diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb new file mode 100644 index 00000000..b6b6ca79 --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb @@ -0,0 +1,299 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 08: Rotational work energy and momentum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.1:pg-240" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + " #Example 8_1\n", + " \n", + " \n", + " #To find the rotational kinetic energy\n", + "m=5.98*10**24 #units in Kg\n", + "r=6.37*10**6 #units in meters\n", + "I=(2/5)*m*r**2 #units in Kg meter**2\n", + "t=86400 #units in sec\n", + "w=(2*math.pi)/(t) #units in rad/sec\n", + "KE=0.5*(I*w**2) #units in joules\n", + "print \"The rotational kinetic energy is KE=\")\n", + "print KE)\n", + "print \"Joules\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.2:pg-242" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular acceleration is alpha= 0.384 rad/sec**2\n" + ] + } + ], + "source": [ + " #Example 8_2\n", + " \n", + " \n", + " #To find the angular acceleration of the wheel\n", + "m=30 #units in Kg\n", + "k=0.25 #units in meters\n", + "I=m*k**2 #units in Kg meter**2\n", + "force=1.8 #units in Newtons\n", + "levelarm=0.40 #nits in meters\n", + "tou=force*levelarm #units in Newton meter\n", + "alpha=tou/I #units in rad/sec**2\n", + "print \"Angular acceleration is alpha=\",round(alpha,3),\" rad/sec**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.3:pg-242" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The time taken is t= 15.7 sec\n", + "\n", + "The wheel goes a distance of theta= 98.7 rad\n", + "\n", + "The rotational kinetic energy is KE= 197.0 Joules\n" + ] + } + ], + "source": [ + " #Example 8_3\n", + " \n", + " \n", + " #To find out how long does it take to accelerate and how far does wheel turn in this time and the rotational kinetic energy\n", + "force=8 #units in Newtons\n", + "arm=0.25 #units in meters\n", + "tou=force*arm #units in Newton meter\n", + "m=80 #units in Kg\n", + "b=arm #units in meters\n", + "I=0.5*m*b**2 #units in Kg meter**2\n", + "alpha=tou/I #units in rad/sec**2\n", + "wf=4*math.pi #units in rad/sec\n", + "w0=0 #units in rad/sec\n", + "t=(wf-w0)/alpha #units in sec\n", + "print \"The time taken is t=\",round(t,1),\" sec\\n\"\n", + "theta=0.5*(wf+w0)*t #units in radians\n", + "print \"The wheel goes a distance of theta=\",round(theta,1),\" rad\\n\"\n", + "KE=0.5*I*wf**2 #units in Joules\n", + "print \"The rotational kinetic energy is KE=\",round(KE),\" Joules\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.4:pg-243" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The angular acceleration is alpha= 1.37 rad/sec**2\n", + "\n", + "The objects goes a distance of y= 51.4 meters\n" + ] + } + ], + "source": [ + " #Example 8_4\n", + " \n", + " \n", + " #To find out the angular acceleration and the distance the object falls\n", + "f1=29.4 #units in Newtons\n", + "r1=0.75 #units in meters\n", + "m1=40 #units in Kgs\n", + "r2=0.6 #units in meters\n", + "m2=3 #units in Kgs\n", + "alpha=(f1*r1)/((m1*r2**2)+(m2*r1**2)) #units in rad/sec**2\n", + "print \"The angular acceleration is alpha=\",round(alpha,2),\" rad/sec**2\\n\"\n", + "a=r1*alpha #units in meters/sec**2\n", + "t=10 #units in sec\n", + "y=0.5*a*t**2 #units in meters\n", + "print \"The objects goes a distance of y=\",round(y,1),\" meters\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.5:pg-244" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The object is moving at v= 1.28 meters/sec\n" + ] + } + ], + "source": [ + " #Example 8_5\n", + " \n", + " \n", + " #To find the speed of the object\n", + "m=3 #units in Kg\n", + "g=9.8 #units in meters/sec**2\n", + "h=0.80 #units in meters\n", + "m1=3 #units in Kg\n", + "m2=14.4 #units in Kg\n", + "r=0.75 #units in meters\n", + "v=sqrt((m*g*h)/((0.5*m1)+((0.5*m2)/r**2)))\n", + "print \"The object is moving at v=\",round(v,2),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.8:pg-247" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The sun would take for one revolution in time=\n", + "0.000216 sec\n" + ] + } + ], + "source": [ + " #Example 8_8\n", + " \n", + " \n", + " #To find out how long does the sun take to complete one revolution\n", + "ra_rb=10.0**5\n", + "noofrev=1.0/25 #units in rev/day\n", + "wafter=(ra_rb)**2*(noofrev)\n", + "t=86400 #units in sec\n", + "time=t/wafter #units in sec\n", + "print \"The sun would take for one revolution in time=\"\n", + "print time,\"sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex8.9:pg-248" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rotational speed is Wf= 1.63 rev/sec\n" + ] + } + ], + "source": [ + " #Example 8_9\n", + " \n", + " \n", + " #To find out the rotational speed \n", + "m=0.3 #units in Kg\n", + "r=0.035 #units in meters\n", + "Iw=0.5*m*r**2 #units in Kg meter**2\n", + "Ibt=8*10**-4 #units in Kg meter**2\n", + "w0=2 #units in rev/sec\n", + "wf=(Ibt*w0)/(Ibt+Iw) #units in rev/sec\n", + "print \"The rotational speed is Wf=\",round(wf,2),\" rev/sec\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |