#Output\n",
+ "print\"Maximum potential difference across the capacitor is \",round(Vc,1),\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum potential difference across the capacitor is 66.8 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.5 page no 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=5000 #Resistance in ohms\n",
+ "L=2 #Inductance in H\n",
+ "Vrms=200 #rms Voltage in V\n",
+ "f=50 #Frequency in Hz\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Xl=(2*3.14*f*L)\n",
+ "Z=math.sqrt(R**2+Xl**2)\n",
+ "Vl=(Vrms*Xl)/Z\n",
+ "\n",
+ "#Output\n",
+ "print\"rms potential difference across the inductor is \",round(Vl,2),\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rms potential difference across the inductor is 24.92 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.6 page no 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=10.0 #Resistance in ohms\n",
+ "L=5*10**-3 #Inductance in H\n",
+ "C=10.0*10**-6 #Capacitance in F\n",
+ "V=100 #Voltage in V\n",
+ "f=50.0 #Frequency in Hz\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Xc=1/(2.0*3.14*f*C)\n",
+ "Xl=(2*3.14*f*L)\n",
+ "Z=math.sqrt(R**2+(Xl-Xc)**2)\n",
+ "I=(V/Z)\n",
+ "q=math.atan((Xl-Xc)/R)*180/3.14\n",
+ "Vr=(I*R)\n",
+ "Vc=(I*Xc)\n",
+ "Vl=(I*Xl)\n",
+ "\n",
+ "#Output\n",
+ "print\"Total impedence is \",round(Z,1),\"ohms\" \n",
+ "print\"Current is \",round(I,2),\"A\" \n",
+ "print\"Phase angle is \",round(q,1),\"degrees\" \n",
+ "print\"Voltage across resistor is \",round(Vr,2),\"V\" \n",
+ "print\"Voltage across capacitor is \",round(Vc,0),\"V\" \n",
+ "print\"Voltage across inductor is \",round(Vl,3),\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total impedence is 317.1 ohms\n",
+ "Current is 0.32 A\n",
+ "Phase angle is -88.2 degrees\n",
+ "Voltage across resistor is 3.15 V\n",
+ "Voltage across capacitor is 100.0 V\n",
+ "Voltage across inductor is 0.495 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.7 page no 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "R=5.0 #Resistance in ohms\n",
+ "L=2.0*10**-3 #Inductance in H\n",
+ "C=25.0*10**-6 #Capacitance in F\n",
+ "V=50 #Voltage in V\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "w=1/math.sqrt(L*C)\n",
+ "f=(w/(2.0*3.14))\n",
+ "Q=(w*L)/R \n",
+ "\n",
+ "#Output \n",
+ "print\"Resonating frequency is \",round(f,0),\"Hz\" \n",
+ "print\"Q factor is \",round(Q,2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resonating frequency is 712.0 Hz\n",
+ "Q factor is 1.79\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.8 page no 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "L=(20*10**-3) #Inductance in H\n",
+ "Q=8.0 #Q factor\n",
+ "f=1000 #Frequency in Hz\n",
+ "\n",
+ "#Calculations\n",
+ "R=(2*3.14*f*L)/Q\n",
+ "C=(1/((2.0*3.14*f)**2*L))/10**-6\n",
+ "\n",
+ "#Output\n",
+ "print\"Capacitance and resistance of coil is \",round(C,2),\"micro F and\",R,\"ohms respectively\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Capacitance and resistance of coil is 1.27 micro F and 15.7 ohms respectively\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/README.txt b/Principles_of_physics/README.txt
new file mode 100755
index 00000000..c2a67b8c
--- /dev/null
+++ b/Principles_of_physics/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Ruchi Mittal
+Course: others
+College/Institute/Organization: Aggarwal public school, Ballabgarh
+Department/Designation: commerce
+Book Title: Principles of physics
+Author: P.V.Naik
+Publisher: Prentice hall,New delhi
+Year of publication: 2004
+Isbn: 8120326466
+Edition: 2nd \ No newline at end of file
diff --git a/Principles_of_physics/chapter1.ipynb b/Principles_of_physics/chapter1.ipynb
new file mode 100755
index 00000000..af9f2d94
--- /dev/null
+++ b/Principles_of_physics/chapter1.ipynb
@@ -0,0 +1,537 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:aa8849d14e0b72277789cfe0c1cc3e7e66ca9061ac47dccbae27561c50c68d32"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1 Motion"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1 Page no 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "d=180 #Distance of satellite above the surface of earth in km\n",
+ "t=90 #Time taken to complete one revolution of the earth in minutes\n",
+ "r=6400 #Radius of the earth in kms\n",
+ "\n",
+ "#Calculations\n",
+ "R=(r+d)*1000\n",
+ "T=t*60\n",
+ "v=(2*3.14*R)/T\n",
+ "a=(v**2/R)\n",
+ "\n",
+ "#Output\n",
+ "print\"Orbital speed is \",round(v,0),\"m/s\" \n",
+ "print\"Centripetal acceleration is \",round(a,1),\"m/s**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Orbital speed is 7652.0 m/s\n",
+ "Centripetal acceleration is 8.9 m/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2 Page no 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=0.05 #Mass of the stone in kg\n",
+ "r=0.4 #Radius of the string in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "vh=math.sqrt(9.8*r)\n",
+ "vl=math.sqrt((2/m)*(((1/2.0)*m*vh**2)+(m*9.8*2*r)))\n",
+ "\n",
+ "#Output\n",
+ "print\"Minimum speed when the stone is at the top of the circle is \",round(vh,2),\"m/s\" \n",
+ "print\"Minimum speed when the stone is at the bottom of the circle is \",round(vl,2),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum speed when the stone is at the top of the circle is 1.98 m/s\n",
+ "Minimum speed when the stone is at the bottom of the circle is 4.43 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3 Page no 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=0.2 #Mass of the ball in kg\n",
+ "r=1.5 #Radius of vertical circle in m\n",
+ "q=35 #Angle made by the ball in degrees\n",
+ "v=6 #Velocity of the ball in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "T=(m*((v**2/r)+(9.8*math.cos(q*3.14/180.0))))\n",
+ "at=9.8*math.sin(q*3.14/180.0)\n",
+ "ar=(v**2/r)\n",
+ "a=math.sqrt(at**2+ar**2)\n",
+ "\n",
+ "#Output\n",
+ "print\"Tension in the string is \",round(T,1),\"N\" \n",
+ "print\"Tangential acceleration is \",round(at,2),\"m/s**2\" \n",
+ "print\"Radial acceleration is \",ar,\"m/s**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Tension in the string is 6.4 N\n",
+ "Tangential acceleration is 5.62 m/s**2\n",
+ "Radial acceleration is 24.0 m/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4 Page no 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "#A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "ar=(6*9.8)\n",
+ "at=(9.8*math.sin(90*3.14/180.0))\n",
+ "\n",
+ "#Output\n",
+ "print\"Radial acceleration is \",ar,\"m/s**2\"\n",
+ "print\"Tangential acceleration is \",round(at,1),\"m/s**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radial acceleration is 58.8 m/s**2\n",
+ "Tangential acceleration is 9.8 m/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.5 Page no 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "l=0.95 #Length of the strring in m\n",
+ "m=0.15 #Mass of the bob in kg\n",
+ "r=0.25 #Radius of the circle in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "h=math.sqrt(l**2-r**2)\n",
+ "t=2*3.14*math.sqrt(h/9.8)\n",
+ "\n",
+ "#Output\n",
+ "print\"The period of rotation is \",round(t,2),\"s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The period of rotation is 1.92 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.6 Page no 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "N=40.0 #Minimum speed of rotor in rpm\n",
+ "r=2.5 #Radius of rotor in m\n",
+ "\n",
+ "#Calculations\n",
+ "t=60/N\n",
+ "u=(9.8*t**2)/(4.0*3.14**2*r)\n",
+ "\n",
+ "#Output\n",
+ "print\"The coefficient of limiting friction between the object and the wall of the rotor is \",round(u,3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The coefficient of limiting friction between the object and the wall of the rotor is 0.224\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7 Page no 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "a=30 #Angle of inclination in degrees\n",
+ "t=3 #Time in s\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "a=(9.8*math.sin(a*3.14/180.0))\n",
+ "v=(0+a*t)\n",
+ "\n",
+ "#Output\n",
+ "print\"Speed of the block after \",t,\"s is \",round(v,1),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of the block after 3 s is 14.7 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.8 Page no 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=10.0 #Mass of the block in kg\n",
+ "F1=40 #Horizontal force to start moving in N\n",
+ "F2=32 #Horizontal force to move with constant velocity in N\n",
+ "\n",
+ "#Calculations\n",
+ "u1=(F1/(m*9.8))\n",
+ "u2=(F2/(m*9.8))\n",
+ "\n",
+ "#Output\n",
+ "print\"Coefficient of static friction is \",round(u1,3)\n",
+ "print\"Coefficient of kinetic friction is \",round(u2,4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Coefficient of static friction is 0.408\n",
+ "Coefficient of kinetic friction is 0.3265\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.9 Page no 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=(3,12) #Masses of the blocks in kg\n",
+ "q=50 #Angle made by the string in degrees\n",
+ "a=3 #Acceleration of 12kg block in m/s^2\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "T=m[0]*(9.8+a)\n",
+ "u=(m[1]*(9.8*math.sin(q*3.14/180.0)-a)-T)/(m[1]*9.8*math.cos(q*3.14/180.0))\n",
+ "\n",
+ "#Output\n",
+ "print\"Tension in the string is \",T,\"N\" \n",
+ "print\"The coefficient of kinetic friction is \",round(u,3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Tension in the string is 38.4 N\n",
+ "The coefficient of kinetic friction is 0.207\n"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.e.1 Page no 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w=50 #Weight in N\n",
+ "a=(40,50) #Angles made by two cables in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "#Solving two equations obtained from fig. 1.10 on page no.10\n",
+ "#-T1cos40+T2cos50=0\n",
+ "#T1sin40+T2sin50=50\n",
+ "import math\n",
+ "A = array([[math.cos(a[1]*3.14/180.0),-math.cos(a[0]*3.14/180.0)], \n",
+ " [math.sin(a[0]*3.14/180.0),math.sin(a[1]*3.14/180.0)]])\n",
+ "b = array([0,50])\n",
+ "X = solve(A, b)\n",
+ "T2=X[1]\n",
+ "print \"T2=\",round(T2,1),\"N\"\n",
+ "T1=(math.cos(a[1]*3.14/180.0)/math.cos(a[0]*3.14/180.0))*T2\n",
+ "print \"T1\",round(T1,1),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "T2= 32.7 N\n",
+ "T1 27.4 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.e.5 Page no 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=100.0 #Mass of block in kg\n",
+ "F=500 #Force in N\n",
+ "q=30 #Angle made with the horizontal in degrees\n",
+ "u=0.4 #Coefficient of sliding friction\n",
+ "\n",
+ "#Calculations\n",
+ "R=m*9.8\n",
+ "f=(u*R)\n",
+ "a=(F*math.cos(q*3.14/180.0)-f)/m\n",
+ "\n",
+ "#Output\n",
+ "print\"The acceleration of the block is \",round(a,2),\"m/s**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The acceleration of the block is 0.41 m/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.e.6 Page no 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=(20.0,80.0) #Masses of blocks in kg\n",
+ "F=1000 #Force with which 20kg block is pulled in N\n",
+ "\n",
+ "#Calculations\n",
+ "a=F/(m[0]+m[1])\n",
+ "T=F-(m[0]*a)\n",
+ "\n",
+ "#Output\n",
+ "print\"The acceleration produced is \",a,\"m/s^2\" \n",
+ "print\"The tension in the string connecting the blocks is \",T,\"N\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The acceleration produced is 10.0 m/s^2\n",
+ "The tension in the string connecting the blocks is 800.0 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.e.8 Page no 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w=588 #Weight of the person in N\n",
+ "a=3 #Acceleration in m/s^2\n",
+ "b=180\n",
+ "\n",
+ "#Calculations\n",
+ "m=(w/9.8)\n",
+ "P=(w+(m*a))\n",
+ "p=w-b\n",
+ "\n",
+ "#Output\n",
+ "print\"Weight of the person when the elevator is accelerated upwards is \",P,\"N\"\n",
+ "print\"Weight of the person when the elevator is accelerated upwards is \",p,\"N\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Weight of the person when the elevator is accelerated upwards is 768.0 N\n",
+ "Weight of the person when the elevator is accelerated upwards is 408 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter10.ipynb b/Principles_of_physics/chapter10.ipynb
new file mode 100755
index 00000000..3b53a368
--- /dev/null
+++ b/Principles_of_physics/chapter10.ipynb
@@ -0,0 +1,203 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3f76c4dafe83129bfa41f6667339b27d23cec6e550015e787119c4ce10873761"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10 Difraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1 Page no 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "D=1 #Distance of screen from the slit in m\n",
+ "w=6000 #Wavelength in Angstrom\n",
+ "w1=0.6 #Slit width in mm\n",
+ "\n",
+ "#Calculations\n",
+ "x=((2*D*w*10**-10)/(w1*10**-3))*1000\n",
+ "\n",
+ "#Output\n",
+ "print\"Width of central band is \",x,\"mm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Width of central band is 2.0 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2 Page no 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "d1=6000.0 #Diffraction grating have number of lines per cm\n",
+ "q=50 #Diffracted second order spectral line observed in degrees\n",
+ "n=2 #Second order\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "w=(math.sin(q*3.14/180.0)/(d1*n))*10**8\n",
+ "\n",
+ "#Output\n",
+ "print\"Wavelength of radiation is \",round(w,1),\"Angstrom\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of radiation is 6381.3 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3 Page no 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "d1=6000 #Diffraction grating have number of lines per cm\n",
+ "w=6000 #Wavelength in Angstrom\n",
+ "\n",
+ "#Calculations\n",
+ "n=(1/(d1*w*10**-8))\n",
+ "\n",
+ "#Output\n",
+ "print\"Maximum order of diffraction that can be observed is \",round(n,2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum order of diffraction that can be observed is 2.78\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.4 Page no 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "B=(3*3.14)/2 #First secondary maxima at B\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "I=(math.sin(B)/B)**2\n",
+ "\n",
+ "#Output\n",
+ "print\"Ratio of intensity of central maxima to first secondary maxima is \",round(I,3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of intensity of central maxima to first secondary maxima is 0.045\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5 Page no 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w=6400 #Wave length of light in Angstrom\n",
+ "w1=0.3 #Slit width in mm\n",
+ "d=110 #Distance of screen from the slit in cm\n",
+ "n=3 #order\n",
+ "\n",
+ "#Calculations\n",
+ "x=((n*w*10**-10*(d/100.0))/(w1*10**-3))*1000\n",
+ "\n",
+ "#Output\n",
+ "print\"Distance between the centre of the central maximum and the third dark fringe is \",x,\"mm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Distance between the centre of the central maximum and the third dark fringe is 7.04 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter11.ipynb b/Principles_of_physics/chapter11.ipynb
new file mode 100755
index 00000000..844520a2
--- /dev/null
+++ b/Principles_of_physics/chapter11.ipynb
@@ -0,0 +1,95 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f15639ca9ab333759d79a28745654a5d04bddafc03a306e9cfbbbfeaf4928ceb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11 Polarization"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1 Page no 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r1=1.538 #Refractive index of the crown glass for violet\n",
+ "r2=1.52 #Refractive index of the crown glass for red\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "ip1=math.atan(r1)*180/3.14\n",
+ "ip2=math.atan(r2)*180/3.14\n",
+ "\n",
+ "#Output\n",
+ "print\"Polarizing angles for violet and red are \",round(ip1,3),\"degrees and\",round(ip2,3),\"degrees\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Polarizing angles for violet and red are 56.997 degrees and 56.688 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2 Page no 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "I=0.09\n",
+ "I0=1\n",
+ "\n",
+ "#calculation\n",
+ "import math\n",
+ "X=math.sqrt(I/I0)\n",
+ "x=math.acos(X)*180/3.14\n",
+ "print\"angle is \",round(x,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle is 72.58\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter15.ipynb b/Principles_of_physics/chapter15.ipynb
new file mode 100755
index 00000000..0bee9bed
--- /dev/null
+++ b/Principles_of_physics/chapter15.ipynb
@@ -0,0 +1,216 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:59edd30f642482e981d4bbdb68206500dec6663b6b414fcdfbc2ce9fb1f1258c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 15 Motion of a charged particle"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.1 Page no 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "E=5000 #Intensity of electric field in N/C\n",
+ "d=0.02 #Distance in m\n",
+ "e=(1.6*10**-19) #Charge of the electron in C\n",
+ "m=(9.1*10**-31) #Mass of the electron in kg\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "v=math.sqrt(2*e*E*d/m)/10**6\n",
+ "\n",
+ "#Output\n",
+ "print\"Speed of the electron is \",round(v,2),\"*10**6 m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of the electron is 5.93 *10**6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.2 Page no 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "v=(5*10**6) #Velocity of the electron in m/s\n",
+ "E=2000 #Intensity of electric field in N/C\n",
+ "d=0.06 #Distance in m\n",
+ "e=(1.6*10**-19) #Charge of the electron in C\n",
+ "m=(9.1*10**-31) #Mass of the electron in kg\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "y=((-e*E*d**2)/(2*m*v**2))*100\n",
+ "\n",
+ "#Output\n",
+ "print\"Vertical displacement of the electron when it just leaves the electric field is \",round(y,2),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Vertical displacement of the electron when it just leaves the electric field is -2.53 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.3 Page no 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "v=(4*10**5) #Velocity of the positively charged particle in m/s\n",
+ "E=300 #Intensity of electric field in N/C\n",
+ "e=(1.6*10**-19) #Charge of the positively charged particle in C\n",
+ "m=(1.67*10**-27) #Mass of the positively charged particle in kg\n",
+ "q=35 #Angle made by the particle in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "t=((v*math.sin(q*3.14/180.0)*m)/(e*E))/10**-6\n",
+ "\n",
+ "#Output\n",
+ "print\"Time required by the particle to reach the maximum height in the electric field is \",round(t,2),\"micro s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required by the particle to reach the maximum height in the electric field is 7.98 micro s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.4 Page no 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=0.3 #Radius of circular orbit in m\n",
+ "B=0.38 #Magnetic field strength in T\n",
+ "e=(1.6*10**-19) #Charge of the proton in C\n",
+ "m=(1.672*10**-27) #Mass of the proton in kg\n",
+ "\n",
+ "#Calculations\n",
+ "v=((e*B*r)/m)/10**6\n",
+ "\n",
+ "#Output\n",
+ "print\"Orbital speed of the proton is \",round(v,0),\"*10**6 m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Orbital speed of the proton is 11.0 *10**6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.5 Page no 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "e=(1.6*10**-19) #Charge of the proton in C\n",
+ "m=(1.67*10**-27) #Mass of the proton in kg\n",
+ "B=0.8 #Magnetic field strength in T\n",
+ "v=(4*10**6,3*10**6) #Velocity of charged particle in vxi+vyj form in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "p=(v[0]*2*3.14*m)/(e*B)\n",
+ "R=(m*v[1])/(e*B)\n",
+ "\n",
+ "#Output\n",
+ "print\"The pitch of the helix is \",round(p,3),\"m\" \n",
+ "print\"Radius of the trajectory is \",round(R,3),\"m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The pitch of the helix is 0.328 m\n",
+ "Radius of the trajectory is 0.039 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter16.ipynb b/Principles_of_physics/chapter16.ipynb
new file mode 100755
index 00000000..82ff85eb
--- /dev/null
+++ b/Principles_of_physics/chapter16.ipynb
@@ -0,0 +1,101 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:15ba15ce3635a11f8889cf96adb08a8de4e1e5c63e5f5177ed54dd77e97a3365"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 16 Electrons, Ions, Isotopes and nucleus"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.1 Page no 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "E=(200*100) #Electric field in V/m\n",
+ "B=0.2 #Magnetic field in T\n",
+ "B1=0.3 #Magnetic field in the main chamber in T\n",
+ "q=(1.6*10**-19) #Charge of the electron in coloumbs\n",
+ "m=(12,13) #Carbon isotopes C12 and C13\n",
+ "M=(1.67*10**-27) #AMU(Atomic Mass Unit) in kg\n",
+ "\n",
+ "#Calculations\n",
+ "v=(E/B)\n",
+ "s=(2*v*(m[1]-m[0])*M*100)/(q*B1)\n",
+ "\n",
+ "#Output\n",
+ "print\"Seperation on photographic plate is \",round(s,4),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Seperation on photographic plate is 0.6958 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16.2 Page no 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "a=20 #Atomic number of Ca\n",
+ "m=40.0 #mass number of Ca\n",
+ "M=39.962591 #Mass of Ca nucleus in u\n",
+ "mp=1.007276 #Mass of proton in AMU\n",
+ "mn=1.008665 #Mass of neutron in AMU\n",
+ "\n",
+ "#Calculations\n",
+ "BE=(1/m)*((a*mp)+(a*mn)-M)*1000\n",
+ "\n",
+ "#Output\n",
+ "print\"BE per nucleon is \",round(BE,1),\"MeV\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "BE per nucleon is 8.9 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter17.ipynb b/Principles_of_physics/chapter17.ipynb
new file mode 100755
index 00000000..1e73b78e
--- /dev/null
+++ b/Principles_of_physics/chapter17.ipynb
@@ -0,0 +1,216 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:57d22a7adb4054841cc52259e77089014f3c25ca9c50bc1dab4a74d78f09ccf3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 17 Quantum theory"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.1 Page no 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w=4000.0 #Wavelength of the light in Angstrom units\n",
+ "wf=2.25 #Work function of potassium in eV\n",
+ "m=(9.1*10**-31) #Mass of the electron in kg\n",
+ "v=(3*10**8) #Velocity of light in m/s\n",
+ "c=(1.6*10**-19) #Charge of the electron in coloumbs\n",
+ "h=6.626*10**-34 #Plancks constant in Js\n",
+ "\n",
+ "#Calculations\n",
+ "E=(h*v)/(w*10**-10*c)\n",
+ "KE=(E-wf)\n",
+ "\n",
+ "#Output\n",
+ "print\"Maximum kinetic energy of photoelectron is \",round(KE,3),\"eV\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum kinetic energy of photoelectron is 0.856 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.2 Page no 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "wf=1.9 #Workfunction of the material in eV\n",
+ "w=3000 #Wavelength of the light in Angstrom units\n",
+ "v=(3*10**8) #Velocity of light in m/s\n",
+ "c=(1.6*10**-19) #Charge of the electron in coloumbs\n",
+ "h=6.626*10**-34 #Plancks constant in Js\n",
+ "\n",
+ "#Calculations\n",
+ "V=(1/c)*(((h*v)/(w*10**-10))-(wf*c))\n",
+ "\n",
+ "#Output\n",
+ "print\"Stopping potential is \",round(V,2),\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stopping potential is 2.24 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.3 Page no 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "V=(70*10**3) #Accelerating potential in V\n",
+ "v=(3*10**8) #Velocity of light in m/s\n",
+ "c=(1.6*10**-19) #Charge of the electron in coloumbs\n",
+ "h=6.626*10**-34 #Plancks constant in Js\n",
+ "\n",
+ "#Calculations\n",
+ "lmin=((h*v)/(c*V))/10**-9\n",
+ "\n",
+ "#Output\n",
+ "print\"Shortest wavelength of X-rays produced is \",round(lmin,4),\"mm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Shortest wavelength of X-rays produced is 0.0177 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.4 Page no 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w1=2 #Wavelength in Angstrom \n",
+ "Z1=24 #Target one\n",
+ "Z2=42.0 #Target two\n",
+ "a=1 #Constant value\n",
+ "\n",
+ "#Calculations\n",
+ "w2=w1*(Z1-a)**2/(Z2-a)**2\n",
+ "\n",
+ "#Output\n",
+ "print\"Wavelength is \",round(w2,2),\"Angstrom\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength is 0.63 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.5 Page no 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w=3 #Wavelength of the light in Angstrom\n",
+ "v=(3*10**8) #Velocity of light in m/s\n",
+ "h=6.626*10**-34 #Plancks constant in Js\n",
+ "q=40 #Scattering angle in degrees\n",
+ "m=(9.11*10**-31) #Mass of electron in kg\n",
+ "c=(1.6*10**-19) #Charge of the electron in coloumbs\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "dl=(h/(m*v))*(1-math.cos(q*3.14/180.0))/10.0**-10\n",
+ "l=(w+dl)\n",
+ "\n",
+ "#Output\n",
+ "print\"Wavelength of scattered X-rays is \",round(l,4),\"Angstrom\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of scattered X-rays is 3.0057 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter2.ipynb b/Principles_of_physics/chapter2.ipynb
new file mode 100755
index 00000000..74df1c9c
--- /dev/null
+++ b/Principles_of_physics/chapter2.ipynb
@@ -0,0 +1,323 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1378ee9b7b5e64639ff100ad2dca16b71e72eadb106daabd3ad20e87834e8b65"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2 Work, Energy and Power"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1 Page no 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "F=(6,2) #Constant force in vector form 6i+2j in N\n",
+ "s=(3,5) #Displacement in vector form 3i+5j in N\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "W=(F[0]*s[0])+(F[1]*s[1])\n",
+ "q=math.acos(W/(math.sqrt(F[0]**2+F[1]**2)*math.sqrt(s[0]**2+s[1]**2)))*180/3.14\n",
+ "\n",
+ "#Output\n",
+ "print\"Workdone by the force is \",W,\"J\" \n",
+ "print\"Angle between Force and displacement is \",round(q,1),\"degrees\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Workdone by the force is 28 J\n",
+ "Angle between Force and displacement is 40.6 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2 Page no 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=10 #Mass of block in kg\n",
+ "q=40 #Angle made by the force with horizontal in degrees\n",
+ "s=5 #Horizontal displacement of the block in m\n",
+ "u=0.3 #Coefficient of kinematic friction \n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "F=(u*m*9.8)/(math.cos(q*3.14/180.0)+(u*math.sin(q*3.14/180.0)))\n",
+ "W=(F*math.cos(q*3.14/180.0))*s\n",
+ "\n",
+ "#Output\n",
+ "print\"Workdone by the pulling force is \",round(W,1),\"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Workdone by the pulling force is 117.5 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3 Page no 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#plot\n",
+ "import matplotlib.pyplot as plt\n",
+ "fig = plt.figure()\n",
+ "x=[0,1,2,3,4,5]\n",
+ "F=[0,6,6,12,12,0]\n",
+ "xlabel(\"x (m)\") \n",
+ "ylabel(\"F (N)\") \n",
+ "plt.xlim((0,5))\n",
+ "plt.ylim((0,14))\n",
+ "a=plot(x,F)\n",
+ "show(a)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEPCAYAAACukxSbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFnRJREFUeJzt3XuQXGWZx/FvyAQEE6WAKoMSHMFFQJSLGwtXLr0gLlBI\nqoBaGOSysZYCyl1ZUUTWRQbXFSTcLEGhhCAxIbIiK6ALYjQNJCgSTQKBoJiSbEKUuAS5lAuBZPaP\ntyfTmXRmuqf7nPc9fb6fqql0Znqmn+oKD2eec57zA0mSJEmSJEmSJEmSJEmSJBXYTOA54PEGX/sM\nsBHYKdeKJKnktsnwZ98CHN3g81OAo4CVGb62JCmCXrY80v8e8H7g93ikL0m5yvJIv5FpwGrgsZxf\nV5IE9OT4WjsA/0oY7Qwal+PrS1Lp5dn09ySMe5bW/r4b8Cvgg8DazZ64554DK1asyLE0SeoKK4B3\nj/SEPMc7jwNvA95V+1gNHMSwhg+wYsUKBgYG/BgY4JJLLoleQyofvhe+F74XI38QDq5HlGXTnws8\nDOwFrAKmD/v6QIavLUlqIMvxTt8oX98jw9eWJDWQ99U7alGlUoldQjJ8L4b4XgzxvWhNqlfPDNTm\nU5KkJo0bNw5G6ese6UtSidj0JalEbPqSVCI2fUkqEZu+JJWITV+SSsSmL0klYtOXpBKx6UtSidj0\nJalEbPqSVCI2fUkqEZu+JJWITV+SSsSmL0klYtOXpBKx6UtSidj0JalEbPqSVCI2fUkqEZu+JJVI\n1k1/JvAc8Hjd52YAy4GlwJ3AWzOuQZJUk3XTvwU4etjn7gfeC+wP/Ba4KOMaJEk1WTf9h4AXhn3u\nJ8DG2uNHgN0yrkGSVNMT+fU/AcyNXINUOG+8EbuCdIwfD+PGxa6iOGI2/S8A64HbGn2xv79/0+NK\npUKlUsmlKCl1F14IM2bANl6GwcaNcPHFcOmlsSuJo1qtUq1WW/qePP7/2AvcA7yv7nP/AJwFHAm8\n2uB7BgYGBjIvTCqaefNg+nRYuhR22il2NfE99RQccQSsWhWO+MtuXPiVZ8S+HuNY4WjgAmAajRu+\npAbWrQsNf+ZMG/6gvfeGyZPhgQdiV1IcWTf9ucDDwHuAVYQZ/teBiYQTuouBb2Rcg1R4AwNw7rlw\n4olw1FGxq0nLqafCbQ2HxGok1dMfjnekOrNnw2WXwaJFsP32satJy6pVcMABsGYNbLdd7GriSnW8\nI6kFK1fC+efDnDk2/EamTIH99oP77otdSTHY9KWEbdgAZ54Jn/lMOJpVY6eeCnO9+LspjnekhM2Y\nAT/8IfzsZ16dMpLnn4c99oDVq2HSpNjVxON4RyqwpUtD0581y4Y/mp13hkMPhbvuil1J+mz6UoJe\nfRU+/nG46ip45ztjV1MMfX2OeJrheEdK0Kc/Dc8+C7ff7i0GmvXKK/COd8CKFbDLLrGricPxjlRA\n8+bBHXfADTfY8FsxcSIce2x477R1Nn0pIW7dtqevz0Wt0aR6HOF4R6UzMACnnAK77grXXhu7mmJa\nvz68f4sXw+67x64mf453pAKZMweWLQubtxqbbbeFE04I50LUmE1fSoBbt53jvXhGZtOXInPrtrMO\nOwzWroXly2NXkiabvhTZ1VeHef5nPxu7ku4wfjycfLLX7G+NJ3KliJYuDbdKfvRRl7A6adGicFL8\n6afLddmrJ3KlhLl1m50PfCA0+0WLYleSHpu+FMlFF8G++8Jpp8WupPuMG+cJ3a1J9Rcfxzvqambd\nZq+M+bmOd6QEuXWbD/NzG7PpSzky6zZfjni25HhHypFZt/kqW36u4x0pIW7d5s/83C3Z9KUcuHUb\nj/m5m3O8I+Vgxgy45x6YP788V5Kkokz5ubHHOzOB54DH6z63E/AT4LfA/cCOGb6+lASzbuMyP3dz\nWTb9W4Cjh33u84Smvxfw09rfpa5Vv3Xb2xu7mvIyP3dI1uOdXuAe4H21vz8FHE74DWAyUAX2bvB9\njnfUFcy6TUNZ8nNjj3caeRuh4VP78205v76UG7Nu02F+7pCeiK89UPtoqL+/f9PjSqVCpVLJviKp\nQ9y6TU9fH1x5JZxzTuxKOqdarVKtVlv6nhjjnQrwR2BXYD6Od9RlzLpNUxnyc1Mc79wNnFl7fCbw\ng5xfX8qcWbdpMj83yPJIfy7hpO0uhPn9F4G7gP8EdgeeAf4e+HOD7/VIX4W0ciVMnQr33+8SVorm\nzw9b0YsXx64kG80c6ad6esmmr8LZsAGOPBKOOQYuvDB2NWpkw4Yw2pk3D/bZJ3Y1nZfieEfqWldf\nDRs3mnWbMvNzPdKXOmIw6/aXv3QJK3XdnJ/rkb6UA7dui6Xs+bk2falNZt0WS9nzc1P95cbxjgrB\nrNti6tb8XMc7Uobcui2uMufn2vSlMTDrtvjKOuJxvCONgVm3xdeN+bmOd6QMmHXbHcqan2vTl1pg\n1m13KWN+ruMdqQVm3XaXbsvPdbwjddCSJXDFFWbddpMy5ufa9KUmvPpqWL66+mq3brtN2fJzHe9I\nTTDrtnt1U36u4x2pA8y67W5ly8+16UsjcOu2HPr6yrOolepxi+MdRTeYdTt5Mnzta7GrUZa6JT/X\n8Y7UhsGs28svj12Jslam/FybvtSAW7flU5Z78dj0pWHcui2nww6DtWth+fLYlWTLpi8NY9ZtOZUl\nP9cTuVKdJUvCrZIffdQlrDIqen6uJ3KlFrh1qzLk58Zq+hcBTwCPA7cBXXI3axWZWbcqQ35ujF9g\neoGfAfsArwG3A/8N3Fr3HMc7ypVZtxpU5PzcVMc7LwGvAzsAPbU/n41QhwS4davNdXt+boymvw64\nCvgfYA3wZ2BehDqkTVm3J5xg1q2GdPOIpyfCa+4J/AthzPMi8D3g48Cc+if19/dvelypVKhUKnnV\npxIZ3Lr99rdjV6KUnHxy2NG4/vq083Or1SrVarWl74kx0z8ZOAr4x9rfTwcOBj5Z9xxn+srcypUw\ndSrcf79LWNrS4YeHrexp02JX0rxUZ/pPEZr89oTiPgI8GaEOlZhbtxpNt+bnxlo/+BxwJrAR+DXh\nqP/1uq97pK9MmXWr0RQxP7eZI/1mmv6OwIcIM/gB4Bng54R5fFZs+sqMW7dq1nHHhQ3douxutDve\nORS4G3gQOAXYndD4+4CHal87pAN1Srlx61at6Mb83JH+j3A18E3g6a18fS/gHOD8TheFR/rKiFm3\nakXR8nM7Nd6JwaavjnPrVmPR1xeu5DnnnNiVjK7dpn/mCF8bAGaNoaZm2fTVUevWwf77h61bl7DU\nirvvhiuvhAcfjF3J6Npt+tcRmvvw538M2A3I8poHm746xqxbtaNI+bmdHO9sA5wKXEi4pv4/gMfa\nKW4UNn11zOzZcNll4Xa5Rh9qLM46C/baCy64IHYlI+vEctYEwjX0TxK2aE8ibNRm2fCljhnMup09\n24avseume/GM1PT/iXDP+w8AxxBm/L/JoyipE+q3bg88MHY1KrJuys8d6deAjcBa4E8NvjYAvD+T\nimo/3/GO2uXWrTrp/PNh4kT40pdiV7J17c70e0f5+c+0Vk5LbPpqi1u36rQi5Oc20/RHurXySra8\nemeL12jiOVKuBrdur7rKhq/Oqc/PnTo1djVjN9JMvwpcQNi8He49hCt5ujRbRkU2mHV7+umxK1E3\n6Zb83JF+DdiOEG7SB+wHvFx7/kRgGSH05DZgfQZ1Od7RmLh1qyylnp/byev0xwODd574X2DD2Mtq\nik1fLXPrVnk46KCwoXvEEbEr2VInQ1Q2AM/VPrJu+FLLzLpVXoo+4kn0HLRH+mqNW7fKy6pVIW1t\nzZr08nNTjUuUOsqtW+VpyhTYbz+4777YlYyNTV+F5tatYihyfq7jHRWaW7eKIdX8XMc76mpLlsAV\nV8CsWTZ85WvnneHQQ+Guu2JX0rqRmn7id45Wmbl1q9iKmp870q8Bi4HBKen3gROzL2cTxzsakVm3\nii3F/NxOjnf2aLsaqUPmzYM77oAbbrDhK56JE+HYY8O/xSKJNdPfEbgDWE4IaDk4Uh0qmHXrwm0W\nZs70NguKr6+veItaIx0nbQD+Unu8PfB/dV8bAN7SxuveSrhZ20zCnT7fDLxY//Md72g4s26VmtTy\nc9sd74wHJtU+euoeT6K9hv9W4FBCwwd4g80bvtTQnDmwbBlcfnnsSqRg223DrT9uvz12Jc2LMRE9\nALiRMNbZH/gVcB5Dv1WAR/oAvPAC3HtvOMItu9dfh899Dn78Y5ewlJb588NG+OLFsStpP0QlKz3A\nQYQM3keBa4HPA1+sf1J/f/+mx5VKhUqlkluBKRgYCPPC116Dt789djVpuOYaG77SU5+fu88++b52\ntVqlWq229D0xjvQnAz8H3lX7+yGEpn9c3XNKf6R/3XVh6WjhQpgwIXY1kkaSSn5uqhu5fwRWMZTI\n9RHgiQh1JGv5cujvDzcQs+FL6Ru83XIRjlVjXbL5z4TkraXA+4GvRKojOevXh03TL38Z9moUVCkp\nOfX5ualLdbWltOOdL3whRP3dc4+LR1KRXHIJvPRSOPcUSyfjEvNWyqa/YAGcdFK4kdjkybGrkdSK\nFPJzU53pq4GXXoIzzoAbb7ThS0W0997hv90HHohdychs+ok47zw48kiYNi12JZLGqgj5uY53EnDn\nnWHxaMmScNmXpGKKnZ/reKcA/vAHOPdc+M53bPhS0RUhP9emH9HAQLhj5Nlnw4c+FLsaSZ2Qen6u\n452I3LqVuk/M/FzHOwlz61bqTqnn59r0I3DrVupuKefnOt6JwK1bqbvFys91vJOgBQvg5pvhppts\n+FK3Sjk/16afI7dupfJINT831WPNrhzvTJ8OPT3wrW/FrkRS1mLk5zreScidd8JDD8W9A5+k/KSa\nn2vTz4Fbt1I5pXgvHpt+xty6lcqrPj83FTb9jF1/PaxbBxdfHLsSSXkbPx5OPjmta/Y9kZuh5cvD\nZt7DD7uEJZXVokVwyinw9NPZX6btidyI3LqVBOnl59r0M3LppeFyrbPPjl2JpJjGjUvrhK7jnQyY\ndSupXl75uY53InDrVtJwKeXn2vQ7zKxbSY2kMuKJOd4ZDywCVgMfG/a1Qo53zLqVtDV55OemPt45\nD3gSKF53b8CtW0kjSSU/N1bT3w04FriJdE8mN82tW0nNSCE/N1bTvwa4ANgY6fU7yq1bSc046SS4\n9154+eV4NfREeM3jgLXAYqCytSf19/dvelypVKhUtvrUqAazbh9+2KxbSSOrz8897bT2f161WqVa\nrbb0PTFGK18BTgfeAN4EvAX4PnBG3XMKcSJ3/fowzjnrLDjnnNjVSCqCOXPCVTw/+lHnf3YzJ3Jj\nz9MPBz5LQa/eMetWUquyzM9N/eqdQel39wbMupU0FrHzc2M3/QeA4yPX0DK3biW1I2Z+bqrHqEmP\nd8y6ldSOrPJzizLeKRSzbiW1K2Z+rk2/BW7dSuqUWPfisek3ya1bSZ0UKz/Xpt8kt24ldVKs/FxP\n5DbBrFtJWeh0fq4ncjvArFtJWYmRn2vTH4VZt5KyEiM/1/HOCMy6lZS1TubnOt5pg1u3kvKQd36u\nTX8rzLqVlJc8RzyOdxow61ZSnjqVn+t4ZwzcupWUtzzzc236dQYG4BOfcOtWUv7yys91vFPn+uvh\n1lth4UKjDyXl6/nnYY89YPVqmDRpbD/D8U4Lli+HSy6B2bNt+JLyV5+fmyWbPm7dSkpDX1/2Ix7H\nO5h1KykN7ebnOt5pwsKFZt1KSkMe+bmlbvovvQSnn+7WraR0ZJ2fm+qxbS7jHbNuJaWmnfxcxzsj\nMOtWUoqyzs8tZdN361ZSyrK8F0+spj8FmA88ASwDPpXXC7t1Kyl1Webnxmr6rwOfBt4LHAx8Etgn\njxf+xjfC5ptZt5JSlWV+bioncn8AfB34ae3vmZzINetWUlGMJT+3KCdye4EDgUeyfBG3biUVSVb5\nuT2d/XEtmwjcAZwHvFL/hf7+/k2PK5UKlUqlrRcy61ZSkdTn506d2vg51WqVarXa2s9tv7QxmwD8\nELgXuHbY1zo63lm4EE480axbScXSan5uyuOdccDNwJNs2fA7yq1bSUWVRX5urKb/YeA04G+BxbWP\no7N4IbNuJRVZp6/ZT+XqneE6Mt4x61ZS0bWSn5vyeCdzbt1K6gadzs/tyqbv1q2kbtLJ/NyuHO+Y\ndSupmzSbn1vK8Y5Zt5K6TSfzc7uq6bt1K6lbdSo/t6vGO2bdSupWzeTnlmq8Y9atpG7Wqfzcrmj6\nbt1KKoNO5Oemekzc0njHrFtJZTBafm4pxjtm3Uoqi07k5xa66bt1K6ls2r0XT2Gbvlu3ksqo3fzc\nwjZ9s24llVG7+bmFPJFr1q2kMttafm5Xnsh161ZS2bWTn1u4pm/WraSyq8/Pbfl7O19ORzQc75h1\nK0lBo/zcrhrvuHUrSUPGmp9bmKZv1q0kbW4sI55CjHfMupWkLQ3Pz+2K8Y5bt5LU2Fjyc5Nu+m7d\nStLIWs3PjdX0jwaeAp4GLtzak9y6laSRnXQS3HsvvPxyc8+P0fTHA9cRGv++QB+wz/AnmXUbVKvV\n2CUkw/diiO/FkLK/F63m58Zo+h8Efgc8A7wOfBfY4poct26Dsv+Drud7McT3YojvRWv5uTGa/juA\nVXV/X1373GbcupWk5kybBgsWNPfcGE2/qUgss24lqTmD+bnNiNFWDwb6CTN9gIuAjcBX657zO2DP\nfMuSpMJbAbw7dhHD9RAK6wW2BZbQ4ESuJKl7HAP8hnBEf1HkWiRJkiTloanFrRKYCTwHPB67kARM\nAeYDTwDLgE/FLSeqNwGPEMaiTwKXxS0nuvHAYuCe2IUk4BngMcL78cu4pTRvPGHk0wtMoNzz/kOB\nA7HpA0wGDqg9nkgYDZb13wXADrU/e4BfAIdErCW284E5wN2xC0nA74GdRntSavfeaWpxqyQeAl6I\nXUQi/kg4AAB4BVgOvD1eOdH9pfbntoQDpXURa4lpN+BY4CbSvWNw3kZ9H1Jr+k0tbqnUegm/AT0S\nuY6YtiH8T/A5wtjrybjlRHMNcAHhkm+FHah5wCLgrK09KbWm39TilkprInAHcB7hiL+sNhLGXbsB\nhwGVqNXEcRywljC/9ig/+DDhgOgY4JOEEfEWUmv6zxJO2g2aQjjalyYA3wdmAz+IXEsqXgR+BPx1\n7EIi+BvgeMIcey5wBDArakXx/aH255+A/yKMy5Pn4tbmevFELoQjuVmEX+fLbhdgx9rj7YEHgSPj\nlZOEw/HqnR2ASbXHbwYWAh+NV05rXNwK5gJrgNcI5zmmxy0nqkMII40lhF/nFzN0G4+yeR/wa8J7\n8Rhhpl12h+PVO+8i/JtYQrisucy9U5IkSZIkSZIkSZIkSZIkSVKxzGNoCaYZxwMXZ1SLJClDRwDX\nt/g94wgLMxM6X47UutTuvSPlZSqwFNiOsLa+DNh3lO85Fbir9riXEPZzC2GDfA5h7X0h8Nvaz4dw\nE8GfU6CVeEnqVv8OzACuo7mUtuUMhVT0EjIf3ks4ml8E3Fz72vGEG14Nmg58tf1yJUntmEA42v8F\nzd2e98W6x72EI/pBtwJ9tcd7EO4PNOjvgNvHXKXUQY53VGa7EEY7Ewl3rGzVa3WPNwLr6x731H1t\nG8yKUCJs+iqzG4F/A26jufHLGmDnMbzOrsDKMXyf1HE2fZXVGYQj9e8ClxNOvFZG+Z4FbB5YMvzo\nfWArjz9IuO+9JKlAKsA3W/yewTzbntGeKOXBI32peVXgr2htOes4Qq7vG1kUJEmSJEmSJEmSJEmS\nJEmSJCk5/w8BWpyAvuV2cgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x883ac30>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4 Page no 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=0.05 #Mass of the body in kg\n",
+ "v=(3,5) #Velocity in vector form 3i+4j in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "ke=(1/2.0)*m*(v[0]**2+v[1]**2)\n",
+ "\n",
+ "#Output\n",
+ "print\"Kinetic energy is \",ke,\"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Kinetic energy is 0.85 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5 Page no 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "k=50 #Spring force constant in N/m\n",
+ "x=-0.02 #Length of compression in m\n",
+ "\n",
+ "#Calculations\n",
+ "W=(1/2.0)*k*(x)**2\n",
+ "\n",
+ "#Output\n",
+ "print\"Work done by the spring when the block comes from the compressed position to the equilibrium position is \",W,\"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Work done by the spring when the block comes from the compressed position to the equilibrium position is 0.01 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6 Page no 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "x=0.03 #Length stretched by the spring in m\n",
+ "m=0.25 #Mass of the body in kg\n",
+ "\n",
+ "#Calculations\n",
+ "k=(m*9.8)/x\n",
+ "\n",
+ "#Output\n",
+ "print\"Force constant of the spring is \",round(k,3),\"N/m\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Force constant of the spring is 81.667 N/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.7 Page no 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=5 #Mass of block in kg\n",
+ "F=20 #Constant force in N\n",
+ "x=6 #Distance moved by the block in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "W=(F*x)\n",
+ "v=math.sqrt((2*W)/m)\n",
+ "\n",
+ "#Output\n",
+ "print\"Speed of the block when it moves through a distance of \",x,\"m is\",round(v,2),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of the block when it moves through a distance of 6 m is 6.93 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.8 Page no 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=50 #Mass of the object in kg\n",
+ "v=8 #Speed in m/s\n",
+ "t=4 #Time taken in s\n",
+ "\n",
+ "#Calculations\n",
+ "a=(v-0)/t\n",
+ "s=(v**2/(2.0*a))\n",
+ "W=(m*a*s)\n",
+ "P=(W/t)\n",
+ "\n",
+ "#Output\n",
+ "print\"Workdone on the object is \",W,\"J\" \n",
+ "print\"The average power delivered by the force in the first \",t,\"s is \",P,\"watt\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Workdone on the object is 1600.0 J\n",
+ "The average power delivered by the force in the first 4 s is 400.0 watt\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter3.ipynb b/Principles_of_physics/chapter3.ipynb
new file mode 100755
index 00000000..e57500e1
--- /dev/null
+++ b/Principles_of_physics/chapter3.ipynb
@@ -0,0 +1,222 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:754c71c2e29646e743d2602122b6349e57c8b539ae4803d803ea41cdce275af3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3 Potential energy"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.1 page no 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=0.04 #Mass of stone in kg\n",
+ "vi=25 #Initial velocity in m/s\n",
+ "vf=0 #Final velocity in m/s\n",
+ "yi=0 #Initial height in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Ui=(m*9.81*yi)\n",
+ "Ki=(1/2.0)*m*vi**2\n",
+ "Etotal=(Ui+Ki)\n",
+ "h=(Etotal/(m*9.8))\n",
+ "#when the stone is at (2/3)h, total energy is again same\n",
+ "v=math.sqrt((Etotal-(m*9.8*(2/3.0)*h))/((1/2.0)*m))\n",
+ "\n",
+ "#Output\n",
+ "print\"Maximum height it will reach is \",round(h,1),\"m\" \n",
+ "print\"velocity when it is at the two-third of its maximum height is \",round(v,2),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum height it will reach is 31.9 m\n",
+ "velocity when it is at the two-third of its maximum height is 14.43 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.2 page no 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=0.5 #Mass of the sphere in kg\n",
+ "vi=100 #Initial velocity in m/s\n",
+ "vf=20 #Final velocity in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "h=(vi**2-vf**2)/(2.0*9.8)\n",
+ "PE=(m*9.8*h)\n",
+ "\n",
+ "#Calculations\n",
+ "print\"Potential energy of the sphere is \",PE,\"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Potential energy of the sphere is 2400.0 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3 page no 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=0.5 #Mass of the block in kg\n",
+ "x=0.05 #Distance to which block is pulled in m\n",
+ "k=300 #Force constant of the spring in N/m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "U=(1/2.0)*k*x**2\n",
+ "v=x*math.sqrt(k/m)\n",
+ "\n",
+ "#Output\n",
+ "print\"Potential energy of the block when spring is in stretched position is \",U,\"J\" \n",
+ "print\"Velocity of the block when it passes through the equilibrium position is \",round(v,2),\" m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Potential energy of the block when spring is in stretched position is 0.375 J\n",
+ "Velocity of the block when it passes through the equilibrium position is 1.22 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4 page no 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "l=0.8 #Length of a simple pendulum in m\n",
+ "q=30 #Angle with the vertical through which the bob is released in degrees\n",
+ "q1=10 #Required angle in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "v=math.sqrt(2*9.8*l*(math.cos(q1*3.14/180.0)-math.cos(q*3.14/180.0)))\n",
+ "\n",
+ "#Output\n",
+ "print\"Speed when the bob is at the angle of \",q1,\"degrees with the vertical is \",round(v,2),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed when the bob is at the angle of 10 degrees with the vertical is 1.36 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.5 page no 37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=(9.1*10**-31) #Mass of the electron in kg\n",
+ "v=(3*10**8) #Velocity of light in m/s\n",
+ "c=(1.6*10**-19) #Charge of the electron in coloumbs\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "Re=(m*v**2)/(c*10**6)\n",
+ "E=(Re/math.sqrt(1-0.9**2))\n",
+ "\n",
+ "#Output\n",
+ "print\"Rest energy of the electron is \",round(Re,3),\"MeV\" \n",
+ "print\"Total energy is \",round(E,2),\"MeV\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rest energy of the electron is 0.512 MeV\n",
+ "Total energy is 1.17 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter4.ipynb b/Principles_of_physics/chapter4.ipynb
new file mode 100755
index 00000000..5aa2ceb9
--- /dev/null
+++ b/Principles_of_physics/chapter4.ipynb
@@ -0,0 +1,210 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b7bd6954751643f92d25f5c6d00ec1b3a41e28e3d14c6105ad117f2707f6395b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4 Rotational motion of Rigid objects"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1 Page no 54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "w=4 #Angular velocity in rad/s\n",
+ "m=(1,2,3,4) #Masses in kg from the figure 4.17 on page no.54 \n",
+ "r=(2.5,1.5) #Centre position in m\n",
+ "\n",
+ "#Calculations\n",
+ "I=(m[0]+m[1]+m[2]+m[3])*(r[0]**2+r[1]**2)\n",
+ "KE=(1/2.0)*I*w**2\n",
+ "\n",
+ "#Output\n",
+ "print\"The moment of inertia is \",I,\"kg.m**2\" \n",
+ "print\"Kinetic energy of the system is \",KE,\"J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The moment of inertia is 85.0 kg.m**2\n",
+ "Kinetic energy of the system is 680.0 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2 Page no 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "q=30 #Angle of inclination in degrees\n",
+ "h=1 #Height in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "v=math.sqrt((10/7.0)*9.8*h)\n",
+ "a=(5/7.0)*9.8*math.sin(q*3.14/180.0)\n",
+ "\n",
+ "#Output\n",
+ "print\"Velocity and acceleration of the centre of mass of the sphere is \",round(v,2),\"m/s and \",round(a,1),\"m/s**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity and acceleration of the centre of mass of the sphere is 3.74 m/s and 3.5 m/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3 Page no 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=1.2 #Mass of the rod in kg\n",
+ "l=0.8 #Length of the rod in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "T=2*3.14*math.sqrt((2*l)/(3.0*9.8))\n",
+ "\n",
+ "#Output\n",
+ "print\"Period of oscillation is \",round(T,2),\"s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Period of oscillation is 1.47 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4 Page no 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=0.2 #Radius of uniform disc in m\n",
+ "d=0.15 #Distance from the centre in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "T=2*3.14*math.sqrt((17*r)/(12.0*9.8))\n",
+ "\n",
+ "#Output\n",
+ "print\"The period of oscillation is \",round(T,3),\"s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The period of oscillation is 1.068 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5 Page no 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=3 #Mass of the rotor in kg\n",
+ "I=0.03 #Moment of inertia in kg.m^2\n",
+ "d=0.25 #Distance of pivot from the centre in m\n",
+ "p=30 #Precession in rpm\n",
+ "\n",
+ "#Calculations\n",
+ "T=m*9.8*d\n",
+ "w=(p*2*3.14)/60.0\n",
+ "w1=(T/(I*w))\n",
+ "\n",
+ "#Output\n",
+ "print\"Angular speed of rotation of the rotor is \",round(w1,0),\"rpm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angular speed of rotation of the rotor is 78.0 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter5.ipynb b/Principles_of_physics/chapter5.ipynb
new file mode 100755
index 00000000..525b7c92
--- /dev/null
+++ b/Principles_of_physics/chapter5.ipynb
@@ -0,0 +1,332 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8d1a6e24325b21ce86c3b6da78ff6614496eb66a81611477ea9a7b9f8a72ae03"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 Properties of matter"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page no 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=1 #Mass of torsional pendulum in kg\n",
+ "R=0.06 #Radius of torsional pendulum in m\n",
+ "l=1.2 #Length of the wire in m\n",
+ "r=0.0008 #Radius of wire in m\n",
+ "S=(9*10**9) #Modulus of rigidity of the material in N/m^2\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "I=(1/2.0)*m*R**2\n",
+ "C=(3.14*S*r**4)/(2*l)\n",
+ "T=2*3.14*math.sqrt(I/C)\n",
+ "\n",
+ "#Output\n",
+ "print\"Period of pendulum is \",round(T,1),\"s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Period of pendulum is 3.8 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page no 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "l=0.8 #Length of the wire in m\n",
+ "d=(1.8*10**-3) #Diameter of the wire in m\n",
+ "a=1.5 #Angle of twist in degrees\n",
+ "S=(1.8*10**11) #Modulus of rigidity of the material in N/m^2\n",
+ "\n",
+ "#Calculations\n",
+ "r=(a*3.14)/180.0\n",
+ "W=((3.14*S*(d/2.0)**4*r**2)/(4*l))/10.0**-5\n",
+ "\n",
+ "#Output\n",
+ "print\"Work required to twist the wire is \",round(W,2),\"*10^-5 J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Work required to twist the wire is 7.93 *10^-5 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page no 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "l=2 #Length of wire in m\n",
+ "d=(0.4*10**-3) #Diameter of the wire in m\n",
+ "x=(1.03*10**-3) #Extension in length in m\n",
+ "L=2 #Load in kg\n",
+ "C=(4.52*10**-6) #Couple in N/m\n",
+ "a=0.03 #Twist angle in radians\n",
+ "\n",
+ "#Calculations\n",
+ "Y=((L*9.8*l)/(x*3.14*(d/2.0)**2))/10**11\n",
+ "S=((C*2*l)/(3.14*(d/2.0)**4*a))/10**11\n",
+ "s=(Y/(2*S))-1\n",
+ "\n",
+ "#Output\n",
+ "print\"Youngs modulus is \",round(Y,2),\"*10**11 N/m^2\"\n",
+ "print\"Modulus of rigidity is \",round(S,2),\"*10**11 N/m^2\"\n",
+ "print\"Poissons ratio is \",round(s,2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Youngs modulus is 3.03 *10**11 N/m^2\n",
+ "Modulus of rigidity is 1.2 *10**11 N/m^2\n",
+ "Poissons ratio is 0.26\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page no 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=0.003 #Radius of drop of glycerine in m\n",
+ "T=(63.1*10**-3) #Surface tension of glycerine in N/m\n",
+ "\n",
+ "#Calculations\n",
+ "P=((2*T)/r)\n",
+ "\n",
+ "#Output\n",
+ "print\"Excess pressure inside the drop of glycerine is \",round(P,2),\"N/m^2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Excess pressure inside the drop of glycerine is 42.07 N/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page no 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r1=0.001 #Initial radius in m\n",
+ "r2=0.004 #Final radius in m\n",
+ "t=2*10**-3 #Time in s\n",
+ "s=(7*10**-2) #Surface tension of water in N/m\n",
+ "\n",
+ "#Calculations\n",
+ "P=((2*s)*((1/r2)-(1/r1)))/(t*10**4)\n",
+ "\n",
+ "#Output\n",
+ "print\"Rate of change of pressure is \",P,\"*10**4 N/m**2 s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of change of pressure is -5.25 *10**4 N/m**2 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page no 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "d=0.02 #Diamter of soap bubble in m\n",
+ "s=(25*10**-3) #Surface tension in N/m\n",
+ "#Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble\n",
+ "\n",
+ "#Calculations\n",
+ "W=(s*2*4*3.14*(d/2.0)**2)/10.0**-5\n",
+ "\n",
+ "#Output\n",
+ "print\"Work done in blowing a soap bubble is \",W,\"*10**-5 J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Work done in blowing a soap bubble is 6.28 *10**-5 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page no 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=0.01 #Radius of liquid drop in m\n",
+ "n=500 #Number of drops\n",
+ "s=(63*10**-3) #Surface tension in N/m\n",
+ "\n",
+ "#Calculations\n",
+ "r1=(((4*3.14*r**3)/3.0)/((n*4*3.14)/3.0))**(1/3.0)\n",
+ "As=(n*4*3.14*r1**2)\n",
+ "A=4*3.14*r**2\n",
+ "W=(s*(As-A))/10.0**-4\n",
+ "\n",
+ "#Output\n",
+ "print\"Energy required to break up a drop of a liquid is \",round(W,1),\"*10**-4 J\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy required to break up a drop of a liquid is 5.5 *10**-4 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page no 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "d=0.04 #Inside diameter of garden hose in m\n",
+ "D=0.01 #Diamter of nozzle opening in m\n",
+ "v1=0.6 #speed of flow of water in the hose in m/s\n",
+ "\n",
+ "#calculations\n",
+ "a=3.14*(d/2.0)**2\n",
+ "A=3.14*(D/2.0)**2\n",
+ "v2=(v1*a)/A\n",
+ "\n",
+ "#Output\n",
+ "print\"Speed of flow through the nozzle is \",v2,\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of flow through the nozzle is 9.6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter6.ipynb b/Principles_of_physics/chapter6.ipynb
new file mode 100755
index 00000000..4159f312
--- /dev/null
+++ b/Principles_of_physics/chapter6.ipynb
@@ -0,0 +1,219 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:07e7b9e13f5186e21c37c016dc92fe3d2ec9f35cd561874f30d6be57401876f8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6 Real Gas and Transport Processes in gas"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "EXample 6.1 Page no 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "a=(2.1*10**-2) #Vanderwaals constant a for neon gas in Nm^4/mol^2\n",
+ "b=(1.71*10**-5) #Vanderwaals constant b for neon gas in m^3/mol\n",
+ "R=8.314 #Gas constant in J/mol.K\n",
+ "\n",
+ "#Calculations\n",
+ "Tc=(8*a)/(27*b*R)\n",
+ "Vc=(3*b)/10.0**-5\n",
+ "Pc=(a/(27*b**2))/10.0**6\n",
+ "\n",
+ "#Output \n",
+ "print\"Critical temperature is \",round(Tc,2),\"K\" \n",
+ "print\"Critical volume is \",round(Vc,2),\"* 10**-5 m**3/mol\"\n",
+ "print\"Critical pressure is \",round(Pc,3),\"* 10**6 N/m**2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Critical temperature is 43.77 K\n",
+ "Critical volume is 5.13 * 10**-5 m**3/mol\n",
+ "Critical pressure is 2.66 * 10**6 N/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2 Page no 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "n=181*10**-6 #Coefficient of viscosity of a gas in p\n",
+ "v=3*10**4 #Average speed of molecules in cm/s\n",
+ "d=1.2929*10**-3 #Density in g/cm^3\n",
+ "\n",
+ "#Calculations\n",
+ "lembda=((3*n)/(d*v))/10**-6\n",
+ "\n",
+ "#Output\n",
+ "print\"Mean free path is \",round(lembda,0),\"* 10^-6 cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mean free path is 14.0 * 10^-6 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3 Page no 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=(28*1.66*10**-27) #Molecular mass of a gas in kg\n",
+ "d=(3.48*10**-10) #Diameter in m\n",
+ "k=(1.38*10**-23) #Boltzmans constant in J/K\n",
+ "P=1.01*10**5 #Pressure at STP in N/m^2\n",
+ "T=273 #Temperature at STP in K\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "D=((1/(P*3*d**2*math.sqrt(m)))*((2*k*T)/3.14)**(3/2.0))/10.0**-5\n",
+ "\n",
+ "#Output\n",
+ "print\"Diffusion coefficient of a gas at STP is \",round(D,2),\"* 10**-5 m^2/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diffusion coefficient of a gas at STP is 1.49 * 10**-5 m^2/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4 Page no 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "m=(32*1.66*10**-27) #Molecular mass of a gas in kg\n",
+ "d=(3.65*10**-10) #Diameter in m\n",
+ "k=(1.38*10**-23) #Boltzmans constant in J/K\n",
+ "P=1.01*10**5 #Pressure at STP in N/m^2\n",
+ "T=273 #Temperature at STP in K\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "n=((1/(3.14*d**2))*math.sqrt((8*k*T*m)/(9*3.14)))/10**-5\n",
+ "\n",
+ "#Output\n",
+ "print\"Viscosity of a gas at STP is \",round(n,3),\"*10^-5 N.s/m^2\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Viscosity of a gas at STP is 1.799 *10^-5 N.s/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.5 Page no 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "v=460 #Average speed of molecules in m/s\n",
+ "l=(720*10**-10) #Mean free path in m\n",
+ "Cv=21.06 #Specific heat at constant volume in J/K.mol\n",
+ "k=(1.38*10**-23) #Boltzmans constant in J/K\n",
+ "P=1.01*10**5 #Pressure at STP in N/m^2\n",
+ "T=273 #Temperature at STP in K\n",
+ "N=6.022*10**23 #Avagadro constant\n",
+ "\n",
+ "#Calculations\n",
+ "K=((1/3.0)*(Cv/N)*(P/(k*T))*v*l)/10.0**-2\n",
+ "\n",
+ "#Output\n",
+ "print\"Thermal conductivity of the gas at STP is \",round(K,5),\"*10**-2 W/m-K\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thermal conductivity of the gas at STP is 1.03506 *10**-2 W/m-K\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter7.ipynb b/Principles_of_physics/chapter7.ipynb
new file mode 100755
index 00000000..7db9675d
--- /dev/null
+++ b/Principles_of_physics/chapter7.ipynb
@@ -0,0 +1,191 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b663d37f11172deb3563f162b70ebad3fa6ba55d33d2460355cbcd711fb7c2ba"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7 Thin Lens, Coaxial Systems and Aberrations "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1 Page no 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "f1=-12.0 #Focal length of a converging lens in cm\n",
+ "f2=25.0 #Focal length of a diverging lens in cm\n",
+ "d=8 #Distance between the lens in cm\n",
+ "\n",
+ "#Calculations\n",
+ "C=(1/f1)+(1/f2)+(d/(f1*f2))\n",
+ "D=(d/f2)+1\n",
+ "A=(d/f1)+1\n",
+ "O1F1=(-D/C)\n",
+ "O2F2=(A/C)\n",
+ "O1H1=(1-D)/C\n",
+ "O2H2=(A-1)/C\n",
+ "\n",
+ "#Output\n",
+ "print\"Position of cardinal points are O1F1 = \",round(O1F1,3),\"cm, O2F2 = \",round(O2F2,3),\"cm, O1H1 = \",round(O1H1,3),\"cm, O2H2 = \",round(O2H2,3),\"cm\"\n",
+ "print\"The system is in air, therfore, nodal points coincide with unit points\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Position of cardinal points are O1F1 = 18.857 cm, O2F2 = -4.762 cm, O1H1 = 4.571 cm, O2H2 = 9.524 cm\n",
+ "The system is in air, therfore, nodal points coincide with unit points\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2 Page no 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "f=15.0 #Focal length of achromatic doublet made up of crown and flint glasses in cm\n",
+ "fl=(0.01506,0.02427) #Dispersive power of crown and flint glasses respectively \n",
+ "\n",
+ "#Calculations\n",
+ "#Solving two equations\n",
+ "#(1/f)=(1/f1)+(1/f2)\n",
+ "#(f1/f2)=(-0.01506/0.02427)\n",
+ "fx=(fl[0]/fl[1])\n",
+ "f2=(-(1/fx)+1)/(1/f)\n",
+ "f1=(-fx*f2)\n",
+ "\n",
+ "#Output\n",
+ "print\"Focal length of converging lens is \",round(f2,1),\"cm\" \n",
+ "print\"Focal length of diverging lens is \",round(f1,1),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Focal length of converging lens is -9.2 cm\n",
+ "Focal length of diverging lens is 5.7 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3 Page no 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "f=20.0 #Focal length in cm\n",
+ "fl=(0.015,0.019) #Dispersive powers of crown and flint glasses respectively\n",
+ "r=(1.495,1.53) #Refractive indices respectively\n",
+ "\n",
+ "#Calculations\n",
+ "fx=-(fl[0]/fl[1])\n",
+ "#Solving two equations\n",
+ "#(1/f)=(1/f1)+(1/f2)\n",
+ "#(f1/f2)=(-0.015/0.019)\n",
+ "f2=((1/fx)+1)/(1.0/f)\n",
+ "f1=(fx*f2)\n",
+ "r2=(r[1]-1)*f2\n",
+ "r1=1/(((1/f1)/(r[0]-1))+(1/r2))\n",
+ "\n",
+ "#Output\n",
+ "print\"Radius of curvature of converging lens is \",round(r2,1),\"cm\" \n",
+ "print\"Radius of curvature of diverging lens is \",round(r1,1),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius of curvature of converging lens is -2.8 cm\n",
+ "Radius of curvature of diverging lens is 7.9 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4 Page no 116"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=1.5 #Refractive index of the material of a thin lens\n",
+ "f=-20.0 #Focal length of the lens in cm\n",
+ "rx=-6.0 #Ratio of radii of curvature of lens\n",
+ "\n",
+ "#Calculations\n",
+ "r1=1/((1/f)/((r-1)*(1-(1/rx))))\n",
+ "r2=(rx*r1)\n",
+ "\n",
+ "#Output\n",
+ "print\"Radii of curvature of lens are \",round(r1,2),\"cm and\",r2,\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radii of curvature of lens are -11.67 cm and 70.0 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/chapter9.ipynb b/Principles_of_physics/chapter9.ipynb
new file mode 100755
index 00000000..d098f46c
--- /dev/null
+++ b/Principles_of_physics/chapter9.ipynb
@@ -0,0 +1,214 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:483ac761a0ac81598a32958276222effb2c60791a86a62e2445fc0aaf9c0e97b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9 Interference"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1 Page no 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "t=0.2 #Thickness of film in micro m\n",
+ "r=1.25 #Refractive index of liquid\n",
+ "w=(4000,5000) #Range of wavelength in Angstrom\n",
+ "q=35 #Angle observed in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "u=math.asin(math.sin(q*3.14/180.0)/r)*180/3.14\n",
+ "w1=(2*t*10**-6*r*math.cos(u*3.14/180.0))/10**-10\n",
+ "w2=w1/2.0 \n",
+ "\n",
+ "#Output\n",
+ "print\"Wavelength absent in reflected light is \",round(w2,0),\"Angstrom\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength absent in reflected light is 2222.0 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2 Page no 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=1.39 #Refractive index of the film \n",
+ "q=30 #Angle observed in degrees\n",
+ "w=(5125,5000) #Wavelengths of two consecutive dark bands in Angstrom\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "r1=math.asin(math.sin(q*3.14/180.0)/r)*180/3.14\n",
+ "n=w[1]/(w[0]-w[1])\n",
+ "t=((n*w[0]*10**-8)/(2.0*r*math.cos(r1*3.14/180.0)))/10**-4\n",
+ "\n",
+ "#Output\n",
+ "print\"Thickness of the film is \",round(t,4),\"*10**-4 cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of the film is 7.9026 *10**-4 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3 Page no 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=1.4 #Refractive index of the material\n",
+ "w=5893 #Wavelength of yellow light in Angstrom\n",
+ "n=10 #Number of bands\n",
+ "w1=0.009 #Width of band in m\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "b=math.asin((w*10**-8)*180/3.14/(2.0*r*n*w1))\n",
+ "\n",
+ "#Output\n",
+ "print\"Angle of wedge is \",round(b,4),\"degrees\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angle of wedge is 0.0134 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.4 Page no 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "r=1.0 #Refractive index\n",
+ "n=4 #Number of bands\n",
+ "w=6500 #Wavelength in Angstrom\n",
+ "\n",
+ "#Calculations\n",
+ "t=(((n+(1/2.0))*w*10**-8)/(2*r))/10.0**-4\n",
+ "\n",
+ "#Output\n",
+ "print\"Thickness of wedge shaped air film is \",t,\"*10**-4 cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of wedge shaped air film is 1.4625 *10**-4 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.5 Page no 137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "d=0.5 #Diameter of the ring in cm\n",
+ "n=4 #number of bands\n",
+ "w=5893 #Wavelength of light in Angstrom\n",
+ "q=30 #Angle at which light enters in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "import math\n",
+ "R=((d**2*math.cos(q*3.14/180.0))/(2.0*(2*n+1)*w*10**-8))\n",
+ "\n",
+ "#Output\n",
+ "print\"Radius of curvature of lens is \",round(R,1),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius of curvature of lens is 204.1 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Principles_of_physics/screenshots/image_1.png b/Principles_of_physics/screenshots/image_1.png
new file mode 100755
index 00000000..6df661fa
--- /dev/null
+++ b/Principles_of_physics/screenshots/image_1.png
Binary files differ
diff --git a/Principles_of_physics/screenshots/image_2.png b/Principles_of_physics/screenshots/image_2.png
new file mode 100755
index 00000000..46886dcb
--- /dev/null
+++ b/Principles_of_physics/screenshots/image_2.png
Binary files differ
diff --git a/Principles_of_physics/screenshots/image_3.png b/Principles_of_physics/screenshots/image_3.png
new file mode 100755
index 00000000..1650e1a0
--- /dev/null
+++ b/Principles_of_physics/screenshots/image_3.png
Binary files differ